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holds. We can assume that o, is a refinement both of o (B,) and of ¥ (B,), so that
one gets

@u(Tign) = Valmyie)s -

‘Then one concludes by means of Lemma 3.1 that f, = g,.

Now Theorem 1 follows immediately from Propositions 3.1, 3.2 and 3.3. As
regards Theorem 2, it follows from the same propositions, accordingly reformulated
for double-uniform shape maps. Their proof remains essentially the same — it
suffices to remark that standard similar e-extension f, constructed in §2, of a uniform
covering § of a subspace always covers uniform neighbourhood of that subspace.
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Paracompact box products in forcing extensions
by

Judy Roitman (Wellesley, Mass.)

Abstract. In an iterated ccc extension with length x, where » has uncountable cofinality, [0 Xi
i<o
is paracompact if each X; is compact metrizable; if in addition x is regular and no bigger than the

cardinality of the continuum in the ground model, then [ Xj is paracompact if each X; is
i<o
compact first countable.

§ 0. Introduction. The question of when box products are normal is an old one
(see, e.g., [R;]). Van Douwen and Kunen each showed that the box product of
countably many spaces need not be normal if the spaces are not compact or are of
large character. Known positive results are all consistency results and proceed by
proving paracompactness. Thus attention has focused between the parameters of:
is there an absolute proof that at least [1°(w+1) is paracompact? Is it consistent

that some [ X, is not normal where each X; is compact first countable?
i<a

The positive consistency results have been: that MA = the box product of
countably many compact first countable spaces is paracompact (Rudin, Kunen);
that 3 a A-scale =[1°(w+1) is paracompact (Williams); that 3 a A-scale = [1 X;

i<w

is paracompact if each X, is compact metrizable (Van Douwen. This is an improve--
ment of Williams® result using a different technique).
 Using a criterion inspired by Williams® method, we show that the codverse of
Van Douwen’s result is false, and that, in fact, in many models of set theory both
with and without A-scales, the box product of countably many compact first count-
able spaces is paracompact. v

More precisely, we have that if cf(x)> o, then in a forcing extension by a ccc
iterated algebra of length 2 in a ground model M, the following hold:

7 X, is paracompact if each X; is compact first countable of weight <cf(x);

i<w

hence if each X, is compact metrizable.

[ X, is paracompact if each X, is compact first countable and M k% = cf()=¢;
i<w

in particular if M F (% regular uncountable and ¢ = ).
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Many thanks are due to both Scott Williams and Eric van Douwen whose
patience and insightful questions were invaluable; and to Ken Kunen for mentioning
Lemma 5 at just the right time.

§ 1. Notation and preliminaries. All spaces are assumed Hausdorff unless they
explicitly have to be proven so. A space is paracompact iff for every open cover there
is a locally finite open cover refining it (locally finite = each point has a neighbor-
hood intersecting at most finitely many members). Paracompact implies normal,
as is well known.

Let X be the set | X, where each X is a topologmal space. Then EI X, (also

i<o
written [J X) is the space whose basic open sets are all [ u, where each u, is open
i<eo .
in X;. If xe X or uc X, then x,, u; are their respective projections on the ith co-
ordinate. For x € X, we define X = {ye X: y, = x; for all but finitely many i}.
X is an equivalence class, and V X, is the quotient space on {¥: x € X}.
i<o
The relation between [J and V and the important properties of ¥ were
. discovered by Kunen. They are:

TreoreM 1 (Kunen). (a) If each X; is compact, then (1 X, is paracompact iff -

i<o
V X, is paracompact.

i<w
(b) Gy'sinany V X; are open; hence N X, is 0-dimensional if each X is regular.

i<w

() V X, is paracompact iff every open cover has an open disjoint covering refine-
i<wo

ment (such a space is called ultraparacompact).
Thus in asking about [ X; where each X; is compact, we only have to look

i<o
at [ X;; and given an open cover we will be trying to refine it by disjoint open
i<w
sets — a process fairly easily controlled.

As the Williams and van Douwen results indicate, positive consistency results
all depend on the inner structure of “w. The following notion is the fundamental
one: for f, g & “w, A an infinite subset of w, we say f<g on 4 iff {ie 4: () g ()}
© is finite. We say f<g if f<g on o, and denote the infinite subsets of w by P*(w).

Although we will not use scales, for the curious reader we definé a scale as
a subset of “w cofinal in the ordering <. If ¢L, <,>isa partial order, an L-scale
is a scale {f,: aeL} where a<yb=f, < f,. Thus a A-scale is a scale isomorphic
to the ordinal A, and a (%, 4)-scale is one isomorphic to » x A under the lexographic
order. If cf(4)>», then 3 a (x, A)-scale =3 no y-scale for any ordinal 7.

We will use /” and \ to mean convergence respectively upward or downwmd
in the set-theoretic sense.

The connection between countable box products of first countable spaces and w
; is hinted at by the following notation: Suppose, for each'i<w, X; is regular first
countable and for each x; € X there is a fixed countable neighborhood basis wiN\x,}
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such that Cl(ujy ) cuj'. Then if xe O X, fe“w, we define u} = H s, and

i<o

Vu} = {y: yeuj}. A trivial observation we will need is that if Vuf NV} =
and g<f on {i: ufy N ufy = G} then Vil A Vil = @.

§ 2. Criteria for paracompactness. We give two criteria for ultraparacompactnesss
the second of which is explicitly designed for what we want to prove. The first cri-
terion is purely topological and bears a strong resemblance to x-metrizability and
the technique of van Douwen.

CrITERION I. X is a topological space and for some ordinal

3 a x-sequence S, "X, ’

3 a x-sequence V, 'V a clopen basis for.X,

A{V¥: a<x} with each Vi<V, ,, .
such that

(a) V¥ is a discrete open cover of S, (i.e. S, discrete under V¥) by sets disjoint
in X,

(b) VxeS,ve Vi(xev and Vue V,l(xgéu‘=> vnu = @)

PROPOSITION 2. If X satisfies Criferion I, then X is hereditarily ultraparacompact.

Proof. Let Y« X, Ube an open cover of ¥. For y € ¥, define «, as the least y for
which Jve V,Jue U(y evcw); and if «, = o, pick u, to be such a ve V,. Let
Yu = {y: a, = a}. We construct a disjoint refinement by induction. Let

={unu:ye¥,,ueV§} By (a), Uy is a disjoint family. Suppose for each

[3<oc AU, a dlsjomt cover of |) Y, refining U, Ug<V,, and y<f=>U,cUj. Let
<8
= Y¥,— U U, and define U, = U Upu{unu, ueV}, ye ¥} By (a) the
B<a A<
new sets added are mutually disjoint, and by (b) the new sets are disjoint from the

old ones. Since ¥V is a basis, every point in Y is eventually covered, and so {J U, is
a<x

the desired disjoint refinement.

This first criterion, while handy, makes no mention of “w and gives no hint
of the way it hooks up with the S,’s in picking the ¥#’s. We will therefore develop
a second criterion which implies the first. This second criterion is quite long, so we
provide the motivation for it by sketching the construction by which, given a A-scale,
Williams refines an arbitrary open cover of V*(w-+1).

Given the A-scale {g,: a<A} and an open cover of V¥(w+1}, Williams uses
an induction of length A to cover, at the ath stage, all points f such that f'sits below g,
wherever f'is finite; furthermore, the new open set Vu' covering f comes from some u
which sits above g, on the values where f is infinite. These salient features of g, can
be re-expressed in a clumsy form which provides the essential insight:

(*) If Jis newly covered at stage o, then g, dominates f on infinitely many values
of any infinite set on which fis finite; and every function in u’ dominates g, on
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infinitely many values of any infinite set on which f is infinite, and equals f
where f is finite.

For an iterated forcing extension, we simply modify the phrase “infinite set”
in (%) to “infinite set in M}’ where M, is the ath intermediate model of the iteration
(M, is defined in § 3). Then we note that if g, is Cohen over M,, we can cover
Vw+1) N M, so the modified (*) holds. An easy adaptation of Williams® proof
then gives paracompactness of V°(w+1) in the Cohen extension adding A Cohen
reals, for Az w;.

Unfortunately, we are not working only with V(w+1), so things are a bit
more complicated.

First we need a standard collection of open sets to dip into. So let each X, be
regular first countable for i<w, X = V X; and let Vu 7 be as in § 1. We define the

i<o
function (m4f): w—o by n+f (k) = n+f(k) and the clopen neighborhood
‘uie; = ) Vii.;. Naturally, Xeuy,,, and all the ug, s form a basis.

n<o

Now suppose at the «th stage we want to cover Sc.M, n X. We want to avoid
the open sets chosen at earlier stages for our refinement; this will fall out of our
construction if we avoid all Vu} where X € S and fe “@ n M,. This motivates the
following definition: given S= X and Wc®w, the set V(S, W) of neighborhoods
coded by S, W is {u: Axe S fe W(u = Vuj)}.

CriTerION II. Bach X; is regular first countable Vi<w, and for some »

3 a x-sequence S, V X;,

i<o

3 a x-sequence W, /o,
3 a x-sequence 4, P*w),
A{g,: a<x}co,
such that
(1) g€ Worss
Q) f.f' e W=sup(f,f) e W, and Vn{(n+f)e W,),
3) feW,, Aec A,=>g,<f on A,
(4) S, is Hausdorff under V(S,, W,),
(5) if X e S,—Cl(w) for some ue V(S,, W,), then I fe W (Vij nu = ©),
6) u,ve V(S,, Wo={i: uynv, = O} e 4,.
PROPOSITION 3. If V X, satisfies Criterion II, then it satisfies Criterion 1.

i<e
Proof. Let V, = {uj;;: XS, fe W,} and let V¥ = {u},,: %eS,}. We
show I(a) — that V} is a discrete cover of S, by sets disjoint in X. By (4), if
%, € S,then 3 £, f" e W, with VuF 0 Vu}, = @. Hence by (6), 4 = {i: ufly) n )
=@ ed,. By (2) and (3), g<«sup(f,f) on 4. Then by the remark at the
end of §1, Vu; n Vi), =@, 80 t4g, N1y, = B.
1(b) is proved similarly. Suppose X € S, ue V,,, X ¢ u. We show w4, N u = @.
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Since ueV,, AyeSAf e W u= Upypr = ﬂ Lﬁ,'ﬂl = (‘) Cl(uﬁﬂ,)). Hence

sz(x ¢ Cla. ), so by (5) Afe Wuin iy, = ﬁ) Smce u,,”, >u, we proceed
as in (a) above and the proof is complete.

§ 3. Three forcing facts. We now consider the class of forcing extensions we will
use. In this section and the next we will be looking carefully at the inner structure of
these extensions, and some familiarity with forcing is assumed. We omit standard
sorts of proof, referring the reader to the excellent references [J] and [S]. We do try,
however, to give enough motivation so the non-set-theorist can get some feel for why
these proofs go the way they do.

As usual we abuse notation to ignore the distinction between term and object,
saying, e.g., Afe M® A ®o instead of t(MPE ¢ a function from o to @); if we are
working in M® we shall just say 3 fe ®w instead to 3 fe M® n “w. Also, if P € M is
dense in Be M, we define M* = MP®. Models of set theory are assumed transitive.

For the rest of this paper we fix M a model of set theory and in M fix both x an
ordinal of cofinality > and B a complete Boolean algebra such that the following
statement'is true in M:

3 a partial order (P, <) dense in B and a x-sequence {P,, <,» (P, <) such
that . .

(1) A a limit <%=><P},.’ <A.> = nz<).<Pan ,<a>’

(ii) if p<u<x and p, q € P, are incompatible under <g, then they are incom-
patible under <,,

(i) VodP*, <% such that P = P x P* under the order {p, q)<< r,q’>
iff p<,p’ and p Ik 9<%,

(iv) B<a<xn=M"F M"‘—M"‘ = 0,

(v) P has the countable chain condition (abbr. ccc). I.e. any mutually incom-
patible set of elements of P is countable.

. Conditions (i) through (iii) define an iteration by direct limits; (iv) ensures that
at no point do the algebras become trivial; (v) ensures that cofinalities and hence
cardinals are preserved, and that we add new reals. We say x is a length of B.

Let M, = M P« We will rely heavily on the fact that if M® k G a generic filter
on P over M, then M® k G n P* a generic filter on P* over M,, and M, F Gn P,
a generic filter on P, over M. Hence M® = M2

‘What algebras fit this description ? Ccc iterations were first developed by Solovay
and Tennenbaum to destroy Suslin trees, and then generalized by Solovay and
Martin to prove MA + TICH consistent. The algebra adding » many Cohen reals,
and the algebra adding » many random reals by iteration (not the same as simul-
taneously) are two others widely studied; in the model given by the former there are
peither A-scales nor (y, A)-scales if %3 c,. Hechler’s algebras for adding »-scales
and (x, A)-scales are two more examples.

We need some facts to control the relation between our spaces X; and the
5 — Fundamenta Mathematicae t. CII
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‘models M,, and to ensure a good sequence of g,’s. Our main instrument for the first
task is the following standard fact.

Levva 4, Letfe M* be a function with M® F (dom, fc U M, and |dom f'| <cf(x)).

Then fe M, for some a<x.

The inexperienced reader is warned that the restriction of f’s domain is crucial.
M# UM,

x<x%
The next fact is less well-known and is due to Kunen It will ensure that the
sequence {g,: a<x} jof Criterion II exists.

LeMMA 5. Let B<a<x, of(0) = w. Then g € M, # “o with g Cohen over Mj.
(By g Cohen over My we mean that g is in no M-coded first-category subset of “w.)

Sketch of proof. We are done if we can produce a partial order Q € M,
Q embedded in P,, O isomorphic to the Cohen partial order, such that if G is
M,-generic oni P,, and D<@ is dense with respect to @, then G n D = @. The
required function g will then be the generic object forced by Q. :

So let o; /o with f<ag. For i<w, let @; be an infinite subset of P,,,, such
that M, F Q; a maximal partition of P, ,. Let F = {s: dom s is a finite subset
of w, s(i)e Q;} and let Q = {infE: se F (E = range 5)}. Then @ is the desired
partial order.

The last forcing lemma needed, ensuring that Cohen reals are what we want,
is again standard.

Levmma 6. Let g e M® 0 ®w be Cohen.generic over some model N< MP®. Then
feNA“w, Ae Nn PHw)=>g<%f on A.

§ 4. Satisfying Criterion II. Given M, x, B as in § 3, and compact first countable
spaces X; e M” of weight <cf(x) (weight = minimal cardinality of a basis, and in
first countable spaces is the same as the cardinality of the space), we produce 4,, W,,
{94 a<u} satisfying (1), (2) and (3) of Criterion II, and after some analysis of
the X;’s manage to construct the S,’s which w111 work for the rest of Criterion IL
All work is done in M”.

Let #: x—x be an increasing functmn with range t<{u: cf(2) = w}. We let
W, = My 0 ®0; let 4, = My, n P*w); and let g, be the function in Mty
guaranteed by Lemma 5 relative to My.,). Then (1) is immediate; that M, is a model
of set theory gives us (2); and Lemma 6 ensures (3). All we have to do is define such
a 1 against whose background we can define the S,’s.

Roughly, we want to let S, = V X; relative to M, . But what does this means?

To each X;is associated a lattice Li of basic open sets; since X; is first countable we
may identify points in. X; with certain countably generated maximal filters on L,.
‘Two problems may present themselves if L; under its partial order sits in no M,.
First of all, points may split — some filter that M, thinks defines a point may be
split in some higher My, so that what M, thinks is X; may not even be a subset

icm
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of X;. Secondly the partial orders at different stages may disagree about empty infs.
Unless a dense subset of X; sits in some M,, we may have for each o< a pair
u,veLl; " M, with M,Funv =@ and yet some higher Mk u n v # & This
means no M, can recognize disjoint open sets of X;, making satisfaction of (6) quite
unlikely.

Our first task, then, is to find a condition under which empty pairwise infs at
early levels of a lattic L are preserved. This is assured if the lattice is not large;
hence the condition on the weight of the X,’s. In order to use Lemma 4, we note
that a lattice L under its partial order is really a function 4: |L|>*~2; and a sublattice
a subset of A.

LemMA 7. Let L be a lattice, |L|<cf(x). Then As: x—x and a x-sequence L, /'L
such that L, e My and if u,ve My, N L and unv # B, then

My EIweLwounv).
Proof. We say a subset L' of L is good if Yu,vel’,
unv#PG=>IAwel (wcunv).

By a countable process it is easily seen that I' cL=>3L*(L'cL*<L, L* good, and
|L] = |L*]). So let L = {u,: a<i<cf(x)}. By induction construct good L,=L
such that u, € L,; |L,| = |a] <cf(x). By Lemma 4 3 least y with L, € M,,. Let s(xt) be
this . If sup{s(«): a<x} = & = x, this is the s we want. If <, let L, = L and
s() =d6+a.

‘What are the compact first countable spaces of weight <x? The following are
some examples: compact metric spaces; compact Suslin lines; any compact first
countable space if M k2°>cf(x) = x (since, by a theorem of Arhangel’skii, such
a space has cardinality e, and hence weight <c).

Now we use good sub-lattices to define good subspaces. Suppose X is a first
countable space with the lattice L of basic open sets, and L’ is a good subset of L,
L'e M,. We say Yc X is the set good for a, L’ if Y is the set of all points x € X’
for which AU, a filter on L' with:

A. U,eM,

B. A {uf: i<w}e M, n U, with M, k{4 i<w} a base for U,

C. u\{x} and is a base for x,

D. Cl(ui )=y,

In other words, Y is the set of points defined with reference to L’ that do not
split. Since M, does not actually know that U, will not split, ¥ may not itself be an
element of M,. But we are working in M 2 so this does not matter. By Lemma 4,
if L,cL, L, good € My, then X = |J {¥,: ¥, good for L,, s(«)}.

The next lemma tells us that good subspaces under the topology of the associated
good lattices are well-behaved, which will enable us fo put them together in
V-products.

54
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Lemma 8. Let X be Hausdorff and regular with the lattice L of basic open sets.
Suppose L' € M, is a good subset of L, and Y < X is the set good for o, L'. Then Y is
Hausdorff under the topology given by L', and if xe Y, Z< Y, and x ¢ CI(Z) then
Juel'/(xeu and un Cl(Z) = ).

Proof. For Hausdorff, we note that if U is as above, then
x,yeY,x#y=3uy,vel(xeu,yev,unv = @)
= qu' e U,, v e Uy(W cu, v =v)

and hence xeu', yev, u' nv = Q. Similarly, if uel separates x from some
closed Z, then 3u' e U, with ' N Z = @.

Lemma 8 will, of course, be used in the proof of (4) and (5) of Criterion II.

The final construction and the lemmas which follow it essentially use the fact
that if M, is smart enough to recognize a bunch of sequences, then it is smart enough
to ‘use them.

So the last thing we have to do is: Given a countable collection of compact
first countable spaces of small weight, we simultaneously construct good partial
bases and good subsets relative to the same sequence on M,’s; we use these to define
the S,’s of criterion IT; and we prove, using the fact that the M,’s are smart, that
I1(4), (5), and (6) hold.

ConsTRUCTION 9. For i< let X; be a first countable Hausdorff space of weight
<cf(x), with L; a basis of minimal cardinality. Let L,, /'L, s, be as in Lemma 7.
We define #: x—x by t(e) = least y>¢(f) for f<a, y of cofinality w, and y28(0)
for all i<ew. Using ¢, we define the subspaces X, 1o Of X; as: X, is the set good for
L;,, t(a); and for x; e X, -—ﬂL() X, p assign the same sequence {}": j<w} that My
does as in the definition of good subspaces. Finally, we let § = {%:-x e I X0

i<
N My} .

Lemma 10. S, V(S,, W,) sadisfy TI(4),

Proof. Recall-that W = M, n “@. To prove Hausdorf, suppose X, j € S,
X # J. Since some infinite tail of x and some infinite tail of y arein M,,,, wlog
X,¥€ M. In My, we define fe ®w by: f(i) = least k such that ugul = @ if
x; # ¥ f(i) = O otherwise. Lemma 8 ensures that we can do this; and since Sis
defined within M., /€ M. Hence uf, u}e M,y which is all we need.

Lemma 11. S, V(S,, W,) satisfy T1(5).

Proof. To prove this version of regularity, if Xe S, u = wy e V(S,, W),
X ¢ Cl(w), we again assume x &€ My, and now define 4 = {i: x,¢ Cl(u)}. Since
Cl(w) = iYw Cl(u;), this suffices; and since 4 is defined in My, A€ My,y. Then

defining f by f () = least k such that u' ~ Cl(u) = S ifie A; (i) = 0 otherwise,
we note again that f'e My, so uy is the desired neighborhood.
Lemma 12, V(S,, W,) satisfies 11(6).
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Proof. Recall that A, = M, n P*(w). Suppose x,yeS,, f,.f € W,, and
Ugip N yap =Gty 0oy = @I An(uyh oy O )y pry = B); hence 4 = {i: w; Ny,
=@} = {i: An(% s N W = O} s defined in My, and thus is in M.

From all of this we derive as a corollary

THEOREM 13. In MP®, where B is a ccc iteration of length x and cf(:)>w, if
each X, is compact first countable of weight <cf(x), then ¥V X; is ultraparacompact,
i<a
and hence [1 X; is paracompact.
i<w

And from the remarks following the definition of ccc iterations, we have

COROLLARY 14. The box product of countably many compact first countable spaces
is paracompact #> 3 a A-scale.

Noting that if each L; € M then Lemma 7 is not needed, we have as a corollary
to the method of proof:

Define X the completion of the lattice L if X is isomorphic to the set of maxima]
filters of L under the topology whose basic sets are, for each ue L, N, = {x: ue x},

COROLLARY 15. In MP®, where B a ccc iteration of length x and cf(%)>w if
each X, is a compact first countable completion of some L; € M, then V X is ultra-
i<m
paracompact, and hence [ X, is paracompact.
i<o
Finally, we note that these proofs extend to any iterated forcing extension
with cofinally many reals which satisfy Lemma 6, where the length of the iteration

ensures that Lemma 4 is satisfied. Thus, e.g.,

THEOREM 16. In M, where B is a A-cc iteration of lengih x, cf(x) =1, A = M5B,
A>cM and B has cofinally many Mathias reals, if each X is compact first countable,
then V X, is ultraparacompact, and hence [] X; is paracompact.

T
i<w i<w
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First countable and countable spaces
. all compactifications of which contain gV

by

Eric K. van Douwen (Athens, Oh.) and Teodor C. Przymusinski* (Warszawa)

Abstract. We construct the following examples,

ExamrLe 1. A first countable Lindelsf (even cosmic) space 4 all compactifications of which
contain N. )

EXAMPLE 2. A countable space 2 with one non-isolated point all compactifications of which
contain N.

Since AN has cardinality 2, uncountable tightness and is neither first countable nor scattered,
the above examples in particular yield:

(1) A first countable Lindeldf space with no first countable compactification.

@ A countable space all compactifications of which have cardinality 2° and uncountable
tightness. '

(3) A scattered space with no scattered compactification.

1. Introduction. Throughout this paper all spaces are assumed to be regular,
a cardinal is an (von Neumann) ordinal, cf(x) is the cofinality of %, and c is 2°.
For undefined terms we refer to [E].

In this paper we construct the following two examples.

ExaMmpLE 1.1. A first countable Lindelsf (even cosmic) space 4 all compacti-

fications of which contain a homeomorph of BN. u

ExampLE 1.2. A countable space  with one non-isolated point all compacti-
fications of which contain a homeomorph of BN.

Recall that a space X is cosmic [Mi] if it has a countable network, i.e. a connt-
able family o of subsets such that for each open Uc X and each x € U there is
an A4 e o with x € A< U. Every cosmic space is hereditarily Lindelof and hereditarily
separable. Also recall that the tighiness t(X) of a space X, [AP], is the smallest
cardinal s such that, whenever 4 <X and x e 4, there exists a B< 4 such that x e B
and |B|<x. It is known that BN has cardinality 2°[E, Theorem 3.6.12] and t(fN) = ¢

* This paper was completed while the second author was visiting the University of Pittsburgh
as a Mellon Postdoctoral Fellow. '
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