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Some examples in the dimension theory of Tychonoff spaces
by

Elibieta Pol (Warszawa)

Abstract. In this paper we give some examples related to the covering dimension dim in the
¢lass of Tychonoff spaczs. In particular, we construct a Tychonoff space X with dim X> 0 which is
the union of two functionally closed subspaces X1 and X, such that dim X; = 0 and a realcompact
weakly paracompact space of local dimension zero which is not N-compact, The common idea of
our constructions bases on the well-known theorem of M. Bockstein on products of real lines. These
results were summarized in [12], where the reader is also referred for the remarks about the main
idea of our constructions.

1. Terminology and notation. Our terminology follows [4]. All our spaces
are assumed to be Tychonoff. By the dimension we mean the covering dimension
dim defined as in [4] or [6] (*). A space X is strongly zerodimensional if dim X = 0;
X is zerodimensional if it has a base consisting of open-and-closed sets. The local
dimension of the space X is at most n (abbreviated locdim X'<n) if each point x of X
has an open neighbourhood U such that dimU<n '(see [8], Chapter 2, § 11). The
symbol R denotes the real line, I —the real interval [0, 1] and C=l— the Cantor
discontinuum. By a countable set we mean a set of cardinality 8y, ¢ denotes the power
of continuum. If X is a topological space and F a subspace of X then the symbol X
denotes the set X equipped with the following topology: the set U is open in Xj iff
it is of the form ¥ U K, where V is open in X and K< X\F (see [4], Example 5.1.2);
notice that if X is a Tychonoff space then Xy is also a Tychonoff space. A. set Fo X
is functionally closed in the space X if it is of the form F = f~*(0) for some con- -
tinuous function f: X—1I; we say that Fis Ggclosed in the space X if the comp-
lement X\ F of Fis the union of Gy-sets in X. A space X is scattered if it has no subset
dense in itself. A space X is N-compact if it is homeomorphic with a closed subspace
of a product of natural numbers. To avoid the confusion between the various topo-
logies we will sometimes denote by K the closure of the set X in the space X,
If M = X5 then for A=S the symbol p,: X X* denotes the projection and
Ps = P if x € M then x(s) = py(x) is the sth coordinate of x.

() We say that dimX<n if every finite functionally open covering. of X can be refined by
a functionally open covering whose order is at most n.
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2. Auxiliary lemmas. In Section 3 we shall need the following

LemMA 1. Let Y be a dense subspace of the Cartesian product M of metrizable
separable zerodimensional spaces. Then for every subspace F of Y the space X = Yp
is strongly zerodimensional.

Proof. First remark that by the theorem of X. A. Ross and A. H. Stone
(see [4], P. 2.7.12) each regularly open (*) subset of M depends on countably many
coordinates, hence it is functionally open in M and is strongly zerodimensional as
the Cartesian product of zerodimensional metrizable separable spaces [see [7],
Theorem 3). Let us take two arbitrary functionally closed and disjoint subsets K
and K, of the space X and let U, and U, be open subsets of X such that K,c U,
for i =0,1 and U§ ~n U = @. Then there exist open subsets ¥V, and V; of the
space Y such that K; n FeV;c U, for i = 0, 1. Because Y is dense in M, the sets V¥
are regularly closed in M and by the initial remark the set U= M\(V¥ n VM) is
strofigly zerodimensional and the sets Va' n U and VM ~ U are functionally closed
disjoint subsets of U. Thus there exist disjoint open subsets W, and W, of U such

that V¥ n UcW, for i =0,1 and W, u W, = U. Observe that U= F. Indeed,
we have

FAaVraV = FaViaV =FaViaVicFAUnTY =

(the second equality follows from the fact that the points of F have the same neigh-
bourhoods in X and in ¥). Let us put Wg = (Wy\K) v (K,\F) and
= (W \Kp) U (Ky\F). The sets W, and W are open disjoint subsets of X con-
taining K, and K; respectively such that Wg u W;oF. Indeed we have
Wi= (W0 K) U (KNF)= (P 1 U0 K) U (K/F)
S>(VinFnK)u (Ki\F) (K; 0 F) U (KN\F) =
Wo 0 Wi = [(Wo\K) n (W NK)] L [(Wo\Ky) 0 (K \NF)] L
© [KNF) 0 (WNKQ)] L [(BoNF) N (B\NF)] =
and
Wo u Wi=(W\Ky) U (W, \Kp)
S[UNK, v KD U (V3 0 UNK T U (7Y A UNKG)]
SANEK VKDV (KynF)u (K, nF) =
Because the points of the set X\F are isolated, the sets W} and
X\W, = W, v (ANFAW)

(*) We say that the set U js regularly open in the space M if U = IntU.
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are disjoint, open-and-closed subsets of X containing X, and K, respectively. This.
finishes the proof that dimX = 0.

The following lemma is a special case of Lemma 1.

LEMMA 2. Every dense subspace of the Cartesian product of metrizable separable
zerodimensional spaces is strongly zerodimensional.

This lemma can be proved also using a theorem of A. Atrhangel’skif [1], which
states that every continuous function defined on a dense subspace of the Cartesian

product of metrizable separable spaces can be factorized by a countable subproduct
(compare the proof of Theorem 3 of [7])

3. A space of positive covering dimension which is the union of two functionally
closed strongly zerodimensional subspaces.

3.1. In this section we shall construct a space X having the followmg propertles
(a) dim X>0,

(b) X = X; u X,, where X; are functionally closed strongly zerodlmenSlonal
subspaces of X, .

(c) X; = G, U F, where G, is a functionally open discrete subspace of X and F'
is a discrete subspace of X

(notice that the conditions (b) and (c) imply that locdim X = 0).

Next, we shall slightly strengthen our construction in order to obtain the follow-
ing two examples.

ExAMPLE 3.A. A space X having the properties (a)-(c) and the property

(d) X is separable.

ExaMmPLE 3.B. A space X having the properties (a)-(c) and the property
(e) X is weakly paracompact.

Let us mention that if we want to obtain a space having only the properties
mentioned in the title, then the construction is simpler than that given below (see
Subsection 3.5).

3.2. We pass to the construction of a space X satisfying the conditions (a)-(c).

Let Q, be the set of all left ends and Q, — the set of all right ends of the con-
tiguous intervals of the Cantor discontinuum C, let P = C\(Q,; v Q,) and
C;=Pu Q;fori=1,2. Let fi C—Ibe a function such that f(x) = f () iff x = y
or x and y are the ends of the same contiguous interval. Let S be a set of cardinality c.
Fix s, e S and let {4,},or be the family of all countable subsets of S\{sp}. Let
M, =(C,u{2lu{3)’ for i=1,2. For AcS and i=1,2 the symboI
ph: M—(C;u {2} U {3)* denotes the projection; for se S we put pi = ply.

For each pair (¢, p), where teT and p e C let us choose an index

Wi € S\(A4, U {SO})


Artur


32 "E. Pol

so thatif (z, p) # (¢, p') then w,, # wy,. Fori=1,2,te Tand p e C, let us define
a point x}, e M; as follows:

p . if sed,

) =J0 if s=us,
2 if s=wy,,
3 otherwise.

Put F, = {xi,: te T,peC]}. Take an arbitrary dense subset E, of M, such that
E; 0 (pl)™1(0) = @. Let Z;, = E; U F, be the subspace of M,.

Now let us define the equivalence relation 2 on the discrete sum Z = Z, @2,
by the formula

YRz [(y=2)v(y = xip Az = X Af(py) =1 (p))] -

Let Y = Z/# be the quotient space, n: Z—Y — the natural quotient mapping,
Y =n(Z), n, =n/Z;, G, = n(E) and F = n(F,) = ny(F;). Finally, let us put
X =Y and X, = (Y))s. ‘

First let us establish some properties of the spaces Z and Y.

(1) The set F, is a discrete functionally closed subspace of Z,.

Indeed, the set F; is of the form F; = (p)~*(0) N Z, (thus it is functionally closed)
and for each 1€ T and p e C, the set

U, = {xeZ; |x(w,)-2|<1}

is a1 open neighbourhood of the point xf,, such that U,i,, NF = {le,}

(2)  The space Y;is homeomorphic to Z; and dim Y, =0.

To see this, let us observe that from (1) and the definition of £ it follows easily that
m;: Z,~ Y, is a homeomorphism. Since Z, is a dense subset of the Cartesian product
of metrizable separable .zerodimensional spaces, by Lemma 2 we have dimZ =0,

{3)  The set Y; is functionally closed in Y.

Since, by (1), the set 7z~ '(¥}) = Z, U F; U F; is functionally closed in Z, there
exists a function u: Z—71 such that 7~ (Y;) = &~ 1(0). Since 7 is one-to-one on the
set Z\n~(Y;), the function u is constant on inverses of points under © and hence

the formula v(x) = un™!(x) defines a continuous function v: ¥—J such that
Y, = v~ 1{0). ‘

{4)  The space Y is zerodimensional (hence Y is a Tychonoff space) and the set F
is a functionally closed discrete subspace of Y.

Since the space Y; is zerodimensional and the set G, is open both in Y; and in Y, the
space Y is zerodimensional at each point of G, for i = 1 , 2. If x € F, then the sets
n(U;) v n(U,), where U, is an open-and-closed neighbourhood of 7, 1(x) in Z,
disjoint with Fi\z; !(x), are open-and-closed subsets of Y disjoint with the set F\{x}
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and form a base of neighbourhoods of the point x in Y. Thus the space Y is zero-
dimensional at each point x € F and F is a discrete subspace of ¥ (by (3) the set Fis
functionally closed in Y).-

Now we shall show that the space X has the required properties. Bécause the
space X was obtained from ¥ by letting the points of Y\F to be isolated, from (3)
and (4) it follows immediately that X is a Tychonoff space,

(5) the set X; is functionally closed in X, and
(6) the condition (c) is satisfied.

Observe that the space X; = (Y})y is homeomorphic to the space (Z)p, which is
strongly zerodimensional by virtue of Lemma I, hence we have

(7 dimX; = 0.
Tt remains to show that
(8 dim X>0.

Let us fix an arbitrary index s; € S\{s,} and put

Ly= U {xeZ; x(s) = 0,x(s,) = 0},
i1=1,2

Ky = n(Lo),
L= U {xeZy x(so) =0,x(s) = 1}, Ky =mn(L)
i=1,2
(it is easy to verify that L;= U {xi,: 4,3 s,} for j =0, 1). In order to prove that
i=1,2

dim X>0 we shall verify that K, and K, are functionally closed disjoint subsets
of X which cannot be separated by open-and-closed sets.
First we shall show that

(9) there exists a continuous function u: Z—(C v {2} U {3hxU v 1{2}) .which
is constant on inverses of points under [ and such that L; = u~*((0, 1) for
ji=0,L ‘

For, let us define
’ u(x) = (x(.s'o), min  f (x(s1))» 2)) for xeZ.

Clearly u is continuous. Suppose that x and y are distinct points of Z such that
n(x) = n(y), i.e. x = xip, and y = x,, where teT, p;€ C; and* f(p;) = f(p2)- .
Two cases are possible:

1° If 5, € A,, then x},(s;) = p; and f(p1) = f(p2)<2; hence

u(x) = (0,f (py) = u().
‘2° If 5, ¢ A, then xip(s;) = 2 or 3; hence u(x) = (0,2) = u(y).

3 — Fundamenta Mathematicae CIL
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Finally, for j = 0,1 we have
w((0,)

I

{xeZ;: x(s0) = 0amin(/(x(s,)), 2) = j}

i=1,2

{xeZp: x(s0) = OA f(x(s1)) = j}

i=1.2

U {xeZ;: x(s)) = 0ax(s)) =j} = L;.

i=1,2

This finishes the proof of (9).

Now let us observe that by virtue of (9) the formula v(x) = u(z"(x)) forxe ¥
defines a continuous function v: Y~(C L {2} U {3}) x (I L {2}) such that K; = = (L))
= nu"((0,/)) = v"*((0, ). Thus we have

(10)  the sets X, and KX are disjoint and functionally closed in ¥ and hence in X.

Il

We shall show now that
(11)  there is no open-and-closed subset of X containing K, and disjoint with X,.

" Suppose on the contrary that such a set exists. Then, since each point of F has the
same neighbourhoods in the spaces ¥ and X, there exist two open subsets U and V'
of Y such that Ky U, KycV, FeU U Vand Un V = @, Setting U, = =] '(U)
and ¥, = n;{(V) we obtain two open and disjoint subsets of Z; such that
{xlo: A;3s,}cU,, {xi: 4,25}V, and F,cU, 0 V,. Let Ui and V| be open
subsets of M, such that U; = Ui nZ; and V, = ¥/ N Z,;; U] and V| are disjoint
because Z; is dense in M;. By the theorem of M. Bockstein (see [4], P, 2.7.12) there
exists a countable set A<= S such that p,(U) N p (Vi) = @. We can assume that

Sg,5; € A. Let tgeT be such that 4 = 4, U {s,,} and let B; = pi({x!,: pe C}.
Then

(12) the set B; n pi(U,) is open-and-closed in B,
Pul*i0) € B A pi(U)  and piA(x?ol) € BNDY(U) .

Indeed, we have B, HPA(U)GBMPA(U ) B npA(VI)CBin])A(Vi): PAUD
Nnpy(V) =9 and B, i<Pa(U) L pi(V)); thus B, A pl(U) = B, py(Uj) and
B, npi(Vy) = B,mpA(Vi) Hence the sets B, n pl(U)) and B, n pi(V}) are open.

in B; (because pi(U]) and p L(V?) are open in ph(M ), disjoint and they cover B;.
This proves (12).

Let us observe that

(13) if p;eC; for i=1,2 and S () =f(py) then p,‘(,\to,“) epi(Uy) i
pA(-’"tqu) SPA(UZ)

In fact, since U;n F; = (pi)~"'pi(U)) n F; we have
[24(Xtop) EPAUDI < [xhy, € Uyl > [(xl,) = T(Xtpy) € U]
=[xy, € Ul < [p4(xE,,) € p2(U)] -
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Let h: B;—C, be the function h(pf‘~ (x4,2) = p; it is easy to see that /i is a homeo-
morphism. Put W, = h(B; n pf,(U,-)). Then, by (12) and (13) we have

(14) W, is open-and-closed subset of C;, 0e W;, 1 ¢ W, and
(15) if p,eC; for i = 1,2 and f(p;) = f(p,) then p; e Wy iff p, e W,.

Let
ro =infy{pe Cy: p¢ W}.

Of course o € C. Since the set W is closed in C|, ro must be the right end of some
contiguous interval; let ry & C, be the left end of this interval. Then rjy e Wy by
the difinition of rq. Since f'(ro) = f(ro), ro € Wy by virtue of (15). Because W, is
open in C,, there exists ry >r, such that C, N [ry, 1) = W,. Hence, again by (15),
we have P N [ro, )= W, and because W, is closed, Cy n [ry, r)c Wy, contrary
to the definition of ry.

The contradiction we have just obtain proves (11) and thereby finishes the
proof of (8). v

3.3. Now we shall construct Example 3. A. Let us assume that in the construction
of the spaces Z; given in Subsection 3.2 we have taken a set E; which is dense in Mf,
disjoint with the set (pt)~!(0) and, in addition, countable. Then the set G; U G,,
is a countable dense subset of X.

3.4. We obtain Example 3. B by assuming that the set E; is dense in M, disjoint
with p'(0) and, in addition, every point of E; has all but finite coordinates equal
to 0 (compare [4], Example 5.1.3 and P. 5.5.3(c)). In order to show that the space X
is then weakly paracompact, take an arbitrary open covering % of X. For each re T
and p, € C, let us choose a neighbourhood V;,, of the point n(x,’m) in Y such that
Vip,cU for some Ue% and m; '(V,,)c{xe M (W) —2<1} for i= 1,2,
where p, € C, is such that f(p;) = f(p,). Then the family

Vo= {Vtm' ’GT ]Jlecl} {{A} JCEX\U U thl}

teT p1eCy

is a point-finite open covering of X which refines % (#" is point-finite, because each
point x € G, belongs only to the finite number of the sets ¥, for p; e C)).

3.5. Let us notice that the space ¥ defined above provides also the example
having properties (a) and (b), simpler then the space X. The proof of this fact follows
from (2), (3), (4), (10) and from the following condition, which follows immediately
from (11):

(I1)  there is no open-and-closed subset of Y containing Ky and disjoint with K
(let us add that the direct proof of (11°) is a little simpler than that of (11)).

4. A scattered space X which is not zerodimensional and a weakly paracompact
space X' with Jocdim X’ # dim X".

3%
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" 4.1. In this section we shall give an exam'ple‘ of a space X having the following
properties: ‘
+ (a) X = E U F, where E is a functionally open discrete subspace of X and the
subspace F contains only two non-isolated points a and b,
(b) X is connected between the points « and b.
Let us notice that from (a) it follows that the space X is scattered (see (17))
and zerodimensional at each point x # a, b, ‘
Next, we shall modify the construction of X in order to obtain the following
two examples: -
ExampLE 4.A. A space X having the properties (a) and (b) and the property
(c) X is separable.

ExAMPLE 4.B. A space X having the properties (a) and (b) and the property
(d) X is weakly paracompact.

Let us add, that in Subsection 5.5 we give an example of a space X having the
properties (a), (b) and (c) or (d) which is in addition realcompact.

. Let us notice that the first example of a scattered space which is not zerodimen-
sional was given by R. C. Solomon [14] (this space is not weakly paracompact).

Taking the space X' = X\{a}\{b}, where X is the space from Example 4.B,
we shall obtain the following A

Exampre 4.C. A space X’ having the following properties:

(@) X’ = EU F’, where E is a functionally open discrete subspace of X’
and F’ is a discrete subspace of X' (thus, locdim X’ = 0),

(b) dim X’ >0,

(@) X” is weakly paracompact.

Let us observe that the spaces described in Examples 3.B and 5.B have also
the properties (a’), (b") and (d’), but their construction is more complicated.

Let us notice that the space having the properties (2'), (b) and (d’) can not be
normal, as locdim = dim in the class of normal weakly paracompact spaces (the
equality locdim = dim for paracompact spaces was proved by Dowker [3] and
Nagami [9], the proof for normal weakly paracompact spaces is given in [5])

4.2. Let us construct a space X satisfying the conditions (a) and (b); our con-
struction is similar to that given in Section 3. i

Let S be a set of cardinality c. Let us fix a point 5, € S and let {A;}1er be the
family of all countable subsets of S\{s,}. For each pair (¢, p), where te T and
pe(0,1) Jet us choose an index wy, e S\(4, U {s0}) so that w,, # wy, for
(t,p) # (¢, p') and let us define a point %, € R in the following way:
if sed,,
if s=g,,
if 5= wg,,
otherwise .

xtp('g) =

W oRy
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Let a, b & R® be such that g(s) = 0 for s€ &, b(so) = 0 and b(s) = 1 for se SN\{sol-
Put e S . ‘
F={x,: teT,pe(0,D}u{a v {b}.

Let us take an arbitrary dense subset E of R9 such that En p;i(O) = . Let
Y = E U F be the subspace of RS and X = Y. Of course Y and X are Tychonoff
spaces. '
First let us notice that
(16) each point x,, is isolated-in' F.
Indeed, a. set . .
Up={xeY: [x(w,p)~2|§l} ' .
i;an open neighbourhood of x,, in ¥ (and hence in X) such that U, n F = {%4p}-
(17)  The space X is scattered.
Indeed, let us take an arbitrary nonempty subspace 4 of X: I ANnE# @ then
a point from A N E is isolated, If.4 N E = @ and some point X, belor}gs to A4,
then that point is isolated. If neither ofi the previous cases holds, then A< {a} u {b}
and @ or b is isolated. . - ;
Now we shall prove that the subspace F of R® has the following property:
(18)  if AcS is countable then the projection pA(F)’is‘ connected betwcen the
. points py(@) and p,(b). » . ‘ ‘
Since p,(F) = {0}, it sufﬁ@es to consider the case when 4 = A,, for some fo € T.
Let .

3

B = {pa (a2 €0, D} U 104, @) U {2, B}
= {x € RM: x(s) = p for s A, where pel}cpy (F).

The set B is homeomorphic to I, thus pA'O(F) is connected between p (@)
and p4(b). -
Next we shall prove that

(19) X is connected between the points « and b.

Suppose on the contrary that the points 4 and b can be separated by ope:n—and-cl:lo;ccilc
subsets of X. Then there exist two open subsets U and V/ of the space Y suc Sx tha
aeUbeV,UnV=©@Gand FcUuv V. Let U' and V' be open .sub.sejts. ofR' suc?x
that U = U’ n Yand ¥ = V' Y. Because Y is dense in RS, U'is @s_]omt with Il;.
Hence by the theorem g)f M. Bockstein (see [4], P.2.7.12) there exists a countable
set A=S such that p,(U) np V) = Q Then .

pa(U) 0 pu(F) = PQ(U') O paF), _;A(V) A PAF)=paA¥VI N PAE) -
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and p(U) N py(V)2p4(F). Thus the sets py(U) N py(F) and PAV) O pu(F) are
open-and-closed disjoint subsets of p,(F) containing p,(a) and Pa(b) respectively,
which contradics (18). This finishes the proof of (19).

4.3. In order to obtain Example 4.A it suffices to take in the definition of Yan
arbitrary dense subspace E of RS, disjoint with the set p'(0), which is, in addition,
countable. Then E is a dense countable subset of X,

4.4. We obtain Example 4.B by taking in the definition of ¥ an arbitrary dense
subset £ of R®, disjoint with the set p'(0), such that every point of £ has all but
finite coordinates equal to 0. Let us show that X is then weakly paracompact. Let % be
an arbitrary open covering of X, For each e T and pe (0, 1) let us choose’an open
subset V;, of Y such that x,, e Viee Uy, whete Uy, = {xe Y: [x(w,,)—2| <1} and
Vip= U for some Ue%. Take U,, U, €% such that a e Uy, b e U,. Then the family

V= 1eTpe D}V {UI VU v {ixh x¢ U U ¥}
teT pe(0,1)
is a point-finite open refinement of 4.

4.5. Now we shall construct Example 4.C. Let X be the space constructed above
haying the properties (a), (b) and (d). Let X/ = X\{a}\{b} be the subspace of the
space X. Of course X" has the property (a’). Let u: X—I be a continuous function
such that w(a) = 0 and u(b) = 1. Because the space X is connected between the
‘points @ and b, the sets 4~ !([0, +]) » X and u"Y([3, 1)) o X' are two functionally
closed disjoint subsets of X' which cannot be separated by open-and-closed sets;
thus dim X’>0. By a slight modification of the proof of the property (d) of the
space X given in 4.4 one can show that X’ has the property (d’).

5. A realcompact locally zero-dimensional not N-compact space.

5.1. The aim of this section is to
lowing properties:

(a) X is realcompact,

(b) X = E U F, where E is a functional
a discrete subspace of X, ’

(©) X is not N-compact.

give an example of a space X having the fol-

y open discrete subspace of X and F is

Let us notice that the condition (b) implies that X is scattered and
locdim X = 0, whereas '(a) and (¢) imply. that dim X>0 (see [13], p. 478).
Next, we shall slightly strengthen our construction in orde

r to obtain the fol-
lowing two examples:

ExAMPLE 5.A. A space X having the properties
(d) X is separable.

EXAMPLE 5.B. A space X having the properfies
(&) X is weakly paracompact,

(8)-(c) and the property

(a)-(c) and the property
°
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Let us notice that a realcompact, not N-compact (and hence not strongly 1zeEro; -
diménsional), weakly paracompact space with locdim = 0 can not be normal (se
1 i remark of Subsection 4,1). . . _
e 1}3:; us add that if we want to construct a space having only th.e properties men:
tioned in the title, then the construction is simpler (see Sul.)sectmn 5.4). o
1 ’fhe first example of a zerodimensional realcompact (metrizable) not N~ C9r11111:;his
acé was given by P. Nyikos [10]. For other examples of normal spaces wit
spi .
phenomenon see [11] and [12] (see also {2]).

52. Now we shall construct a space X having the prodptzljic;s (a)-(tal.e family
ot ' inali — a fixed point of S an et —
Let S be a set of cardinality ¢, 5o —a ‘ : A
of all countable subsets of S\{so}. Put M = (R”); L;tz Eﬁ‘f;ﬁofi ;af:?lvlzri(f)y
isjoi bsets of the square /< 0
disjoint, connected and dense su e 5 oA O e
j i t—+a, of the set T onto
h a family exists). Let us choose a bijection (o
Tlha.l_t i‘(l;haxt;e IZ’; x, = —1,0<x,<1}. For each pair (t;p), V.thre ril(‘f,an,(;
P E_CL, lelt’uszchoose an index w;, € S\(4, U {50}) s0 that we, = Wy if “,p) ', p
and let us define a point x,, € M as follows:
P if sed,,
x,(8) = J(0,0) if  §=50,
0,2) if s=wy,
a, otherwise . |
Let F = {x,,: teT,pe€ C} and E be an arbitrary dense subset of the sl?acz Ai 1801:;2
that‘E n pipl((O, 0)) = @ and for every point xo€ E the set E\{xo}b]ls S l:bset d
in M (suclyxO a set E exists, because an arbitrary dense ;md counlt)a tge .
p"(RK{(O 0)}) satisfies the required conditions). Let Y= EU Fbe
S0 ’ y
of M and let' X = Yj.
Let us observe that _
(20) F is a functionally closed discrete subspace of Y.

~ d pe C, the set
Indeed, F = pL'((0,0)) n Y and for every téifg.f_ t
U, = p;ui'({(xl ,x;) e R: \/Xi+()€z"2)2< MHnY

\
j i = { X
is an open neighbourhood of the point x,, 1n ¥ such tha;t YU,t,,hr;sit - ;{s ;,;d et
Because the topology of X is finer than the topolog.y o Y, the 1 téd L disersre
funcﬁonally closed subspace of X. Thus, since each point of E is isola 3
condition (b) is satisfied.
Observe that

@n : locdimX = 0.
. . conal
In fact, for t e T and p e C, the set U,, defined above is a strongly zerodimensiona

oi i ints of E are
open-and-closed neighbourhood of the point x,, in X, whereas the poin sv
isolated.
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Let us prove now that
'(22)' the space’ V' is hereditarily realcompact.

For the purpose, it suffices to prove that for every y & Y the set Y\{y} is realcompact

(see [4], Exercise 3.11.B). Since,.by the Mréwka’s theorem ([4], P, 3.12.15), every,

Gs=closed subset of a realcompact space is realcompact, it suffices to show that the

set Y\{y} is G,-closed in M for ¢very ye Y. ,
First, we shall show that '

(23) the set F is Gy-closed in M.

Suppose that. a point y e M belongs to the Gy-closure of F. Then

(24) for every set A<S of cardinality <, there exists a point x e F such that
Palx) = pa03).

(because if |A|<N, then the set p7'p,(y) is a Gyset in M), Clearly, the point y-
belongs to the closure of the set F, hence y € (12 U J U {(0,2)})™ ¢ x {(0, 0)}. Suppose
that y(s) € I* for every s € S\{s,}. Let us fix an arbitrary §.€ S\{sy}. Then, by (24),’
¥(s;) = x(s;) e I* for some x e F, hence. y(s;) = peC, for some feT. We shall
show that there is no point x € F such that Pisswent®) = iy (). Indeed, if
X =Xy, then x(w,) = (0,2) # y(w,)el?; if x = Xy for p' # p then x(s;)
=p' # y(sy); and if x = x,.,. for # # ¢ then x(s)eCp,y(s)eCand C, N C, = G,
hence x(s;) # y(s;). Thus we have obtained a contradiction with the assumption
that y & (7%)¥°49 x°{(0, 0)}. Herice two cases are possible: : S

1° There exists s, € S\{so} such tHat y(s)) = (0,2). Then y(s;) = x;,(s)s
»yh;rc teTand pe C; are such that s, = Wy, and for every xe FN{x,,} we have
x(s1) # y(s,). Hence, by (24)," pi,g(¥) = pn(xy) for every. sesS, thus
y=x,eF. '

2° There exists s; € S\{s} such that y(s,) =a, for some feT. Then
Pa¥) = pafx) = p for some pe C,. Since for every. point Xpp 7 Xy, We have
Pa(ey) # paf¥), by (24) we obtain y = X, € F.

Let us show now that

for every ye Y the set Y\{y} is Gyclosed in M. v

IfyeE then by the assmﬁption on E the set E\{y} is _G,,-cldséd in M. Thus, in view'
of (23), .the set Y\{} is G;-closed in M. If y = X,,€F, then the set {p} is functionally
closed in Y (as {x,} = p5*((0,0) ~ py 1((0,2)) N Y, hence the set F\{y} (and’

tp

thus ¥\{»}) is G;-closed in M. This shows (25) and thereby finishes the proof
of (22).

Because X can be mapped by a continuous one-to-one mapping onto Y, from (22)
it follows that '

(25)

(26) X is realcompact (moreover, X is hefeditarily realcompact)
(see [4], Exercise 3.11.B).
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It remains to show that

(27) X is not N-compact.

Since, by (21), X is zerodimensional, it syifﬁcas to verify that there exists an ultra-
filter % in the family of open-and-closed subsets of X having the countable inter-
section property such that % = @ (see []:3], p. 478).
" For each countable set 4 =S\{s} let us put
FA = {xtp: ‘-At:A:p € Cf} .
We define : . .

9 = {U: U is open-and-closed in X and there existga countable set A=S
. -such that U F,}.

(28) % is an ultrafilter in the family pf operi—and-closeq subsets of X. '
Indeed, % is a ﬁlter:‘ it U and U’ are dpen—and-qlosed in X, then the conditions
U'sUand U F, imply that U’ > F, and the conditions U= F, and U’ = Fy; imply

that Un U'DF . In order to show that the filter % is maximal, let us
take an arbitrary open-and-closed subset U of X. Then there exist sets ¥ and " open

in Y such that
UnFcVcU

Let V' and W' be open subsets of M such that V' =V'n Yand W=W'nY
because Y is dense in M we have V'~ W' = @. By the theorem of M. Bockstein
(see [4], P. 2.7.12) there exists a countable set 4 < S such that p,(V") N p( W = @.
We can assume that' 4 = A, for some #, & 7. Then the. set s

PA(FQ,O) = pu{xipt A2 A€ C,})‘ . . .
= {xe(R)*: x(s0) = (0,0) and x(s) = p for se AN{So}
‘ where p e C,,-A,:.A}

and (W\U)n FeWeI\U.

is homeomdrphic to the set | {C: 4,2 4,,}, which is connected (because the sets C;
are connected and dense in 12). Since p (V') and p,(W"’) are disjoint open subsets
of p,(M) such that pA(V’) U pAWop(V) U pA'(W)l::pA(F):pA(FA!D) and the set
pa(Fa, ) is connected, we have either p;,(V’):pA(FAm) or puW)opaFy,). Thus
we have p7lp.(V)> Fy,, or pitp AW)=Fy, Because VU W::F,%{O we ha\’/e
P V) A (VO W) = VoFy,, orpripa(W) & (Vw0 W) = WFy,. Thus Ve”?l.
or Wed. This finishes the proof that % is an ultrafilter.’

(29)  The vltrafilter % has the countable intersection property.
In fact; suppose that U;e¥ for i=1,2,.. Then UDF, for SQme countable
@ . . . . . .

A;=S and N UDF, #*@.
i L) Ay

=1 1!
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It remains to show that
30) \ Nu=9.

If x ¢ F then the set X\{x} is open-and-closed in X and contains F, thus X\{x} e %
and x¢n%. I x = X,,, then there exists a neighbourhood U of the point x in X
such that x e UcUc X\F; thus X\U is an open-and-closed subset of X which
contains Fy, ), hence X\Ue% and x ¢ N %.

The proof that X has the properties (a)-(c) is completed.

5.3. We obtain Example 5.A by assuming additionally that the set 'E is
countable.

5.4. In order to obtain Example 5.B it suffices to assume that the set £ has
the following properties: £ is dense in M, E p.'((0,0)) = @, for every xe E
the set E\{x} is G;-closed in M and, in addition, every point of £ has all but finite
<oordinates equal to 0, Then the proof analogous to that given in Subsection 4.4
shows that X is weakly paracompact. Let us show that there exists a set E having
all the properties mentioned above. Let {B,},.r be the family of all finite subsets

of the set S\{so} and {C/},cr —a family consisting of disjoint and dense subsets
of R*™\{(0, 0)}. Put

E= UT{xeM: x(s) e €} for s B, U {so} and x(s) = (0,0) for s ¢ B, U {s,}} .

First we shall show that the set E is Gs-closed in M. For, let y € M belongs to the
Gy-closure of E. Then y(so) € C/, for some #, € T. There exists a point x e E such
that p,,tnu-(,u)(y) DPs, o ts)(*). Observe that if x’ is a point of E different from X
then Ps,, u[m(x) # D, u{s‘,)(JJ) Indeed, if x'(sy) € C{,, then x'(s) = x(s) = (0, 0)
fOl’ S¢ Brou(sq) hence pB, u(so}(x) # pB, uf So}(’") PB,ou{so}(y)s and 1f x’(“’o) ¢ Clu’
then x'(sp) # y(s¢) € C;,. Thus y = xe E and E is Gs-closed in M. Now, let x, be
an arbitrary point of E and let t, e T be such that x(sp) € Cy,. Then

{xo} =

and s0 x, is functionally closed (and hence G- open) in E. Thus E\{x,} is Gy-closed
in M. Ttis easy to verify that the set E has also all the remaining properties mentioned

(PB,Ou(sg)) . Pﬂ,oulso)(xo) NnE

above.

5.5. Remark. There exists a realcompact scattered space X' which is not zero-
dimensional. Moreover, X’ can be separable or weakly paracompact.

Let Y = Y u {a} U {b}, where Y is the space constructed in 5.2 whereas a and b
are two points of M such that a(s) = (0, 0) for s € S, b(sy) = (0,0)and b(s) = (0, 1)
for s€ S\{so}. Let X' = Y o -

Then the space X’ is connected between the points @ and . The proof of this
property of X" which is analogous to the proof of (19), follows from the fact that for
every countable set 4= S the set p,(F U {a} U {b}) is connected between the points
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(@) and p4(b). By a slight modification of the proof of (26) one shows that X" is
realcompact and it is easy to verify that X’ is scattered (compare the proof of (17)).
By an appropriate choise of £ (see 5.3 and 5.4) we obtain X' separable or weakly
paracompact.

The author is deeply grateful to Professor R. Engelking for stimulating and
valuable conversations.
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