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On decompositions of hereditarily unicoherent continua
by

Eldon J. Vought. (Chico, Calif.)

Abstract. Charatonik has defined a monotone upper semi-continuous decomposition of a con-
tinuum to be admissible if the layers of its irreducible subcontinua are contained in the elements
of the decomposition. He has constructed an admissible decomposition which, for many classes
of continua, e.g. A-dendroids, is unique and minimal with respect to having an hereditarily arcwise
connected quotient space. This Ppaper studies hereditarily unicoherent continua and uses collections
of closed separators (closed sets which feparate the space) with certain properties to obtain an
equivalent description of Charatonik’s decomposition. This viewpoint enables one to describe
precisely when such a continqum has a non-trivial admissible decomposition. One of the difficulties
in showing the equivalence is due to the lack of an adequate description of the layers of an irreducible
continuum having non-void interiors. A secondary purpose of this paper is to provide such a descrip-

‘tion. A monostratic continuum is one which does not have a non-trivial admissible decomposition
and an example is given at the end to. show that a A-dendroid may have no interior containing

menostratic subcontinua yet not admit an admissible decomposition each of whose elements has
void interior,

The study of monotone upper semi-continuous decompositions of continua
with “nice” quotient spaces has been undertaken by a large number of authors.
Of particular interest are three such works. FitzGerald and Swingle have described
in [5] a construction that yields a unique decomposition which is the finest possible
with respect to having a semi-locally connected quotient space. By a different
technique in [6], McAuley, using closed separators, has constructed a decomposition
equivalent to the one above. And Charatonik in [3] has given a decomposition which,
for certain continua, e.g., A-dendroids and atriodic continua, is unique and minimal
with respect to having an hereditarily arcwise connected quotient space, .

If 7'is an jrreducible continuum there exists & unique minimal monotone upper
semi-continuous  decomposition whose quotient space is degenerate or an
arc [7, p. 10]. The elements of this decomposition are called /ayers and Charatonik
[3, p. 115] has defined a decomposition D of a continvum M to be admissible if

1. D Is upper semi-continuous,

2, D is monotone,

3. for every irreducible subcontinuum 7 in M, every layer of 1 is contained in
some clement of D,
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" If D and E are decompositions of a continuum M, then D<E means tbelt.every

element of D is contained in some element of E, i.e., D Teﬁnes. E. Chara.lo'mk 121'45
proved in [3, pp. 117-118] that every continuum 'adxmts a un.lc'lue ald;mssilble .eci
composition which is minimal with respect to <. This decomposition will be denote
hereail[tlm;hli)sy pca.per we devote our attention to hereditarily unicc?herent co'ntinua
and use the notion of closed separator (defined b(?]ow) to obtain 'an eqthuvlulen’;
description of Charatonik’s decomposition C. This will er}able us to give a‘n 1nter.1’1a
characterization of hereditarily unicoherent continua which ha\@ ft nol‘]—dggcnef ate
admissible decomposition and thus answer a question of Charatonik’s .Wh ich hc raised
for A-dendroids [4], a special class of hereditarily unicoherent co?xt;mua. It is con-
siderable easier to show the equivalence of Charatonik’s decomposm.on a1.1d the o‘nc
of this paper for A-dendroids than for hereditarily unicoh.eren‘t cont'mua m' general,
The difficulty stems from the layers having non-void interiors m' an irreducible co‘n--
tinuum. A-dendroids do not contain this type of subcontinu'um since thﬁcy are heredi-
tarily decomposable and therefore the layers of an irreducible sul?contmuum I have
void interiors relative to I [7, Theorem 10, p. 15]. The author 1s‘une'1ware in tl.w
fiterature of a satisfactory description of the structure of the layers haV1‘ng‘ non-void
interiors in an irreducible continuum. This paper provides one and this is the key
in establishing the equivalence of the two decompositions. ) ) -

At the end an example is provided that answers in the negative a C}uesnon raised
by Charatonik. A continuum M is monostratic if the minimal admissible decomp?-
sition C is degenerate. Suppose that M is a A-dendroid and that ever'y mono‘stx‘fatw
subcontinuum of M has void interior. Does it follow that each element in the mn?nnal
admissible decomposition has void interior [4]? The example answers this m.agatlvely.

By a continuum we mean a compact metric connected space and .the Cf)ntmuum M
is hereditarily unicoherent if the intersection of any two of its subcontinua is (fonuected.
If M is also hereditarily decomposable it is a A-dendroid: A. closed set k isa clo.?ed
separator of M if M —k is not connected. Now suppose that Kis a collection of closed
separators of M with the following property:

(*) IfkeKand M—k = A, U A,, & separation, and if aje 4y, ¢z € 42, cek,
then for eitheri = 1,j = 2ori = 2,j = 1 there existk’ € K and a continuum Q
" such that {a;; ¢} Q and k' separates Q from a;.

Let R be the union of all the collections of closed separators satisfying (x). Then ]Z is
itself a collection of closed separators satisfying («) and is clearly the unique maximal
such collection. Denote by S, the set of all points.y of M such that there does not
exist & e K which separates x from y., By [5, p. 49], S = {S,| xe M } is an upper
semi-continuous decomposition of M into closed sets.

THEOREM 1. If M is a hereditarily unicoherent continuum then C = S§.

. Proof. Let f be the quotient map of M onto the quotient space (M, C) of ‘th.c
decomposition C and let K = {f~*(k)| k is a closed separator of (M, C)}. Now K is
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a collection of closed separators of M. Suppose M—f~"(k) = 4 U B, a separation,
and a€ 4, be B, cef ' (k). Then k separates (@ from f(b) in (M, C) since 1 is
a monotone map. From [3, Theorem 1, p. 116] we know that
connected and so there exists an arc E such that either

{f@.7@}=B=(M,C)~{f®)} o {f().f@}=E=(M, O)—{f(@)};

assume the latter. Let k' be a closed set that separates E from f(a)in (M, C). Then
STU(K') separates a from f~(E) in M which shows that X has property (x). This
implies that S'< C for suppose that S, € S and gn S, #0# ¢ NS, whereg, g’ C
and g # q'. Let k be a closed subsct of (M, C) that separates f(g) from f(g’). Tt
follows that /' ~I(k) separates ¢ from ¢’ so f ~!(k) separates two points of S, . This
contradicts the definition of S, since f “I(k) belongs to K and therefore to K.

To prove that C'<.S it suffices to prove that each layer of an irreducible subcon-
tinuum of M lies entirely within some clement of § [1, p. 28]. To do this we need
some lemmas. In these lemmas 7 is an irreducible subcontinuum of M from a to b.
Note that Lemma 5 is sufficient to prove that C<S if M is a A-dendroid.

LemMma 1. If'J is an indecomposable subcontinuum of I with non-veid interior
relative to I then J is contained in some element of S. '

(/'VIg C) is arcwise

Proof. No generality will be lost if we assume that I—J = 4 U B, a separation
of I, where J is irreducible from A to B, the closures of 4 and B, rospectively. If J©
(interior of J relative to J) is contained in an element of S then J is also. So assume
that .y, yeJ% and §, % S,. There exists k € K such that M~k = Ay v Ay, a separ-
ation, where xe A, and y e A,. Take ze k n J. Clearly x, y, z can be chosen from

- mutually distinct composants of J. By the definition of K there exists a continuum Q

containing y and z but not x. Because M is hereditarily unicoherent, Q n Jis a proper
subcontinuum of J intersecting two different composants of J. This contradiction
shows that J°= S, for some xe M and thus J< S, :
Next we take time to describe the structure of the layers of I that have non-void
interior relative to 7. To do this we use some ideas and notation from [5]. Let J be
a layer of 7 that has non-void [interior and assume without loss of gencrality that
I=J =4 U B, a separation of I, where J is irreducible about (AnJyu(Bnd).
It is clear that J contains an indecomposable subcontinuum of I with non-void
interior relative to 1. Otherwise by [7, Theorem 10, p. 151 J has a non-trivial mono-
tone upper semi-continuous decomposition with an arc for the quotient space which
means that J cannot be « layer of /. Sinee 7 is a metric space obviously the number
of such indecomposable subcontinua of J is countable: denote then: by Iy, I, ...
Let Chy(ly) = 1 and let CLUH) be an alternate notation for the closure of a set H.
Let Chy(/y) = Cl{yeJ| p can be Chy-chained to 1} (if F is a set function then y
can be I chained (o RexJ if there exist /;, Iys ooy Iy, for some integer n such that
B B, o, U)o simple chain where y e F(J;,) and R n F(I,) # 0).
Suppose for a countdble ordinal o that Chy(I)) has been defined for each i and for.
cach fi<io. I o ds o limit oidinal define Ch,(7) = CI( U Chy(1)). If a is a non-limit
‘ <o .
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ordinal ‘deﬁne Ch(I) = Cl{ye/] ‘ y can be Ch,-y-chained to [ g I Q i.s
the first uncountable ordinal then clearly Ch,(I)<Ch,. (1)) fqr all o< and it
l follows that there exists a countable ordinal y such that Chy(I}) = Ch,,.4(I)) for
all i. If i # j then Chy(I;) = Chy(l) or Chy({,) ~ Chy(I) = 0. For suppose thz}t
Ch,(I;) n Ch,(Z;) #0 and x € Ch,(;). Then x eC‘her J(I) since Chy(Iy), Chy(l) 1;

a simple chain from x to f;. But Ch,, (/) = Ch,(I) so xeChy(l) a.111
Ch(I;)=Ch,(f;). Similarly Ch,(Z) =Ch,(I)) and thus th(I,) = Ch,,([j).‘ From tzle
definition each Ch,(;) is closed and from the construction fﬁagl} Ch,(I}) is S;onnectg .
Let Q, = {yeJ]| y cannot be separated from Ch,(f)) in J by C}av(]j) for any i}
The set Q; is obviously closed. Each Ch,(I)) is a closed separator of J excep.t possibly
for two (one might intersect 4 and one might intersect B). Let 2 = {0|| Q,isa clc?sed
separator of J} and assume that 2 # 0. Suppose J—Q; = X o Y, a separation,
where x€ X, ye ¥ and ce Q,. There exists j such that Ch,(I)) s:eparates x from
Ch,(Z;) by the definition-of Q;. Let H;; be an irreducible subcontinuum of J from
Ch,(I}) to Ch,(Z)). Now H;; must contain I, for some k or else by [7, p. 15] Hy; 1}&5
a non-trivial monotone, upper semi-continuous decomposition onto an arc which
implies that J is not a layer of . Tt follows that Ch,(J,) separates Ch,(7;) from Ch’,(.fj).
Similarly there exists Ch,(/;) which separates Ch,([;) from Ch, () and Ch,(/,)) which
separates ‘Ch,(I}) from Chy(Z,). Consequently Q,<=Chy(I) v I.{j,, U'C¥]y({/|) a}1d
0,. " Q; = 0. Then Q,, separates x from Q;-U ¥, a continuum with y in its interior
and thus 2 satisfies Definition 8.2 of [5, p. 49]. Hence by [5, Theorem 8.3,.19. 49]
and [5, Theorem 2.7, f) 37], J has a non-trivial monotone upper se:mi—contmuom%s
decomposition whose quotient space is an arc which contradicts_the fa_ct that J is
a layer. So we conclude that 2 = 0. Therefore one Q; intersects A, one intersects B
and from the definition of Q; these must be the same. So Qy = 0, = Q3 = o and
consequently Ch,(J;) = Ch(I) = Ch,(l;) = ... It follows that ’Chy(I]) *is an
irreducible subcontinuum of J from 4 to B. : : ‘
Lemma 2. If I, and Ch(I)) are defined as in the previous construction then

U I; = Ch,(I)). ‘ .
Proof. Since Chy(Z;) is an irreducible continuum from Ato B —til’}elrl for each
i, I,cCh(1,). Tt follows that () J,=Chy(,). Obviously Cho(/)= U/, for all j.
Assume Chy(Z; CU—I;for all f <o« and all j. If « is a limit ordinal it is clear from the
definition that Ch(I))< D-I: If « is a non-limit ordinal, by the induction hypothesis
we have that Ch,_;(I;)< U ; for all j. Then P = {y| y can be Ch,..,-chained to I}
c m: and thus the closure of P, Ch,(I}), is a subset of |J 7;. Hence Ch,(/))= U/
and Lemma 2 is proved.

LemvA 3. If JO is the interior of J relative to I then J® = Ch,(71)).
Proof. Because Ch,(I,) is irreducible from A to B, J°<Chy(/;) and thus

J° =Ch,(). On the other hand JO is a continuum intersecting both 4 and B and
since Ch,(7;) is an irreducible continuum from A to B, Ch,({;)=J°. The lemma
follows. i

© .
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Lemma 4. If I is an irreducible subcontinuum of M and J is a layer of I with non-
void interior relative to I, then JY s contained in some element of the decomposition S.

Proof. The proof involves transfinite induction. From Lemma 3 J° = Ch,(1;)
and from Lemma 1, Chy(l)) = I8, for some x; in M. Assume that for all p<o
and for all #, Chy(I)<S,,. For a limit ordinal o it follows immediately that
Ch ()<= S,,. If « is a non-limit ordinal then Ch,-1(I)< S, for all i. Suppose there
is-a simple chain Ch,_,(7;), Chy-((13,), -, Ch,_((L;,) such that y e Ch,_;({;,) and

Chy—y(l;) 0 I # 0. Since § is a decomposition |J Ch,_ (7, )< S;,. Hence ye S,
j=1

and Ch,(I))=S;, for all i. Then Ch,(I)<=S,, so I S,, and the proof is complete.

Although JY is not generally equal to J in Lemma 4, the fact that J itself is con-
tained in some element of S will follow as a corollary to the next lemma.

LemMA 5. If I is an irreducible subcontinuum of M and J is a layer of I with void
interior relative to I, then J<= S, for some x e M.

Proof. Suppose J n S, # 0 #Jn S, where S, # Sy. If f is the quotient map
of the minimal monotone upper semi-continuous decomposition of I onto [0, 1]
then J = f~!(7) for some e [0, 1]. Without loss of generality we can assume that
1€(0,1). We have J =J; UJ, where J; =J A /710, 7) and J, =J nf-1(, 1]
and we can assume that J; 0 S, # 0 % J, A Sy.-LetpeJyn S, and geJ; n S,.
There exists k e K such that k separates p from g in M. Take t, € [0, £) such that

knf ™ t) # 0 and 711t o f7(t;, 11 = £72(t,). Let ceknf~i(z,). By the
definition of K we can assume that there exists k' € & and 2 continnum L< M such
that {g, c}=L and k' separates L from p. Since:}"”l((t1 , 1)) is irreducible from ¢ to g
and M is hereditarily unicoherent, f- “(t1, H)<L. But pef “1((t1,;j)~L and this
contradiction shows that J=S, for some x e M.

LeMMA 6. If I is an irreducible subcontinuum of M and J is a layer of I with non-void
interior relative to I, then J is contained in some element of S. ‘

Proof. By Lemma 4, JY i3 contained in S, for some x & M. No generality is
lost if we assume that I—J = A4 U B, a separation. Since the continuum 4 N J
bas void interior, with trivial modifications Lemma 5 implies that A N Je S, for
some ye M. But (AnJ)nJo %0 so AnJcS,. Similarly BnJ<S,. Thus
JeS, since J = (AN VIO UBnJ). .

Lemmas 5 and 6 prove that if Jis a layer of J then J< S, for some x & M and the
proof of Theorem 1 is complete.

The next theorems are an immediate consequence of Theorem 1.

THioREM 2. Let M be a hereditarily unicoherent contimuum. Then M has @ non-
trivial admissible decomposition if and only if there exists a non-empty collection of
closed separators of M with property (x). ‘

Or stating Theorem 2 differently we have:
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THEOREM 3. Let M be a hereditarily unicoherent continuum. Then M is monosiratic
if and only if no non-empty collection of closed separdtors of M satisfies ().

Charatonik has proved that if a continuum M has an admissible decomposition
cach of whose elements has void interior then each monostratic subcontinuum has
void interior [3, p. 128]. He shows by example [3, p. 128] that the converse is false
but asks if it is true for A-dendroids. The following example shows the converse is
false even for A-dendroids.

ExampLE. Let O be the Cantor middle third discontinuum in the unit interval J
and form the prpduct OxI Let 7

I'={(x,0) 0<x<1} and T={(x,5)| x = lsin(1[y)l, =1<y<0}.

‘Denote by K the monostratic plane -continuum. constructed by Charatonik [2].
Replace each vertical interval i in O x I by a copy of K, K;, such that (1) X; is per-
pendicular to the plane, (2) the cross section of K, in the plane is i, ) Ky n I" = p;
where p, is the point of the Cantor set at the foot of the interval 7 and is the midpoint
of the interval [a, b] of K; [2, Figure 1, p. 77], (4) the point ¢ of K; [2, Figure 1, p. 77]
coincides with the top of the vertical interval i. Let R be the set obtained from Q%[
by this replacement of each vertical interval i by K; and let X =Rul'UT.
Clearly X is hereditarily unicoherent-and hereditarily decomposable, hence
a A-dendroid. Although X is not hereditarily stratified (X is hereditarily stratified
if it contains no non-trivial monostratic subcontimuum) it does not contain any
monostratic subcontinuum with non-void interior, e.g., R U I’ has a non-trivial
admissible decomposition with an arc as a quotient space. However, each mono-
stratic subcontinuum X; of X must be contained in a single element of the minimal
admissible decomposition C of X [3, Theorem 6, p. 124]. Also I’ L T is irreducible
between the point (sinl, —1) and each point of I’ and hence I’ is contained in
a single element of C. But since K; n I’ # 0 for each i, it follows that R I is
_contained in one element of C. Since R w I” has non-void interior this shows that X’
does not have an admissible decomposition each of whose elements has void interior.
Two questions immediately arise from this example:

- QuESTION 1. If X'is a-planar A-dendroid and if every monostratic subcontinuum
of X has void interior, then does X have an admissible decomposition each of whose
elements has void interior? ' ' '

QuesTioN 2. If X is a hereditarily stratified J-dendroid, then does X have
an admissible decomposition each of whose elements has void interior?

Remark. ‘The referee has pointed out that an example similar to the one
above appears in a paper by T. Maékowiak. It is Example 3. in On some
examples of monostratic A-dendroids, Fund. Math. 87 (1975), pp. 79-88.
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