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An R-stable ANR which is not FR-stable
by

Sukhjit Singh (Altoona, Pa.)

Abstract. TaroreMm. There exists an ANR X such that X does not contain any deformation
retract different from itself, however, X contains a fundamental deformation retract Y different from X.
This provides an answer to Problem 2.14 in Borsuk [8]. THEOREM. Let G be an upper semicontinuous

decomposition of an ANR X such that the nondegenerate elements are contained in X— A, where A is
a closed subset of X. If p: X—X|G is a homotopy equivalence and A is a fundamental deformation
retract of X then P(A) is a fundamental deformation retract of X|G.

1. Introduction and terminology. By a space we mean a separable metric space
unless otherwise so stated. If a compactum X does not contain any deformation
retract of X which is different from X then X is said to be R-stable. A closed subset
Y < Xis said to be a fundamental deformation retract of X if there exists a fundamental
sequence r = {ry, X, ¥}y such that ryy = ily and that {r,, X, X}sp homotopic
to the identity fundamental sequence iy OT {re» X, X S A space X is
fundamentally R-stable (or FR-stable) if X does not contain any fundamental defor- -
mation retract which is different from X. The following question appears in Borsuk [8]
(as Problem 2.14 on page 264):

PrOBLEM. Does there exist an R-stable ANR-space which is not FR-stable?

‘We shall prove the following:

THEOREM. There exists an R-stable ANR-space X of dimension three containing
‘a set ¥ such thar (1) Y has the shape of 2-sphere S* and (2) Yisa Sfundamenial defor-
mation retract of X. Hence X is not FR-stable.

For notation and related terminology concerning shape one may consult
Borsuk [6] and [8]. By AR, ANR, FAR and FANR we mean absolute retract,
absolute neighborhood retract, fundamental absolute retract and fundamental
absolute neighborhood retract, respectively. We use this notation only for compact
spaces. If G is an u.s.c. decomposition of a space X (“an upper semicontinuous
decomposition of a space X™) then we denote by X/G the associated decomposition
space and by p: X—=X/G the canonical projection map unless otherwise stated. For
additional information concerning decomposition spaces one may consult [3] where
other references can be found. Let Q denote the Hilbert cube.
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2. Construction of an ANR. Let E* denote the 1-dimensional Euclidean space
and let E" denote the n-fold product of E* with itself, where n = 2,3, 4 For
each positi\ie number ¢, define B"(0, &) = {(x, X3, ..., x,) € E": xf‘—l—x§7+ ,—I’-‘c2<c}
and S‘"‘”\(l, &)= {(x(, X3, e, X,) € E": X2+ x5+ X2 = g}, wheren = 1,2 "3\
The set B'(0, ¢) is a closed ball of radius ¢ with origin U = (0,0, ..., 0) e ;J" ’as, 1ts
centesr :cmd -1, -€) is its boundary (n—1)-sphere. The subset B*(0, f) A [E?x{0}]
of .E is the set B*(D, 1)x {0} which we may identify with B%0, 1) whenever appro-
priate. Let W be the following well-known 1 -dimensional continuum in B*(@, 1) x {0}
w1ﬂ; t_he shape of a circleas shown in the figure belcw and sush that W r {(x, ’ Xy, Me
€ B0, 1)x{0}: x; = O} is the set {{0, x,, 0) & B3(D, 1): 2<x,<3}. The su;p;l;sion

Fig. 1

20 25 3 )
Z B*0 . 1) of B (;? > 1) with (0, 0, %) and (0, 0, —%) as points of suspension or. vertices
is contained in B*(0, 1). And hence the suspension 3 W of W with the same vertices

is contained in B3(D, 1). There exists a positive: i
in , D). positive number &, sufficient] :
that B*(0, ;) does not intersect Y W. Put ° Y fmal such

X ={(x, x5, x3) € E*: go<xi+xi+x3<1).
The space X is.a t:ompact 3-manifold with boundary and hence an ANR. Also X
contains Z W in its interior. We prove the following for later use:. ‘
LEMMA 21 The subspace . W is a fundamental deformation rerract of X.
Proof. There exists a sequence X, 2X,> X, ... such that each X, is a closed

annulus contained in B0, 1) such that X, i+1 18 a deformation retract X, for all
i

i=1,2,3,...,andW=wX‘.D o= f e
ioil efine ¥; = 3 X, for i ='1,2,3, ... and we use

the same vertices.' as for ) W. We have a sequence ¥, >X,> Y;>... of ANR’
such that Y;,, is a fundamental deformation retract of ¥, for z— 1,2,3 i
i - 2 2 3 ey
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and . W = () Y;. By Theorem 4.1 of Borsuk [8], it follows that ). W is a funda-
=1

mental deformation retract of X. Since X has the shape of a 2-sphere, >, W has
the shape of a 2-sphere. This finishes the proof of Lemma 2.1

The set 3. W decomposes X into two digjoint open and connected subsets Xy
and X,. More precisely, X-YW=X0X,, and X = Xiw X, v Z W, where
these are disjoint unions. For each i = 1 and 2, describe an u.s.c. decomposition G;
of X, such that the nondegenerate elements of G; form a null sequence of arcs such
that the decomposition space does not contain any ANR of dimension two or any
ANR of dimension three and diffutent from itself. Define an u.s.c. decomposition G
of ‘the space X such that G = G, U G, u {{x}: xe}, W}. The decomposition
space X/G is 3-dimensional [5] and by a Theorem of Smale [14] mentioned in
Borsuk [6] it follows that X/G is an ANR. Let p: X—X/G be the projection map.
Tt is well-known that p: X—X/G is a homotopy equivalence, see [1] and [12].

3. Homotopy inverses and fundamental deformation retracts.

TevMa 3.1, Let G be an u.s.c. decomposition of an ANR X such that the non-
degenerate elements of G are contained in X— A4, where A is a closed subset of X.

If the projection p: X— X |G is a homotopy equivalence then there exisis a homotopy

imverse q: X|G—=X of p: X—X|[G satisfying qp(a) = 4, for each ae A.
Proof. Consider the diagram :

n n
A—>p(A)— 4

Lo
X—=>X|G—> X

where i and j are inclusioﬁs, py is the restriction of p and pr?tisits inverse, and r is
a homotopy inverse of p. Now jp; = pi and hence by composing with r on both
sides we have rjp; = rpi. Composing with py 1 we get

rjzipyt,

ripipit = rpiptt  or  1j = (rp)ipit  or

since rp is homotopic to the identity on X (or shortly rp=2iy).

Now p(d4) is a closed subset of X/G and X is an ANR we conclude that
ip7t: p(A)—A can be extended and this extension g: X /G- X is homotopic to r.
This can be done since ANR’s have the homotopy extension property, see
Borsuk [7, p. 6]. The homotopy inverse g: X/G—X has the required property
gp(a) = ipy*p(a) = a, for each ae A This finishes the proof of Lemma 3.1.

There are known theorems which guarantee that the projection. map
p: X—+X/G is a homotopy equivalence when certain conditions are imposed on the
decomposition and the dimension of X/G is finite. For example, if elements of G
have trivial shape and XG is finite dimensional ther the projection p: X—X/G is
a homotopy equivalence. For more details see [1] and [12]. We prove the following:
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THEOREM 3.1. Let G be an u.s.c. decomposition of an ANR X such that all the
nondegenerate elements are contained in X— A. If the projection p: X—X |G is a homo-
topy equivalence and A is a fundamental deformation retract of X, then p () is a funda-
mental deformation retract of X|G.

Proof. Let g: X/G—X be a homotopy inverse of p: X—X/G such that
gp(a) = a, for each ae4. This follows from Lemma 3.1. Let r = {re, X, A}on
be a fundamental deformation retraction from X onto 4, where Q denotes the
Hilbert cube. Define a fundamental sequence

s = {prd, X|G, p(AD}oq»

where p: Q—+Q and §: Q-Q are extensions of p: X-X/G and q: X/G-X.
Clearly, pr.4(p(d)) = p(a) for each point p(a) e p(A).
Since,
brq = Pixod = pg = ivi6,0 5
it follows that

s ={pnd, X/G, X|G}g 0 = iz, -

This proves that p(4) is a fundamental deformation of X, /G.

Recall the constructions of Section 2 where we described an u.s.c. decompo-
sition G of a space X which ‘contains the set A = > W and the nondegenerate ¢l-
ements of G are contained in X—4. We are in a position to prove the following:

TrEOREM 3.2. The decomposition space X|G is an R-stable ANR (of dimension
three) which is not FR-stable. ‘

Proof. It follows from discussion in Section 2 that X' /Gis a3-dimensional ANR.
From Lemma 2.1, we known that 4 = Z W is a fundamental deformation retract
of X. The set p(4) is homeomorphic to 4 and P(4) is a fundamental deformation
retrfclct of X/G. This follows from Theorem 3.1, since p: X—X/G is a homotopy
equivalence ([1] and [12]). This proves that the decomposition space X/G is not
FR-stable. It remains to be proved that X /G is R-stable.

It is clear that no 1-dimensional subset of X /G can be a deformation retract
of X/G.If Y= X/G is a deformation retract of X /G then dim Y2 and Y'is a retract
of X/G. Therefore, ¥'is an ANR and Y has the homotopy type of a 2-sphere. Now
P(A4) which is homeomorphic to 2. W cannot contain an ANR which has the l.mmo-
topy type of a 2-sphere, and hence ¥ n [X/G— p(A)] # @. We consider the following
two cases:

C?se I. Assume Y contains a simple closed curve « such that ac[Y—p(d)]
-and o is Iilomotopic to zero in Y—p(d4). Recall that X/G—p(d) = X /G L X,[G
isa dlS:]O!llt union of the complementary domains of 2(4). Assume withéut Ioszs o?
gene_ra?ty that a < X, /G,. By applying a linking argument of [13] we arrive at a con-
tradiction and thus showing that X /G does not contain such an ANR. Y,

. Case IT. If there exi'sts apoint yo € ¥—p(4) such that ¥ has dimension at least
Wwo at yo, then every neighborhood of y, contains a simple closed curve. By taking
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a small neighborhood ¥ of y, we find a simple closed curve e ¥ and a is homotopic
to zero in Y—p(4).

Since this reduces to Case I, we assume from now on that dim[¥—p(4)]I<1.
Tt is also clear from our construction that p(4) N ¥ # @. Now, there are two possible
cases (i) p(4)< ¥, or (ii) p(4) ¢ Y. Our final goal is to show that each of these two
cases leads to a contradiction. We assume that p(4) is a subset of ¥ in the following
paragraphs, unless, otherwise so stated.

Clearly, the boundary F(C) of a component C of the set [Y—p(4)] is a non-
empty subset of p(4). By Theorem 7 of [11, p. 266], there exists a dense subset D
of F(C) such that each point of D is arcwise accessible from C. We shall prove, in
the next few paragraphs, that D contains exactly one point.

Tt is easy to see that the set p(4) is shape equivalent to the 2-sphere S 2, Hence,
p(A) has the property UV? inside ¥, see [1], [2], [4], [6] and [9]. Let ¢: Y- Y[H
be the projection onto the decomposition space Y/H associated with w.s. c. decompo-
sition H of Y such that p(4) is the only nondegenerate element of H. Then the
induced map gy: m;(¥)—n;(¥/H) on the fundamental groups (with suitably chosen
base points) is an isomorphism [4, Theorem 6.1]. This proves that Y/H is simply
connected. Also, Y/H is 1-dimensional since [Y—p(A4)] is 1-dimensional and Y/H
is a Peano Continuum. Now, it can be easily seen from Theorem VIII 3’ [10, p. 151]
that Y/H is a dendrite, see [11, p. 300] for a definition of “dendrite.”

Let x and y be two distinct points in D and z°be a point in C. Since x and y are
accessible from z, there exists arcs [z, x]=(Cu {x}) and [z, ¥]=(C v {y} with
endpoints z, x and z, y, respectively. If [z, x] N [z, y] = {z}, then the image
(qlz, x] v [z, y]) is a simple closed curve. This leads to a contradiction since Y /H
is a dendrite. Now, we may assume that [z, x] N [z, »] # {z}. It is easy to see that
[z, x] N [z, ] # {z} implies that there exists a simple closed curve a=([z, x] vz, »])
such that o is homeomorphic to g(e). Since each of these two cases lead to a con-
tradiction, the set D cannot contain two distinct points. This proves that the set F(C)
contains exactly one point. The closure C of C in Y is a Peano Continuum, see
a theorem of R. L. Moore as quoted in [11, p. 247]. The set C is a dendrite, and
therefore, embeddable in the plane [11, p. 305]. By Theorem 7.1 of [6, p. 221], the
set C is shape equivalent to a point (UV® [2], or cell-like [12]).

Let {C;: ie I} denote the set of components of [¥— p(4)]. For each i and j in I
such that i s j, the set (C; n C)) is empty or contains exactly one point. Therefore,
the components of the set | C; are sets of the form C, or the wedges of the sets of

iel
the form C;. Let H, be a decomposition of ¥ such that the nondegenerate elements
of H, are the components of |J C;. Note that the set J is countable since C;’s are
- iel .
open subsets of Y. It is easy to see that H, isanu.s.c. decomposition of ¥ into closed
sets of trivial shape. In a proof of this statement, one relies heavily on the geometry
concerning the components C;’s and their closures C;’s. Now, the decomposition
space Y/H, isan ANR [2]. This leads to a contradiction since Y/H, is homeomorphic
to p(d). This proves that p(4) cannot be a subset Y.


Artur


182 S. Singh

We may now assume that 4’ = [p(4) n Y] 5 p(4). Let H"(X) denote the nth
Cech cohomology group of a space X with integers as the coefficient group. Since A’ is
a proper closed subset of the suspension over the Polish circle p(4), it follows
that 4’ cannot separate E*, and hence, by Alexander duality [10, p. 150] the coho-
mology group H?(4") is zero. Let ¥/A' denote the space obtained from Y by identi-
fying A’ to a point. It follows from dim(¥—4)<1 that dim(¥/4) <1 [10, p. 32].
By Theorem VIII 4 of [10, p. 152], it follows that H*(Y/A4’) is zero, It can be eastly
shown by the continuity of the Cech cohomology theory that H*(Y, A') is isomorphic
to H*(Y[/A’). By the long exact sequence of the pair (Y, A’), the sequence
0 =-HXY, A)>H*(¥)>H*A") = 0 is exact. This is a contradiction.

This finishes our proof that the decomposition space X/G is R-stable.
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An expansion of an N,-categorical model
by

Leo Marcus (Santa Barbara, Cal.)

Abstract, We show the existence of an N,-categorical model M having an expansion M* with
the “same” elementary submodels, but which is not N,-categorical. In addition, (1) M contains N,
disjoint sets intersected by every elementary submodel; (2) for every countable N* = M *,
< (N*) = < (M*), where <(N*) is the set of elementary submodels of N* partially ordered by <.

Introduction. An expansion M* of M is said to be elementary if the universe of
every elementary submodel of M is the universe of an elementary submodel of M*.
This concept was introduced in [2] where it was shown that if M, N are countable,
not isomorphic, N is not saturated, and M is prime, then there is an elementary
expansion M* of M such that there is no expansion N* of N with N* = M*. Of
course, the interesting case is when M = N. If in addition M is %,-categorical then
N = M and the above theorem does not apply. Nevertheless the properties of
elementary expansions of y-categorical models are worthy of investigation. Here
we show (Theorem 1) the existence of an &y-categorical model M having a non-
No-categorical elementary expansion M* = (M, P,);.,, where the P; are unary
relation symbols interpreted as disjoint sets. Thus M contains ¥, disjoint sets which
are intersected by every elementary submodel. In a sense, this is as close as an
Ro-categorical model can get to being a minimal model (a model with no proper
elementary submodels).

In addition there is a theory T7 = Th(M*) such that every model of T7F can be
realized as an elementary expansion of a model of Th(M). In particular, then, for
all countable models elementary equivalent to M*, the partially ordered sets of their
elementary submodels are isomorphic.

Notation and definitions. We deal here with models M, N, etc. in languages
L(M), L(N), etc. Most of the terminology and notation is standard. Anything not
defined below can be found in Chang-Keisler [1]. We use the term language to mean
a set of relation symbols. If L is a language, Lis the set of first order formulas built
up from L and the finitary connectives and quantifiers. An L-m-diagram is any
subset of {R(x;y, ..., x;,_,): Rel, i<m}. If @ = {ag, ..., a,_1y is a sequence of

elements in an L-structure, M, written @ e M or @< M, then the L-diagram of a is
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