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We may now assume that 4’ = [p(4) n Y] 5 p(4). Let H"(X) denote the nth
Cech cohomology group of a space X with integers as the coefficient group. Since A’ is
a proper closed subset of the suspension over the Polish circle p(4), it follows
that 4’ cannot separate E*, and hence, by Alexander duality [10, p. 150] the coho-
mology group H?(4") is zero. Let ¥/A' denote the space obtained from Y by identi-
fying A’ to a point. It follows from dim(¥—4)<1 that dim(¥/4) <1 [10, p. 32].
By Theorem VIII 4 of [10, p. 152], it follows that H*(Y/A4’) is zero, It can be eastly
shown by the continuity of the Cech cohomology theory that H*(Y, A') is isomorphic
to H*(Y[/A’). By the long exact sequence of the pair (Y, A’), the sequence
0 =-HXY, A)>H*(¥)>H*A") = 0 is exact. This is a contradiction.

This finishes our proof that the decomposition space X/G is R-stable.
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An expansion of an N,-categorical model
by

Leo Marcus (Santa Barbara, Cal.)

Abstract, We show the existence of an N,-categorical model M having an expansion M* with
the “same” elementary submodels, but which is not N,-categorical. In addition, (1) M contains N,
disjoint sets intersected by every elementary submodel; (2) for every countable N* = M *,
< (N*) = < (M*), where <(N*) is the set of elementary submodels of N* partially ordered by <.

Introduction. An expansion M* of M is said to be elementary if the universe of
every elementary submodel of M is the universe of an elementary submodel of M*.
This concept was introduced in [2] where it was shown that if M, N are countable,
not isomorphic, N is not saturated, and M is prime, then there is an elementary
expansion M* of M such that there is no expansion N* of N with N* = M*. Of
course, the interesting case is when M = N. If in addition M is %,-categorical then
N = M and the above theorem does not apply. Nevertheless the properties of
elementary expansions of y-categorical models are worthy of investigation. Here
we show (Theorem 1) the existence of an &y-categorical model M having a non-
No-categorical elementary expansion M* = (M, P,);.,, where the P; are unary
relation symbols interpreted as disjoint sets. Thus M contains ¥, disjoint sets which
are intersected by every elementary submodel. In a sense, this is as close as an
Ro-categorical model can get to being a minimal model (a model with no proper
elementary submodels).

In addition there is a theory T7 = Th(M*) such that every model of T7F can be
realized as an elementary expansion of a model of Th(M). In particular, then, for
all countable models elementary equivalent to M*, the partially ordered sets of their
elementary submodels are isomorphic.

Notation and definitions. We deal here with models M, N, etc. in languages
L(M), L(N), etc. Most of the terminology and notation is standard. Anything not
defined below can be found in Chang-Keisler [1]. We use the term language to mean
a set of relation symbols. If L is a language, Lis the set of first order formulas built
up from L and the finitary connectives and quantifiers. An L-m-diagram is any
subset of {R(x;y, ..., x;,_,): Rel, i<m}. If @ = {ag, ..., a,_1y is a sequence of

elements in an L-structure, M, written @ e M or @< M, then the L-diagram of a is
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{R(Xig» s X1 s ME R(ayg, s €y), REL}. We also write (/) = a;. The
length of a sequence 4 is denoted /(@) and the number of free variables in a formula ¢
is denoted I(¢). Two sequences &, b of length m are L-isomorphic if they have the
same L-diagram. If @, b e M then they are M-automorphic if there is an auto-
morphism f of M such that f(a(i)) = b(i) for all i<m.

We allow a certain confusion in distinguishing between the sequence @ and the
set {ag, ..., @,~1}. For example, depending on the context f (@) might mean either

<f((lo), ...,f(a,,,_l)> or {f(‘lo)s ---3,]"(“«:1—1)]1' d

Also by X275 we mean J = {Jg, s Y10y X = {Xg, ., Xymyy and every y; is
some X;. . : ‘

If L&L*, T* is a theory in L*, then T*} L = T* n L. If M is a model and
A< M then M} 4 is the submodel of M with universe set 4. 1f LeL(M), M} L
is the restriction of M to L. D,(M) is the set of n-types realized in M.

The theorem.

" THEOREM 1. There exists a countable %y-categorical model M with « non-sy-cat-
egorical elementary expansion M*.

Remarks. The construction of the above M is an example of the following
general situation: Let L&L* be two languages, T* a theory in L* (not necessarily
complete.) Find M* FT* such that M = M*} L is n,-categorical. By Ryll-
Nardzewski’s Theorem and the compactness theorem there is such an M* iff there
are t(m) < for n<w and formulas @j(x,, ..., x,_;) of L, n<w, i<t(n), such that
there are models M} k T* in which {¢]': i<#(m)} are atoms for all the m-types
of M}t L, m<n. This is also the best result, in the sense that a (non-complete)
theory 7 can be contrived so that for all n< ¢ there is a model M, F Ty with finitely
many - types, even so that |D,(M,)| = |D,(M,)| for k>n, but T; has no 8,-categ-
orical model. :

Proof. Let Ly = &, L§ = {P(x): i<w}. Assuming L; and L} defined, for
every formula @ (¥g, ..., Yygy—1) ELT let R (x,, -s Xi(r,y-1) be @ new relation symbol
and take L;, 1 = L; U {Ry(xq, oo Xiryy-1): pell}, L, =L, 0Lt LetL=J L;,

. J<w
L* = U L% (= L v Lj). Choose I(R,) so that [(R,)>) I(R,) where the summation
) j<o .
is over all Ry occurring in ¢, and in addition /(R,)  I(R,) for ¢ # .

Now let .

T* = {3x(P(x) APx))! i # j<w} U
U {V5lp(D~>AZ2P)R,X): peL*}u
‘ U {VEVAS)((R,(®) ATy (@, »)~Ay e D)o@, »): ¢ e L*),
Cranw. Let M*FT* M = M*} L.

1. If every two L-isomorphic sequences from M are M-automorphic, then M is
8o-categorical.
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2."M* is an elementary expansion of M.

' Pro of._l. Since I(R,) # I(R,) for ¢ # i, for each n there is a finite number of
L-isomorphism classes of n-tuples, and thus M-automorphism classes, and thus
types.

2. Let N< M, N* = M*} N. In order to show N* < M* it is sufficient,
by the Tarski-Vaught test, to show that if @ €N, M* Edye(a, y), then there is
be N such that M* k (@, b). Let M* E @(d,c). Then M* k (@X2a)R,(%). Thus
M (the same) and thus N F (the same). Let d2i satisfy Nk R,(d); of course
d<N. So ME R,(d) and M*k R,(@). Since M* E Jye(@, y) and acd, we get
M*E@yed)p(d,y). Let b be that y. Certainly be N and M* k ¢(a, b).

So in order to prove Theorem 1 it is sufficient to prove:

Lemma 1. Given j,n<w and finite subsets -

Yo =, Yi<LE, &,=T%,
V= {Ry: ped,}, ¥ =¥, U V¥ &, P,
V=W, U{R, 9ed}, 5=V, U, ...
wo U= U{R,: 9ed; ), Y=Y, 0¥,
there is a W¥-model M* such that
1 M*E ('“Iax)(Pil(x)/\Piz(x)) Jor dall P, s P, eW¥¥;
(@) M*E (VD (e(N—=Ex20)R, ), oe D13
@) M*EVRVISH)(ReD ATyo (@, 1)@y D)o@, ) for ped, ;s

@  If a, b are n-ruples in M* which are ¥j-isomorphic then they are M* | ¥ ;-auto-
morphic. :

If in addition Th(M*) admits elimination of quantifiers, then in (2) and 3)
above ¢ may be taken to be a diagram. ‘
Thus it is sufficient to prove:

LemMMA 2. Given j,n<w and a finité subset Y=Ly,

let A} = the set of
¥&-m-diagrams, m<n,

Y= {Ry: e d¥), W=, oWk,

4%y = the set of Wt_-m-diagrams, m<n,
V= {R;: sed},}, W= Yo .
Let
A=Ay, =W, v
Then there is a W*-model M* such that
(0) ThM *) admits elimination of quantifiers;
D) M*EEAND(PL)APLE)  for all P; s P, eW%;

3%


Artur


186 L. Marcus

@  M*EVHOGEAT2)R(F), ded*;

() M*E(VRVacH)((R(X) ~dyd(@, )@y eX)6@, y), e 4*;

4 If &, b are n-tuples in M* which are ¥ ~isomorphic then they are M* | ¥ -auto-
morphic; :

(5) . Ifa, b are n-tuples in M* whlch are W*-isomorphic then they are M*-auto-
morphic.

Remark. Note that (5) implies (0).
Proof of Lemma 2. We define sets X;, ¥; such that X;=Y;= X, and sets
of functions

F={flan e=1,-1L1@= Z(E.) =n, 4,be ¥, are ¥-isomorphic},
= {f¥p: e=1,—1,1@) = I(B) =n, a,be ¥, are ¥*-isomorphic},
Domg = Y;, RangcX;,; for every ge&F, v FF, i<o.

Say that an m-~diagram § is ¢-consistent if

(i) 3@~ (P (5() AP,(X(K))) for all Py, # Py, € P, k<m;

(i) (Vasm) (6@ A8,@)~>3N(E2520 A R;(P)] for all §; e 4%;

(iif) (VZEa<=%)[(6() A Rs,(@) ATyd1(Z, )~y € 1)84(Z, )] for all &, e 4%
Let X, be a finite set with ¥* defined on it so that every (j— 1)-consistent n-diagram
from W* is realized by some n-tiple from X,, and X, satisfies (1) and (3). We leave
it to the reader to see that this is possible. Let ¥, 2 X, also be finite and satisfying (1)
and (3) such that if j € X,, 6 € 4* then Y, k §(7)>(AX27) Rx(X). Again we leave
the details to the reader. Now assume Y; is finite, satisfies (1) and (3), and if € X;,
e d, then Y; F3(9)—»@AX27)Ry(X). Let &F,; and F¥ be as above. We want to
define g on Y, forevery g e #;, . FF. If @, b e ¥;_, then fily ;5 € F,_y; define
Siam Yoy = fi-r,gry- WA UbEY;_y, define

fran@@) =5k and fian(B®E) =ak).

If x = f71(y) define f (x) = y, and if x = f(y) define f~1(x) = y. The definitions
are similar for fi%;5,. Let X4y = Y; U {g(x): g € F, U F¥ x is not covered by
any of the above cases in relation to g}.

For g € #; define ¥ on g(¥;) so g will be a ¥-isomorphism, and for g € #¥
define ¥* on g(Y;) so g will be a P*-isomorphism. Obv1ously F(Y)) satisfies (1),
and F¥(Y,) satisfies (1) and (3).

It remains to define ¥} on F,(Y)) so that (3) will hold. It is sufficient to
define ¥4 on g(¥;) for an arbitrary single g .€ &,. This is because if gi # g, then
(gu(¥)=-T)n (Qz(Yi)_ Y)=

Moreover it suffices to deﬁne ‘F* on g(X) for an arbitrary finite X< ¥,.

Casel. Thereishe #;_; v #{ | such that X< h(X,_,): Assume g = f;(,,_,,),
deXife=1landbeXife= —1. TherelsE €Y, suchthatEandE are SI”‘-lso-
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morphic. Obviously @ and b, are ¥ -isomorphic since @ and b are. So h“l(c"z) and b,
are ¥-isomorphic. Thus, the function f= fi 1 ¢4-1Gy70y IS In F ;- UF ;. See F1g 1.

by

A7)

4

ﬁ
@
Fig. 1

We can thus define ¥§ on g(X) the same way we defined W% on f(£™'(X)),
Le, Plg())=Pi f (R ().
Case 2. There are hy,..,h,e F;_, U Fr_,, m>1, such that

Xch (X)) U ..Ul (X2,

m is minimal, For simplicity consider the case m = 2. Write X = H, u H, where
HnH,=@, H =h(X,_)n X, H, = X—H,;Shy,(X;_,)n X. By Case 1 we
can define ¥§ on g(H;) and g (H,) so that both satisfy (3). We leave it to the reader
to see that g(H,) v g(H,) then satisfies (3).

Notice in Case 1 and Case 2 X< JX;.

Case 3. X n (Y,—X)) # @. This presents no new difficulties.

Now define Y;,.,2X;,; so that (1) and (3) are satisfied and also so that if
JE X4y, 6€ 4% then Yy k 5(5)—E@X25) Ry(X).

Now we take M* = | X, = U Y,. Clearly (1)-(3) hold. If @, b are ¥-iso-

i<w

morphic n-tuples, then the ¥- autommphlsm of M*} ¥ taking @ on b is

1 -1 _\-
U fianv U (fias) 1
io<i<w

ip<i<ow

where @, b e Y;,. This is (4) and (5) is proved similarly.


Artur


188 ‘ L. Marcus

References

[1] C.C. Chang and H.J. Keisler, Model Theory, North-Holland, Amsterdam 1973.
[21 L. Marcus, Elementary Separation by Elementary Expansion, Proceedings AMS, 59 (1976),
pp. 144-145.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CALIFORNIA

S Ty OF oAt Homomorphisms of direct powers of algebras
Current address: "‘
UNIVERSITY OF SOUTHERN CALIFORNIA . by

INFORMATION SCIENCES INSTITUTE
Los Angeles, California

Andrzej Ehrenfeucht (Boulder, Colo.), Siemion Fajtlowicz (Houston. Tex.)

and Jan Mycielski (Boulder, Colo.)
Accepté par la Rédaction le 29, 11, 1976

“Wielez lat czekaé trzeba, nim si¢ przedmiot §wiezy
R e ‘ Jak figa ucukruje, jak tytun ulezy?” [13]

0. Abstract. Given algebras?l and B of the same type, a set X and a homomorphism /: 9¥— B
we study the collection of all supports of , i.e., sets ¥S X such that for all £, g ¢ UX if £ PY=g}Y
then h(f) = h(g).

1. Terminology and generalities, We identify every ordinal number ¢ with the
set of ordinal numbers smaller than &, e.g.,n = {0,1, ...,n—1}and 0 = {0, 1,...}.
Cardinal numbers are the initial ordinals. o and f denote cardinals. If X is a set
then | X| denotes the cardinal of X. o™ denotes the cardinal successor of .. A filter F
of subsets of X is called o-complete iff for every G < F with |G| <a we have () Ge F,
and Fis called an wultrafilter if from any two complementary sets in X at least one is
in F. We shall use the following surprising characterisation of «-complete ultra-
filters.

1.1 (Galvin and Horn [9]). Let F be a family of subsets of X and « be a car-
dinal >4. Then the following two conditions are equivalent

(i) F is an a-complete ultrafilter and @ ¢ F.
(ii) For every partition P of X with [P|<a we have [FnP|= 1.
For any cardinal a we denote by u(e) the least cardinal such that there exists
" a nonprincipal o*-complete ultrafilter of subsets of u(ex). We recall that u(n) = @
for 2<n<w, u(x) is a measurable cardinal and

1.2. Every a’-complete ultrafilter of subsets of pu(e) is p(x)-complete.

In fact p(e) has many other “closure properties”, see [11]. Even the existence
of 1(w) does not follow from the Zermelo-Fraenkel axioms of set theory, but the
main results of this paper could be easily reformulated so as to avoid the assumptions
of the existence of yt(x) for any infinite «. On the other hand the existence of u(«) for
every cardinal « is already a well established axiom of set theory, see e. g. [24] p. 47, 48
or [29] p. 675.
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