3 B. Tomaszewski

The last set is (n—1)-dimensional as a countable union of compact, (n 1)- dmlen«
sional sets, so-that ¥ is weakly #-dimensional.

I am grateful to Professor R. Engelking for his help and to Mr. M. Zakrzewski,
who was the first reader of this text.
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Equivariant maps of Z,-actions into polyhedra
by

Richard J. Allen (Northfield, Minn.)

Abstract. Let X be an n-dimensional compact metric space with a free Zp-action. This paper
shows that for any positive number ¢ there exists an equivariant e-map from X into an n-dimensional
polyhedron K with a free Z,-action. Moreover, K can be equivariantly embedded in (2n+1)-dimen~
sional euclidean space E with an orthogonal Zp-action and there exists an equivariant e-map arbi-
trarily close to a given equivariant map from X into E.

1. Introduction. Let X be an n-dimensional compact metric space with a map
a: X— X of period p. The map a then defines a Z,-action on X and (X, 4) will denote
the equivariant space (X, Z,). Frequently, (X, ) is called a Z,-space. An equi-
variant map f: (X, &)—(Y, b) between two Z,-spaces is an equivariant e-map if
diamf ~ly<e for every yefX.

In the following, if (Y, b) is a Z,-space, then y*

= {y, by, ..., b* "'y} is called

=
the orbit of Y, and S* = U bIS is called the orbit of S, where y is an element in Y,
i=

and S'is a subset of Y. A subset S of Yis called sectional if S n y* = {y} foreach y
in S, and any one-to-one function y: (¥/Z,)—Y is called a section.

If the action on X is free, then an immediate consequence of (2.3) below is
that for any positive number ¢ there exists an equivariant e-map from X into an
n-dimensional polyhedron K with a free Z,-action. Moreover, by (3.1) below K can
be equivariantly embedded in (2n+1)- dlmensmnal euclidean space R*'*' with
an orthogonal Z,-action. Finally, it is shown in (3.3) that there exists an equivariant
£-map arbmarlly close to a given equivariant map from X into R*'*!.

A set Cis called a convex body in a euclidean space if C is closed, convex and
has a nonempty interior.

2. Replacement by polyhedra. (2.1), which is stated here and is used in
proving (2.3) below, can be found in Jaworowski [7, p. 235].

CovERING LemMMA (2.1). Let (X, a) be a compact metric Z,-space and let A be
an equivariant closed subspace of X such that Z,, acrs freely outside of A. Suppose C
is an equivariant open cover of X—A. Then there exists a countable, locally finite,
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equivariant, open cover B of X— A which is « refinement of C and which satisfies the
Jollowing:

@i lim (diamSt¥V) =0 for Ve B;
av, )0

(i) If Ve B, the ClVc X—A4;

(iii) every neighborhood of A in X contains all but a finite number of elements
of B;

(iv) for every V € B, the sets StgV, a(StzV), ..., "~ Y(Sty V) are mutually disjoint;

) if dim(X—4)<n, the Ord Bp(n+1)—1;

(vi) if & is a given positive number, then B can be chosen such that mesh B<e.

Observe that as a corollary to conditions (i), (i), and (iii) above one obtains
the following lemma.

(2.2) Lemma. If B is a covering construcred in Lemma (2.1), then, for every x € 4
and for every neighborhood U of x in X, there exists a neighborhood W of x in X such
that if Ve B and VW # & then V= U. N

POLYHEDRAL REPLACEMENT LemMA (2.3). Let (X, a) be a compact metric
Z-space and let A be an equivariant, closed subspace such that Z, acts Jreely
outside A. For a given positive number ¢, there exists a compact Hausdorff Z,-space
(Z,c) such thar:

(i) Z contains 4 as an equivariant, closed subspace and c|, = alq;

(ii) there exists a countable, locally finite, simplicial complex K and simplicial
map b: K->K of period p with |K| = Z— A and with ¢|g: |K|~|K| a free simplicial
map of period p;

(iti) an equivariant e-map f: (X, )—(Z, ¢) such that {14 = 14, f(X—A)<=[K],
and f~HSt(V)| Ve K} forms a locally finite, equivariant, open cover of X—A of
mesh less than ¢; and

(iv) if dim(X—4)<n, then dimK<n.

Remark. Lemma (2.3) is a _1nodiﬁcation of Lemma 4.7 in [7, p. 237].

Proof. By a remark in [7], one can assume that ais isometric. Let B be an
equivariant, locally finite, countable open cover of X—A satisfying the conditions
of the Covering Lemma (2.1). Let K; = N(B) be the nerve of B and let Z, be the
disjoint set sum of 4-and |K;|. Then K, is a countable, locally finite simplicial
complex. Given a member ¥ of B, also denote by ¥ the vertex of K; corresponding
to ¥. Whenever it is necessary to make the distinction, Stg,(¥) will denote the open
star of the vertex ¥ in the simplicial complex K, while Stz(¥) will denote the union
of the members of B intersecting V.

For a subset S of X, let S denote the union of 4 N S and of the open stars of
the vertices of K; corresponding to the members of B which are contained in S;

ie, 8= (4dnS)u(UIStg ("] V=SI). The space Z, is topologized by means ‘

of the subbasis consisting of all the open subsets of |K;| and all the sets of the form U,
where U is an open subset of X.
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Before proceeding with the rest of the proof, the following lemma is established:

(2.4) LeMMA. For every x in A and every neighborhood U of x in X, there is
a neighborhood Oy of x in Z, such that, if y € Oy " (Z—A) and {5 is an open simplex
of | K| containing y, then all the vertices of {s) (considered as members of the cover B)
are contained in U.

Proof. Given a neighborhood U, choose a neighborhood W of x according to
Lemma (2.2). Let Oy = W. Then, if y& Oy n (Z—4) and {s) is the carrier of y
in |K;,], some vertex ¥ of {s) is contained in W; and all the other vertices are con-
tained in U since they meet V< W.

Continuation of the proof of (2.3). The fact that Z; is Hausdorff follows
readily from Lemma (2.4). In [7] an explicit proof is given to show that Z, is compact.
Since the cover B is equivariant, it follows that a: X— X of period p defines a simpli-
cial map b, of period p on K. In fact, if (V;,, ..., ¥;,) denotes the simplex in K, with
vertices V3, e Vi then b,(Vi, .o, Vi) = (@Vy, o aVy).

Défine c: |K,|—|K;| as follows. For each ¥, e K, denote by py, the element
in |K;| where A
for -i#7j,

0
priVy) 11 for i=j.

Note that the set of py’s in |K;| corresponds to the set of vertices of K;. Define
¢yt 1K =K. by, for pelKyl, ¢ip = Y, p(V)Pay,. It is an easy verification to
Viek}
show that ¢ is well-defined and a simplicial map of period p. The fact that ¢} is free
follows from condition (iv) of the Covering Lemma. .

Define ¢,: Z,—~Z; by a on 4 and by ¢} on |K;|. The continuity of ¢, follows
from the fact that B is equivariant and it is clear that (¢;)” = 1. Thus conditions (i)
and (ii) hold for Z; and ¢.

Define fi: X—A—|K,| by the canonical map of X—A into the space [K1| of
the nerve N(B) = K (see Borsuk [2], p. 76): i.e., for each xe X—4,

, d(x, X—V7)
fix =Px€ [Ky|  where p (V) = 3 d(x, X— €
VieB

for every V; e K?. Now B being an equivariant cover and « being isometric imply
that for every Ve K}

% dlax, X—V}) d(x, X—alV?) @
” ) = - = = pfaV;
PalV) = S Xy S ds x—vy P
VieB VieB
= ( z 17):(Vk)paVk)(Vi) = Clpx(Vi);
Viee kY

Lo, flax = py = ¢ p, = ¢\ f}x for every x € X— A. Therefore, f{a = ¢} f{ and f1 is
equivariant,
Finally, let f: (X, @)=(Z,, ¢;) be defined as fi|x—4 = f1 and fil, = 1,. fi is
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equivariant since f{ is. The continuity of f, follows easily from the definition of
the topology, just as in [4]. In fact, it suffices to show that f; is continuous at points
of A. Let a, be in 4 and let U be an element of the subbasis of Z, containing
fi(ap). Then U is a neighborhood of a, in X. By Lemma (2.2) there exists
a neighborhood W of g, in X which is contained in U such that, if Vis in B and
VnWs# @, then VeU. )

It is claimed that fy(W)cU. Let x be in W n 4; then
A =xeWnAdcUnAd=U=An V) (UIStk,(V)| VeB and veU)).

Secondly, let x be in W r (X—4). Suppose x is in ¥; and V; is a member of B.
Then, in particular, f;x = fx is in an open simplex having ¥, as a vertex. Hence,
fux is in Stg,(Vy). Furthermore, ¥; n W # &, and so Vy=U. All of this implies
that f,x is in U. As a result, it is true that f;(W)c U, as was claimed.

From this point on in the proof, assume that the mesh of B is less than & (see
condition (vi) of the Covering Lemma). To prove that f; is an ¢-map, it remains to
show that fy is an g¢-map on X—A. If s = (V,, ..., V) is a simplex in K, then
{8y = {(Vi,, .., V3)) denotes the open simplex in |K| corresponding to s. Let
pelkyl. Suppose pelsy = {(Vi, ..., V), the unique open simplex in 14
containing p. Let x € X be such that f{ x = p, = p. By the definition of f7 and by
the definition of what it means to be an element in |Kj|, it follows that p.(V;)>0
and x e ¥, for j = 1, ..., 7. Therefore, in particular, (f1) " p=V;, where diamV; <.
Hence, diam( f7)~'p<e, and therefore fi: (X—4, @)—(|Ky|, ¢1) is an e-map. This

" implies that f; is an ¢-map since fil4 = 1,4-

Furthermore, suppose V; € KY. StV;, the open star of the vertex ¥;, denotes the
union of all open simplexes in |K;| with vertex ¥;. Let O = StV;. x efy * 0 implies
that f; x is in an open simplex having ¥; as a vertex. This implies that f, x is positive
on ¥; and so, by the definition of £, , x € V;. Therefore, f; * O = V; and diam f7 ' O <e.
The fact that f71{St¥| ¥;e K}} forms a locaily finite, equivariant, open cover of
X— A follows from the observations that {StV; ¥,e K} is a locally finite, equi-
variant open cover of |K;|, that f; is continuous, and that f; is equivariant. Hence,
1 satisfies condition (iii).

At this point, it should be noted that f;, Z, , K; and ¢, satisfy all of the conditions
of the lemma except (iv). The remainder of the proof will be devoted to proving that
condition (iv) holds. The heart of this work will lie in modifying the map f;.

Henceforth in this proof assume dim (X — A) <7. By condition (v) of the Covering
Lemma, it follows that Ord B<p(n+1)—1, and this implies that dim(X)
<pn+1)—1. Let dim(K,) = d. If d<n, then let fy = f, Z; = Z, K; = K, and
‘¢4 = ¢. Thus, condition (iv) is satisfied. In this case, the proof of (2.3) is completed.
If d>n, certain technical lemmas need to be established. In order to state and
prove these lemmas which follow, the following notation will be used. Let a(s)
denote the simplicial complex consisting of all the faces of the simplex s; let |3(s)|
denote the space of this complex; and let 1(8(5))"1 denote the space of the jth
skeleton of d(s).

icm
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(2.5) Lemma. Let N>n and {s) = {(Vy, .., Vy+1)> be an open simplex in

“|KY| of dimension N. Suppose h: X—A—|K{| is an equivariant map. Then there exists

an equivariant map
et XAl ~( U ¢5)
such that: )
(1) h = hy on (X—A)—h_l(zL:):c'i );

2) hyh~ ) <@ ) Y for each k = 0,1, ..., p—1;

(3) BN Sty V) ch™ (i Sty V;) for each i =1,...,N+1 and for each
k'=0,..,p—1

Proof. Let s = (Vy,, .., Vig.) be a simplex in K¥ of dimension & and denote
by (8> = {(Vi,, > Viy.o)y the open simplex in IK¥| corresponding to s. Similarly,
Is| = |(Viy» --es Vigeo)| denotes the closed simplex in 1KY corresponding tos. Suppose
(S h(X—4) # @. Let g =g(s) be the barycenter of the simplex i; ie.,
g: K%—10, 1] where

m, if ¥, is a vertex of s,
q(Vy) =

0, if V; is not a vertex of s.

Clearly, ge {(s>. If g¢h(X—A4), then define A, : (X—A)—rleJ by by, =h If
g € h(X—A), then using the results on stable and unstable values in Hurewicz and
Wallman ([6], Theorem VI 1, p. 75; Proposition B, p. 78), there exists

hy: (X—A)—|K7|

such that

1) hx = hyx, if hx ¢<s);

(2) hyxelsd, if hxeds; and

(3) g¢h(X—4).

Define 7,: X—A—[KJ|—(s) by h, =h on (X—A)—h"'(s) and by ryohy
on k™ %s|, where r, is the radial projection from the barycenter of g of |s| onto the
boundary of |s|. Then define :

p—1
byt (X—A)—>1Ki“l—(k900§ ()

r—1 . .
by t, on (X——A)—h'i(kk_)oc’{(s)) and by ¢lz,a"7 on A7 efls] forj =1, ..,p—1.

By straightforward verification, /; is well-defined, continuous, and equivariant.

Tt is clear from the definitions of 7, and r, that (1) and (2} in the conclusion of
Lemma (2.5) are satisfied. So it remains to verify (3). Tn fact, it suffices to prove (3)
for the case of k = 0. Let x be in by *(Stg,v-1V3). Then hx = p is in Stgw-:V;.
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Case 1. hx = hyx = p. This implies that xisin Stg~-1V;<=SteyV; and, hence,
it follows that x is in A~ *(Stgn V).

Case 2. hx # hyx = p. Then, using the definition of /,, there exists a point p’
in <s> such that Ax = p’. Hence, hx is in StxxV; and, so, x is in A7 (St V7).
Therefore, in either case, it is true that i) *(Sty,n-1V) <h™{(StgwV); and, since h
and h, are both equivariant, (3) is true. This completes the proof of Lemma (2.5).

Remark. Both Lemma (2.5) above and Lemma (2.6) which follows are steps
in the proof of Lemma (2.3). In words, Lemma (2.5) says that an equivariant map &
from a space of dimension 7 into a simplicial complex of higher dimension can be
appropriately modified so that the image of & misses the orbit of any open simplex
of dimension greater than z. In addition, Lemma (2.6) will show that any equivariant
map from a space of dimension 7 into a simplicial complex of higher dimension can
be appropriately modified so that the i image misses all open simplexes of a given
dimension greater than .

Recall that f; on X— A4 is the canonical map of X — A iito the space | K| of the
nerve N(B) = K,, where B is an equivariant open cover of X—4.

(2.6) LEMMA. Let 1<i<d—n+1. Suppose g;: X—A—|K{™"| is an equivariant
e-map satisfying the following properties: .

(6)) gi_l{StKi-M(V)l Ve K?} is a locally finite, equivariant, open cover of X—4
of mesh less than &;

@) gfT )< 0()* Y| for each open simplex (sy in |K|; and

(3) g7 MSta- V) fT St V-

Then there exists an equivariant &-map

Giv1: X—A—|K{™
such that

€3] g,“LSth (V)| Vek?} is a locally ﬁmte equivariant, open cover of X—
of mesh less than ¢;

@) gi+4( f1'1<.s'>)c](a(s))d”i for each open simplex (s in |K,|; and
(3 g:+1(StK -V)cft (StKlV)

Proof. Let O = {So, 815 s Spmq} be an orbit decomposition of the open
simplexes in |K{ **Y| of dimension d—i+1>n. Suppose

Sy = {Ci1<sj>}§°=1 H
p—1 .
B; =kpogi_11"; Isit, J=1,2,..;

and

o p—-1
By = (X—A)— U(Ugi'cidsp).
. Jj=1 k=0

icm
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Let C = {B,;}{%,. It is clear that Cis a closed cover of X— 4. Secondly, it is claimed
that C is a neighborhood-finite cover (i.e., each x in X — 4 has a neighborhood U such
that B, n U # @& for at most finitely many indices j).

Let x be in X—A and let U be any neighborhood of x. Suppose U intersects
non-trivially an infinite number of distinct B;’s, say B;,, Bj,, ... Then g,(U) intersects
non-trivially ¢% J1]sy,l, cihls Si,l5 ..., and all of these closed simplexes are distinct. Fur-
thermore, since K imi 1s locally finite, any given vertex appears in at most a finite
number of the c% 1850 c2|s,|, ... This implies that g,(U) intersects non-trivially the
stars of an infinite number of distinct vertices, say, ¥;,, Vy,, ... Hence, U intersects
non-trivially g; I(Stkd V), g; 1(Sth +17,), ... Therefore, any neighborhood of x
intersects non-trivially an infinite number of elements of g; {St,;i +1(V)| Ve K? 1
and this contradicts the local finite property of this cover. So, C is a neighborhood-
finite cover.

Define g;4,: X—A—|K:Y by

@ gi+1 =g: on By,

(i) g;+1 = B, on B; (where /i, satisfies Lemma 2.5).

By definition, g;.., is equivariant, and, by Theorem (9.4) found in [5], g;+; i8
well-defined and continuous (this theorem concerns the plecewxse definition of a map
on a closed, neighborhood-finite cover).

Let ¥ e Ky and consider 0’ = g;34(0) = gi7'1(Stga-+¥). If Stga-1¥ = StKi-mV,
then g; *(Stga-1¥)< B, and g7 1(0) = gi4(0) = 0. Consequently, O'<B, and

0" = g70) = g7 (Stxe-iV) = g7 "(Stig-n¥)

has diameter less then & by (1) of the hypotheses. Secondly, if Stga-1V # Stga-ie1V;
let Stxi-MV: (StKi—tV) U {8;) U ..U {5, where the {s;»’s are all the open
simplexes of dimension d—i+1 having ¥ as a vertex. Then, by the definition of
Ji+1s X

gi1Stga-Vc U By (Stga-¥) < U g7 ! (Stga-i+1V) = g7 '(Stga-1+17),,

where the second inclusion is true by (3) of Lemma (2.5). Consequently, using
assumption (1) in the statement of Lemma (2.6), it is true in this case that O’ has
diameter less than . Hence, gIH{Stkd () Ve Kf} has mesh less than e.

Let (s> be an open simplex in |K;|. If the dimension of (s} is less than d—i-+1,
then g{fi 1sD)c8(s)* 1] = |8(s)*~'| and, comsequently, fy *(s><B, which
implies that g ,(f1 <)) = g FiT ) e|a(s)? Y. If, on the other hand, the
dimension of (s} equals d—i+1, then

[ egr g N ) g E@) T =9 i(a(S))d"_il v gi s>
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which is contained in one of the B;’s, say B;,. Then

Gua1(F7HD) = B(AT KN hlgrM1(09)' 7 L g7 HKsD)
<h(gi M1(0@)1 ) © k(g <)
<1(@@) 1 v 1@< = 16T,

where the last inclusion follows by (2) in the conclusion of Lemma (2.5). Hence, the
proof of (2) of the conclusion of (2.6) is finished.
If Stga-1V = Stga-1+:17, then gi'iStK«lz—chBo and, so,

grvsStgz-1V = g Sty Ve fT StV

where the last inclusion follows from (3) of the hypothesis of the lemma. Secondly,
if St,._-rlf-iV # Stga-is1l, then StKrll-iHV = (StK;l—tV) U (81> UL sy, where the
{sp>’s are all the open simplexes of dimension d—i+1 having V7 as a vertex. Then,
by the definition of gii%,

t t )
(Ste-V)e U by (Stea=V) e U g7 (Steamt1V) = g7 Stya-en V) =fy Sty V),
=1 I=1

where the last inclusion follows from (3) of the hypothesis of the lemma. This com-
pletes the proof of Lemma (2.6).

Using the preceding lemma the proof of (2.3) will be completed. Note that
fi = gy: X—A—|K]| satisfies the conditions of Lemma (2.6) for i = 1. Define
' = gip+1: X—A-|K]| where the existence of g, ; is guaranteed by Lemma (2.6)
and satisfies the conclusions of Lemma (2.6), for i = d—n.

Let K= K}, b = by|g, Z = A U |K| with the subspace topology, ¢ = ¢4|z.
The fact that Z is a closed subspace of a compact Hausdorff space imiplies that Z
itself is a compact Hausdorff space. Furthermore, let f be defined by the identity on
A and by f* on X—A. It remains to see that f so defined is continuous.

As for the case of f;, it suffices to show that f is continuous at points of 4.
Let a, be in 4 and let O be an element of the subbasis of Z containing £ (a,). Then
0 = U n Z, where U is an element of the subbasis of Z;. In fact, for any subbas1s
element O in Z,

0=UnZ=[dnU)u(UIStg,(")| VeB and V<UD~ (4 U [K}|)
=Un U u[(UIStg,(M)] VeB and V<UD N |KY|]
=MAnD)v (U [Stg (V)| VeB and V<U])
=AdnU)u(UISt(¥)] VeB and V=U]).
Then d, is in U and, consequently, U is a neighborhood of g, in X. By Lemma (2.2)

there exists a neighborhood W of a, in X which is contained in U such that if V is
in Band V' W # @, then V< U.
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It is claimed that f(W)c0 = U n Z. Let x be in Wn 4; then
f(xX)=xeWnAdcUn A<O.

Secondly, let x be in W n (X—A4). Suppose x is in the elements ¥, ..., ¥, of B and
in no other. Then fy x is in the open simplex {s} = {(Vy, ..., ¥,)>. By Lemma (2.6)

fr=fx=g4pexisin|@))Ic UStgV,. Foreach i=1,...,r, Vin W +# &,
=1

r
and so ¥, U. This implies, in particular, that |J St ¥; is contained in 0. Hence,
i=1
fx isin O and, therefore, it is true that f(W)=0O, as was claimed.
The fact that f’ is an equivariant e-map, and hence also f, follows from

Lemma (2.6). Similarly, it follows from Lemma (2.6) that
UNTHSt] Ve K} =f~H{Stx(V)| VeK}

is a locally finite, equivariant, open cover of X—A of mesh<e. This completes the
proof of Lemma (2.3).

Remarks.

(1) The equivariant e-map fi|x-.: X—A—|K;| is called the canonical equi-
variant e-map of the equivariant space (X—A, ax.. ,) into the equivariant polyhedron
(1K1, e1ljk,))> where |K;| and c, are generated by the nerve of a locally finite,
equivariant cover of (X—A4, aly_,).

(2) The equivariant e-map f |x_ 4: X—A—|K] is called the (canonically) modified
canonical equivariant g-map of the equivariant space (X—4, aly_ ) into the equi-
variant polyhedron (|K], c|jg) Where |K| and ¢ are generated from the nerve of
a locally finite equivariant open cover of (X—A4, dlx— 4)-

(3) As mentioned in [7] it is easily seen that Z is metrizable. In fact, this is also

. an immediate consequence of the Representation Embedding Lemma of Section 3

below.

(4) Some of the ideas in this and the previous section date back to the classical
constructions of Kuratowski [9] and Dugundji {4].

3. Embedding lemmas.

POLYHEDRAL REPLACEMENT EMBEDDING LEMMA (3.1). Let K be a couniable,
locally finite, n-dimensional, szmphcml complex where b: |K|—|K| is a free, simplicial
map of period p and K° = ({v;}{24) *. Suppose y: RV L RNTE N>, is an isometric,
linear map of period p and (C ve = 7l¢) is an equivariant subspace of (RN ),
where C is a convex body in R"**. Let Q = {q,, qs, ...} be a countable set of points
in C and let ¢, &,, ... be a sequence of positive numbers. If T is the fixed point set
of v¢ (vc is free outside T and dim(Lo(T)) = k=n, then there exists an equivariant
embedding h: (K|, b)—>(C~T, yc) such that d(hv;, q;)<e;.

Proof. Let y: Q->C be a function that satisfies Lemma (3.5) found in [1].
Let (JO)* = (g, = r;} *. Define h: K°—C by hblv; = wr, j=0,1,.,p—1

2 — Fundamenta Mathematicae T. CIII


Artur


18 R.J. Allen

Extend h linearly to all the simplexes of K. It is clear that A is continuous since it is
defined by continuous operations. Moreover,

d(hvy, q) = d(r;, 0g) = dg;, ¢4 <e; .

Tt remains to show that 4 is one-to-one on | K|, and that (h(|K[), y¢) is an equivariant
polyhedron in (C—T, y¢).

Let s = (vg, ..., ;) be a simplex in K. Note that {v,, ..., v,} is sectional and
dim(s) = t<n. Then {hvg, ..., o }=(PQ) * is a linearly independent, sectional
subset of C since (YQ)* is in equivariant general position (see [l]). Hence,
{hvg, ..., hv,} spans a simplex of dimension ¢ in C. Since A is defined by a linear
extension on Ay, ..., kv, i is one-to-one on each simplex of K. Now, suppose
that x and y are two points of |K| not lying in a single simplex of K. If s
and 7 are simplexes of K containing x and y, respectively, then the union U of their
vertices contains at most 2n+2 vertices and U is sectional (since b is free). Since
2m+2 = (n+1)+n+1<N+k+1 and U is sectional, then h(U) is in general pos-
ition in C and is sectional. Tt follows that A(U) spans a simplex » in C of dimension
equal to dims+dimz+1. Then, /(x) and h(y) lie on the faces A(s) and 1 (?) of u and
neither lies on the face A(s) N A(f). Therefore, h(x) # h(y) and h is one-to-one
on all of |K].

Clearly, h(|K]) is a polyhedron in C with vertices in (Y Q)* = {r}* since
Fos s yp in {r;} * are vertices of a simplex in k(|K]) if and only if A~ Yos ey B 4y;

. are vertices of a simplex in K. Furthermore, suppose y is in (vg, ..., Uy), the open
simplex in |K| spanned by uvp,..,v; in K°; ie., y = agvo+..+av, where
dg+..+a, =1 and a;20 for j =0, ...,/ Then

hbx = h(agbvg+...+abvp)
= ay(hbvg)+ ...+ ahbvy) = ag(ychbe) +...+aychv;)
Yoo+ o+ ashv}) = ychlagvg+ ... +dvy) = ychx .

Thus, & is equivariant and (1K), y¢) is an equivariant polyhedron in C.

To complete the proof, it suffices to show that 2(|K|) n T = @. If there exists x
in h(K]) such that yox = x and if s is the unique open simplex in h(|K]) con-
taining x, then y(s) n T % @ which implies that A(JK D® = (WQ)* is not in
equivariant T-position (see [1]). This is a contradiction to the manner in which
(Y Q) * was chosen. Therefore, 4#(]K|)cC—T, and the lemma is proved.

The following notation pertains to (3.2) below. Let (X, a) be a compact metric
Z,-space of dimension <n, where Z, acts freely outside of a closed equivariant
subspace A. Suppose y: R¥Y* RV N>, is an isometric linear map of period p and
suppose (C, y¢ = 7l¢) is an equivariant subspace of (R"*¥, y), where C is a convex
body in RV**. Furthermore, let 7. be free outside T, the fixed point set of y¢, and
let dim(L¢( T)) = kzn.

If wi: A—T is a fixed embedding and g: (X, a)=(C, y¢) is an eqmvanant map

such that g|, = w, then, corresponding to a given positive number #, the uniform
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continuity of g implies that there exists a positive number & such that, if d(x, x) <9,
then d(gx, gx')<Ly. In addition, corresponding to &, let (X, b), (Z = |K| v 4, ©),
and f: (X, @)—(Z, ¢) be as in (2.3).
Finally, denote by K° = ({»;}i2,)* and by B* = {V;}* the Iocally finite,
equivariant, open cover of X—A, where K is generated by the nerve of B.
POLYHEDRAL REPRESENTATION EMBEDDING LEMMA (3.2). There
h: (Z, 0)=(C,y¢) such that:

(i) h is an equivariant embedding;

exists

@) hly = w;

(iii) hlz_4 is a simplicial homeomorphism; and

(i) d(y’h(v), g(f 1 (StbIv)))<dn, for each j =0, ...,p—1.
Proof. Define D = {V;e B| d(V;, A)<15} and let D' = B—D.
For each V;e D', choose x;€ V;. Then choose

p;e(C=T)n B(Q(xi)’ Ei) s

where &; = 15 and where B(g (x,), &;) is the open ball of radius ¢; in C around g (x;).
Similarly, :

pl =9p,e(C=T) N B(y'g(x),e) foreachj=0,..,p—1.

For each ¥, e D there exists a; € 4 such that d(V;, A) = d(V;, 4) =
and there exists x; € ¥; such that d(x;, ¢;)<d. Choose

i

d(vu ai):

pie(C—T)n B(W(fli): 5:‘) s

where ¢; = min{3d(V;, a;), £n}. Similarly,

P'ii= )’jPiE‘(C—T)ﬂB(?jW(ai); ai) p=1

By the Equivariant General Position Lemma (3.5) [1], there exists a countable,
equivariant set {g;] i = 1,2, ..}* in C with the property that d(pi,y q,)<s for
each j = 0, ..., p—1. Furthermore, the following inequalities hold:

(1) For Vie D', d(g(x),q)<d(g(x),p)+d(pis g <eite, = n+in = 41.

(2) For V;eD, d(gix), qi)éd(g(xi)a W(a.‘))+d(”"(”i)api)+d(l7i= g)<in+
+50+5n = In.

Finally, define /: (Z, ¢)—(C, y¢) as follows:

(3) Ay = w.

(4) For each j=0,..,p—1, let h(b'v;) = y'h(g;) for the vertices v, e K°.
Then extend £ linearly from K° to all of |K| = Z—A4.

By definition / is equivariant, k|, = w, and A5_ 4 is simplicial. (1) and (2) above
imply that condition (iv) of the lemma is satisfied. On A, /i is clearly one-to-one.
Lemma (3.1) tells us that on [K| / is an embedding into the complement of the fixed
point set of y. To prove the lemma one need only show that h is continuous.

%

for each j =0, ...
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Since | K| is open in Z and k| g is linear, it follows that 4 is continuous at each
point in Z—A. So it remains to show that / is continuous at each point a in 4.
Let ac 4 and let B, = B(w(a), r)=C, r>0. One wants a neighborhood N of ain Z
such that #(N)cBy.

Given r there exists a positive number M such that, if d(x, y)<M,, then
d(gx, gy) <i5r. By condition (i) of the Covering Lemma there exists a positive
number M, such that if d(V, A)<M,, then diamStV<min{}d, 1M, 57}
Note that this implies that if d(V, A)<M,, than it is also true that diamV;<
min{1d, L M;, 5r} for every ¥, e B such that V,=StV. Let B, = B(a, M3)c= X,
where

|

My = min{{M,, M,, 351,18},

and define-
Ni= B, = (AnBy)u (U [Stg V] VeB,)).

Note that V< B, 1mphes that d(V,4) < M. By definition N is an open neighborhood
of a in Z.

If pe A N B,, then d(p, a)< M, and it is true that d(hp, ha) = d(wp, wa)<r.
Hence hp € B;.

If pe U [Stg V| Ve B,], then p e StV for some VcB,. Let v; be a vertex
of some open simplex containing p. By the construction of the simplicial complex K
it follows that:

(5) Vin V # @. This implies that

6) d(v;, A< diam(V)+d(V, ) <+5

(7 d(V;, A)<diam (V) +d(V, A)<té+16 = 19,
Hence, it follows that

®) d(q;, p)y<d(V;, a;) = d(V;, A) for every such vertex v;.

Let S = {v;,, ..., v;,,} be the set of vertices of the (unique) open simplex in | K|
containing p. Then one has that d(ip, ha)<r, since, for each v;e S,

d(hv;, ha) = d(q;, wa)<d(q;,
By (6) above it follows that

) d(qi, P <51
V< B, implies that d(V, A)<%dé and hence
10) d(py, way)<d(V, A)<5r.

Furthermore, V=B, implies that d(V, 4)<d(V,a)<M,. Let y,,y, €V be
such that d(y,, ay) = d(V,ay) = d(V,ay) = d(V,4) and d(y,,a) =dV,a)
= d(V,a). Since diamV = diamV<M,, d(y,, a)<M,, and d(y,, <M, it
follows that

I

++5r = F5r. Similarly, it follows that
which implies that V;e D.

py+d(pi, pyv) +d(py, way) +d(way, wa) =

(1) d(way, wa)<d(way, wy)+d(wyy, wy)+d(wy,, wa)<{sr+t5r+tsr

S
T

=~
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By (5) above one has ¥; n V # @. Let ze V; n V. Then it follows that
(12) d(p;, p)<d(p;, wa)+d(wa;, gx;)+d(gx;, 92) +d(gz, gxy) +
+d(gxy, way)+d(way, py) = I where
(13) d(ps, way) <d(V;, )<,
(14) d(a;, x;))<d(a;, Vy)+diam(Vy) <diamV+d(V, A)+diam V; <3M, +
+1M,+3M, = M,, which implies d(ga;, gx;) <757,
(15) x;, ze V; implies d(x;, z)<M;, which gives d(gx;, gz) <=7,
(16) z, xy € V implies®(xy, z) <M, which also gives d(gxy, 92) <<31s
(A7) d(xy, ay)<diam V+d(ay, V)<3M;++M; <M, which implies
d(gxy, gay)<tsr,
~(18) d(way, py)<d(V, ay) = d(V, A)<isr.
(13)~(17) imply ‘
(19) I<i%r.
©), (10), (11), and (12) then imply that
20) d(hvy, ha) =

In concluding from (20) that d(hp, ha)<r, one uses the fact that hp is in the
simplex spanned by the vertices g;,, ..., ¢;, and that each vertex is less than r distance
from /(a). Therefore, h(N)<.B, and’ the proof is completed.

Note that the map f: (X, a)—(Z,c) used in Lemma (3.2) above was an
equivariant §-map. Consequently, given an £>0, § could have been chosen less
than ¢ from the beginning. This implies the following result.

d(g;, wa)<J<Fsr+isr+isr+sr =Hr=r.

LemMa (3.3). Ler X be an n-dimensional compact metric space with a free
Z,-action. Suppose y: RY*ELSRY*E N>, is an isometric, linear map of period p with
ﬁxed point set T (y is free outside D and dim(T) = k=n. Let ¢ be a positive number
and g an equivariant map from X info RN*E. Then there exists an e-map arbitrarily
close to g.
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Equivariant embeddings of Z-actions
in euclidean space

by

Richard J. Allen (Northfield, Minn.)

Abstract. This paper shows that a finite dimensional compact metric space on which Z acts
freely ocutside the fixed point set equivariantly embeds in a euclidean space with an orthogonal
Zp-action. Moreover, a minimum dimension for the euclidean space is obtained.

1. Introduction. Mostow [6] first showed that every action of a compact Lie
group with a finite number of non-conjugate isotropy subgroups on a finite dimen-
sional, separable, metrizable space can be equivariantly embedded in a linear action
of the group on some euclidean space. In the case that the group is Z,,, the embedding
has a particularly simple form, which is all that is required for the purposes of this
paper. First, embed X in R?**1 via i, and, then, embed X equivariantly in Rnrur
via ex = (ix, iax, ..., iaP~1x), where a € Z, and where G(31y ey Xp) = (X5 00y Xps x,)
generates an orthogonal Z,-action on R+ 1P However, Mostow’s theorem said
nothing as to the required dimensions of the euclidean space. Copeland and de
Groot [2] went on to show that every action of a cyclic group of prime order on an
u-dimensional, separable, metrizable space can be equivariantly embedded in
a linear action on R3**2 or R**3. Finally, Kister and Mann [5] extended the result
of Copeland and de Groot to actions of compact Abelian Lie groups with a finite
number of distinct isotropy subgroups. They found a dimension for a euclidean
space appropriate for the embedding which depends only upon the dimension of
the original space, the structure of the Abelian transformation group, and the
number of distinct isotropy subgroups.

In the present work improvements on the result of Copeland and de Groot are
obtained in the case of a compact, finite dimensional metric space with an action
of a cyclic group. In particular, let X be a compact n-dimensional metric space with
a map a: X—X of period p whose fixed point set is F. The map a then defines
P Z,-action on X. In this paper, (X, @) will denote the equivariant space (X, Z,).
Suppose this action is free outside of F and suppose F is embeddable in k-dimensional
euclidean space, R*, via an embedding w. In the case of an involution (i.e., @ = 1y),
let m = max{k,n} and o« R"*!'xR"-R'TI'xR", where o= (o, 1gm) and
ay: R'PPR"™ is defined by o (%) = —x. The following theorem is then proved.
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