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Equivariant embeddings of Z-actions
in euclidean space

by

Richard J. Allen (Northfield, Minn.)

Abstract. This paper shows that a finite dimensional compact metric space on which Z acts
freely ocutside the fixed point set equivariantly embeds in a euclidean space with an orthogonal
Zp-action. Moreover, a minimum dimension for the euclidean space is obtained.

1. Introduction. Mostow [6] first showed that every action of a compact Lie
group with a finite number of non-conjugate isotropy subgroups on a finite dimen-
sional, separable, metrizable space can be equivariantly embedded in a linear action
of the group on some euclidean space. In the case that the group is Z,,, the embedding
has a particularly simple form, which is all that is required for the purposes of this
paper. First, embed X in R?**1 via i, and, then, embed X equivariantly in Rnrur
via ex = (ix, iax, ..., iaP~1x), where a € Z, and where G(31y ey Xp) = (X5 00y Xps x,)
generates an orthogonal Z,-action on R+ 1P However, Mostow’s theorem said
nothing as to the required dimensions of the euclidean space. Copeland and de
Groot [2] went on to show that every action of a cyclic group of prime order on an
u-dimensional, separable, metrizable space can be equivariantly embedded in
a linear action on R3**2 or R**3. Finally, Kister and Mann [5] extended the result
of Copeland and de Groot to actions of compact Abelian Lie groups with a finite
number of distinct isotropy subgroups. They found a dimension for a euclidean
space appropriate for the embedding which depends only upon the dimension of
the original space, the structure of the Abelian transformation group, and the
number of distinct isotropy subgroups.

In the present work improvements on the result of Copeland and de Groot are
obtained in the case of a compact, finite dimensional metric space with an action
of a cyclic group. In particular, let X be a compact n-dimensional metric space with
a map a: X—X of period p whose fixed point set is F. The map a then defines
P Z,-action on X. In this paper, (X, @) will denote the equivariant space (X, Z,).
Suppose this action is free outside of F and suppose F is embeddable in k-dimensional
euclidean space, R*, via an embedding w. In the case of an involution (i.e., @ = 1y),
let m = max{k,n} and o« R"*!'xR"-R'TI'xR", where o= (o, 1gm) and
ay: R'PPR"™ is defined by o (%) = —x. The following theorem is then proved.
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TueoreM (1.1). (X, a) equivariantly embeds in (R"*1*", «) via an embedding which
extends w. Furthermore, the set of such embeddings which coincide with w on F forms
a dense subset of the space of all continuous equivariant maps from (X, a) into
(R*Y*" o) coinciding with w on F.

If the map « has period p>2, the cases of n odd and of n even must be
distingnished. If » is odd (even), let m = max{k,n} (m’ = max{k, n—1}). Define
B, R*—>R? as the rotation about the origin through the angle 2n/p and define
Bi: RISRTY (B R 25 R™?) as By = (B, ..., B2), the 3(n+1)-fold (3(n+2)-
fold) product of f,. Finally, let

B = (B, Lrw): RFIXR"SR"™ L% R™((BY, 1gm): R™Zx R R"™ 2% R™) .

The theorem stated below is proved.

THEOREM (1.2). (X, a) equivariantly embeds in (R""1*™, ) ((R**2*™, B")) via an
embedding which extends w. Furthermore, the set of such embeddings which coincide
with w on F forms da dense subset of the space of all continuous equivariant maps from
(X, a) into (R"*1+™ B) ((R"+2*™, B) coinciding with w on F.

The approach here is similar to the classical proof of Menger-Nobeling—
Hurewicz [3] which shows that one can always embed a separable n-dimensional
space in R*"*!. Essential to the proof is Jaworowski’s idea [4] to replace X—F by
an n-dimensional, locally finite, equivarjant polyhedron, K, without fixed points.
One then equivariantly embeds K in R**1*™ (R"*2+™) in a way compatible with
the embedding of F in R*< R™(R*cR™).

The fact that for period greater than two, the dimension of X being odd or even
plays an added role, is due essentially to the existence of a free orthogonal Z,-action
on a sphere of any dimension, whereas free orthogonal Z,-actions for p>2 exist
only on odd-dimensional spheres.

2. Equivariant spaces and equivariant maps. Frequently, (X, d) is called
a Z,~space. An equivariant map f% (X, @)~ (Y, b) between two Z,-spaces is an equi-
variant g-map if diam [~y <& for every y e fX. If (X, a) is a compact metric Z,-space
and (Y, b) is a separable metric Z,-space, then (¥, b))% is the subspace of the metric
space Y* (with metric defined by da(f,g) = sup d( fx, gx)) consisting of all equi-

variant maps from (X, a) to (¥, b). In fact, smce (¥, 5)® is closed in Y%, then
(7, 5% is complete.

In the following, if (Y, b) is a Z,-space, then y* = {y, by, ..., b~ 1y} is called
p—1

" the orbit of y, and S* = |J b’S is called the orbit of S, where y is an element in Y,
j=0
and S is a subset of Y. A subset S of ¥ is called sectional if S n p* = {y} for each y
in S, and any one-to-one function y: (¥/Z,)—Y is called a section.
-(2.1), which is stated here and is used in proving (2.2) below, can be found in
Jaworowski [4, p. 235].
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COVERING LEMMA (2.1). Let (X, d) be a compact metric Z,-space and let A be
an equivariant closed subspace of X such that Z, acts freely outside of A. Suppose C'is
an equivariant open cover of X—A. Then there exists a countable, locally finite, equi-
variant, open cover B of X—A which is a refinement of C and which satisfies the
Jollowing:

@) lm (diamStV) =0 for VeB;

d(V,A)=0

(i) If Ve B, the ClVcX—4;

(iii) Every neighborhood of A in X contains all but a finite number of elements
of B;

(iv) For every V e B, the sets Sty V, a(Stz V), ..., &~ '(Stg V) are murually disjoint;

) If dim(X—4)<n, the OrdB<p(n+1)—1;

(Concerning the notarion Ord B, compare [1].)

(vi) If & is a given positive number, then B can be chosen such that meshB<e.

POLYHEDRAL REPLACEMENT LEMMA (2.2). Ler (X,a) be a compact metric
Z,-space and let 4 be an equivariant, closed subspace such that Z,, acts freely outside A.
For a given positive number ¢, there exists a compact Hausdor, ﬁ” Z,-space (Z, ¢) such
that:

(i) Z contains A as an equivariant, closed subspace and ¢l = al,;

(i) there exists a countable, locally finite, simplicial complex K and simplicial
map b: K—K of period p with |K| = Z—A and with c| g |K|—|K] a free simplicial
map of period p;

(iii) an equivariant e-map f: (X, a)—(Z, c) such z‘hatflA =14 f[(X—A)<|K],
and f~H{St(V)| Ve K°} forms a locally finite, equivariant, open cover of X—A of
mesh less than &; and

(iv) if dim(X—A)<n, then dimK<n.

Remarks. Lemma (2.2) is a modification of Lemma 4.7 in [4, p. 237]. The
space Z, the polyhedron X, and the equivariant map f are all constructed as in [4].
The fact that f can be shown to be an ¢-map follows from using an equivariant open
cover of mesh less than ¢ in the construction of K. Such a cover is guaranteed by
Lemma (2.1). The result that dim K<n when dim(X—a)<n is obtained essentially
through a finite number of modifications of the map f found in [4]. The modifications
are made by utilizing results on stable and unstable values found in Hurewicz and
Wallman ([3] Theorem VI, 1, p. 75; Proposition B, p. 78). The details of such
modifications are very technical and can be found in [1].

3. Equivariant general position. The main result of this section is the Equivariant
General Position Lemma. Before stating it, several definitions and a preliminary
lemma are needed. Given a set S in RV, L(S) denotes the affine span of S in R".
Let C be a convex body in RY (i.e., C is closed, convex and has a nonempty interior
in RY). If Sisasubset of C, then L¢(S) = L(S) n C and L(S) is the affine span of S
in C. Note that Lpn(S) = L(S) and dim(L(S U T))<dim(Lc(S))+dim(L(T. ) +1.
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DEFINITION (3.1). Let C be a convex set in RY and let S and T be subsets of C.
S is said to be in T-position if L(S) N T = @.

LEMMA (3.2). Let C be a comvex body in' RY and let T be a subset of C with
dim(Lc(T)) = k. Suppose S is a finite set of points in C such that any subset of S con-
taining less than N—k elements is in general position and in T-position. If U is an
open subset of C, then

D) V=U=U{L(S' 0T S'=S; #(SVSKN—k—1} # & and is open in C;
and

(2) For any v in V and any S" <8 with 4 (S")SN—k—1, 8" v {v} is in general
position and in T-position.

Proof. Let $'<S and #(S")<N—k—1. It follows that

djxn(Lc(S’ v D) <dim(Lo(T))+ # (S)<k+N—k—1<N.
Define
P = U{L(S' v T S'<S; #(SHKN—k—1}.
P is closed and nowhere dense in C; hence, C—P is open and dense, which implies
that ¥ = U n (C—P) # @. Furthermore, by construction, any v in V satisfies (2) of
the lemma.

DEFINITION (3.2): Let C be a convex set in RY and let S and T be subsets of C.
For a given positive integer ¢, S is said to be in (¢, T)-position if every subset of S
containing less than (g-+ 1)-elements is in 7-position.

DEFINITION (3.4). Suppose (RN, ) is a Z,-space and (C, y¢ ='7l¢) is an equi-
variant subspace of (R, y) where C is a convex set in R, Let Q and 7" be equivariant
subsets of C and let ¢ be a positive integer.

(D Q is said to be in equivariant gemeral position in C if every sectional sub-
set S of Q is in general position in C.

(i) Q is said to be in equivariant (g, T)-position if every sectional subset of Q
is in (g, T)-position.

(iii) Q is said to be in equivariant (g, T)-general position if Q is in equivariant
general position and in equivariant (g, T')-position,

EQUIVARIANT GENERAL PoSITION LEMMA (3.5). Suppose y: R¥—RY is an
isometric map of period p. and (C,yc = y|c) is an equivariant subspace of (R",y)
where C is a convex body in R. Let Q = {qy, ¢,, ...} be a countable set; let p: Q—C
be a function; and let ¢, , &,, ... be a sequence of positive numbers. If T is an equivariant
closed subset of C and dim(L(T)) = k<N, then there exists a function y: Q—C
satisfying the following:

(L) (pOY* is in equivariant (N—k, T)-general position in C; and

@) d(og:, g <e;.

Proof. Let B(pyg;, &) = {y e C| d(pq;, y)<e;}. Pick yg, to be any point in

B(¢qy, ) 0 (C—T). Then E, = {Yqq, Wy, ..y a1} = {Yq,}* satisfies con-
ditions (1) and (2). . .
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A E. =1 ; Pyl i=1 '}—"—-r ] i=1 }* is
ssume j Ll//qi’ Yan s Y llbqll I > ees] Ll!/qll 3 e0as]
defined and satisfies conditions (1) and (2). Let

P, = U {LS ScE;; #(S)SN: S is sectional} .

1t follows that P, = P} is a closed, nowhere dense set in C. Therefore, C—Pj is an
equivariant, open, dense subset of C. If ¢ is any element in C—Py, then E; U ¢t is
in equivariant general position.

Let

P=UILASuT)| ScEj; #(S)SN—k—1; S is sectional} .

As was the case above for Py, it follows that P = P* is a closed, nowhere dense set
in C. Therefore, C—P* is an equivariant, open, dense subset of C and
(C—P*) A T = @. Furthermore, O = (C—P}) n (C—P™) is an open, dense subset
of C which does not intersect T.

Let D = B(@gj+1,8+1) N (C~T). D is open in C; thus D* is open in C.
And, since y is isometric, D¥* n T = @. Hence, U = O n D* is open and equivariant.

Let y be in D such that y*c U. Define Yg;4; = y and E;,y = E; U y* Ejyy, 5O

constructed, satisfies (1) and (2).

Thus, using induction, a function y that satisfies the conclusion of the lemma can
be constructed.

Lemma (3.5) is used in the next section to equivariantly embed equivariant
polyhedra. )

4. Polyhedral replacement embedding lemma.

LEMMA (4.1). Let K be a countable, locally finite, n-dimensional, simplicial complex
where b: |K|—|K| is a free, simplicial map of period p and K° = ({v;}2)*. Suppose
y: RV RNYE N>n, is an isometric, linear map of period p and (C,yc = ylc) is
an equivariant subspace of (R¥**,y), where C is a convex body in RV**. Let
0 = {q, 4z, ...} be a countable set of points in C and let ¢, &,, ... be a sequence of
positive numbers. If T is the fixed point set of v (yc is free outside T) and
dim(L(T)) = k=n, then there exisis an equivariant embedding h: (K|, b)—>(C~T, y¢)
such that d(hv;, q;)<s;. :

Proof. Let y: O—C be a function that satisfies Lemma (3.5). Let
WOy = {yq; = r}*. Define h: K°~C by v, =y, j=0,1,..,p—1. Ex-
tend & linearly to all the simplexes of K. Tt is clear that / is continuous since it is defined
by continuous operations. Moreover, d(hv;, g;) = d(r;, q;) = d(yg,, g)<eg. The
details which show that / is one-to-one on |K|, and that (2(]K1), y¢) is an equivariant
polyhedron in (C—T, y¢) can be found in [1].

The following notation pertains to (4.2) below. Let (X, ) be a compact metric
Z,-space of dimension <, where Z, acts freely outside of a closed equivariant sub-
space 4. Suppose y: RY*¥—R¥*%, N>n, is an isometric linear map of period p and
suppose (C, y¢ = 7l¢) is an equivariant subspace of (RV*5 ), where C is a convex
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body in RN**. Furthermore, let y¢ be free outside 7, the fixed point set of yc, and
let dim(L(T)) = k=n. :

If w: A—T is a fixed embedding and g: (X, @)~ (C, y¢) is an equivariant map
such that gf, = w, then, corresponding to a given positive number #, the uniform
continuity of g implies that there exists a positive number é such that, if d(x, x') <4,
then d(gx, gx")<%n. In addition, corresponding to 4, let (K, ), (Z = |K| U 4, ¢),
and f: (X, a)—(Z, ¢) be as in (2.2).

Finally, denote by K° = ({v;}{2,)* and by B* = {V;}* the locally finite,
equivariant, open cover of X—A, where K is generated by the nerve of B.

POLYHEDRAL REPRESENTATION EMBEDDING LemMA (4.2). There exists
h: (Z,)—~(C, yc) such that:

@) & is an equivariant embedding ;
(i) hly = w;
(ili) hly_, is a simplicial homeomorphism; and
V) dy’h(v), g(f 2 (Sthv)))<4n, for each j=0,..,p—1.
Proof. Define D = {V;e B| d(V;, A)<46} and let D" = B—D.

For each V;eD’, choose x;€ ¥;. Then choose p,e(C—T) n B(g(x),¢),
where ¢; = 1% and where B(g (x,), ¢;) is the open ball of radius &; in C around g(x,).
Similarly, p{ = y/p, € (C—T) o B(y'g(x)), &;) for each j = 0, ..., p—1.

For each ¥;e D there exists a; € 4 such that d(V;, 4) = d(V;, 4) = d(V,, a),
and there exists x; € V; such that d(x;, @;)<8. Choose p,e (C—T) n B(w(a), &),
where ¢; = min{3d(V;, @), $n}. Similarly, p! = yp, e (C—T) n B(y'wia), &;) for
each j=0,..,p—1.

By the Equivariant General Position Lemma (3.5), there exists a countable,
equivariant set {g;| i = 1,2, ..}* in C with the property that d(y'p,, y'q,) <¢; for
each j = 0, ..., p—1. Furthermore, the following inequalities hold:

(1) For Ve D', d(g(x), q)<d(g(x), p)+d(p;, g) <ei+e; = dn+in = 1.

(2) For V;e D, d(g(x), 4:)<d(g(x;), w(a)+d(w(a), p))+d(p;, ;)

<tN+Enen =i,

Finally, define 4: (Z, ¢)—(C, 7o) as follows: A, = w.

For each j=0,..,p—1, let h(b'v) = y/h(g) for the vertices v;€ K° Then
extend h linearly from K° to all of |K| = Z—4.

By definition, / is equivariant, il ; = w, and k[,_ , is simplicial. (1) and (2) above
imply that condition (iv) of the lemma is satisfied. On 4, /& is clearly one-to-one.
Lemma (4.1) tells us that on |K]| & is an embedding into the complement of the
fixed point set of y. The details which show that /4 is continuous can be found in [1].

5. Function space lemmas. Results relating to some function spaces will be
discussed here. For this discussion, (X, a), (C, y¢), 4, T and w are the same as in
Section 4. Then, one defines
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M= (C, 'yc)(x’a);
M' = {peMlply = w};
M'(e) = {pe M'|@ is an ¢-map};
and
E = {pe M'|lp is an embedding} .

(5.1) M’ is complete.

Since M is complete and M’ is closed in M, statement (5.1 follows.

Note that the map f: (X, a)—(Z, ¢) used in the introduction to (4.2) above
was an equivariant §-map. Consequently, given an >0, 6 could have been chosen
less than ¢ from the beginning. ‘

(5.2) M'(e) # O and, hence, M' # &.

Statement (5.2) is obtained by letting k = & < f, where } satisfies (4.2). Since f is
an equivariant §-map, and hence an g-map from (X, a) to (Z, ¢), then k € M'(g).

Suppose S, is the set of z-maps in C¥ and suppose S, is the set of embeddings
in C*. In [3, pp. 57-59] it is shown that S, is open and dense in C*and that S, = () S;.

By adjusting the proof in [3] using (2.2), one proves the following.
(5.3) For every positive number &, M'(e) is dense in M'.
Furthermore, M'(e) = M’ n S, and this implies that

AME=NMnS)=Mna(S)=MnS,=E.

The next two statements follow from the above observation.

(5.4) For every positive number &, M'(g) is open in M'.

(5.5 he (N M'(e) if and only if h: (X, a)—(C, yc) with hl4 = w is an equivariant
embedding. In particular, [\ M'(¢) = E.

Finally, using (5.5), (5.4), (5.3), and (5.1), the following result is established.
(5.6) E is a dense G5 set in M' and, hence, E # .

6. Proofs of embedding Theorems (1.1) and (1.2). In the case of (1.1), let
F=A4,C=R" xR" T=1{0}xR" and y = o Then (1.1) is a corollary of (5.6).
An immediate important consequence of (1.1) is the following analogue to the classical
result on embeddings found in [3, p. 56].

COROLLARY (6.1). If (X, a) is a compact n-dimensional metric Z,-space with
only one fixed point (or none), then (X, a) equivariantly embeds in (R*"**, a).

In the case of (1.2), let F = 4. If n is odd, let C = R"**x R™, T'= {0} x R",
and y = B; otherwise, let C = R"*2x R™, T= {0} x R, and y = B'. Then (1.2) is
also a corollary of (5.6). Similar to (6.1) for involutions is the following corollary for
periodic maps of period p.
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COROLLARY (6.2). If (X, ) is a compact n-dimensional meiric Z-space with
one fixed point (or none) and with the action free outside the fixed point set, then (X, )
equivariantly embeds in (R*"*1, B) if nn is odd and in (R*"Y By if n is even.
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Some remarks concerning the fundamental dimension
of the cartesian product of two compacta

* by

Stawomir Nowak (Warszawa)

Abstract. It is proved that Fd(Xx Y) = Fd(X)+Fd(Y) if Yisan n-_dimensional continuum
such that H"(Y; G) # O for every G # 0 and if X is a compactum and Fd(X) # 2 or Fd(X) =2
and X is not approximatively 2-connected. :

We will consider the problem of computing the fundamental dimension of X'x ¥,
where X and Y are compacta. From this point of view the notion of an & -continuum
will be very convenient. A continuum X with O # Fd(X) = n<oo belongs to
a class & (in other words X is an & -continuum) iff for every abelian group G # 0
the #n-dimensional Cech cohomology group H"(X; G) of X with coefficients in G is
non-trivial. . .

Using the universal coefficient theorem and the Kiinneth formula for homology
and cohomology ([13] p. 244 and p. 336), one can check that the class & contains
all connected n-dimensional ANR-sets with the non-trivial #-dimensional Cech
homology group H,(X) over the group Z of integer numbers (in particular, all closed
orientable manifolds) and that Xx Ye & for all I', X, Ye #&.

Tt is known ([10] p. 74) that there exists a sequence G, Gy, ... of non-trivial
countable abelian groups such that if X is an n-dimensional compactum with
H'(X;G) =0 for every k=1,2,..., then H"(X;G) =0 for every group G.

This fact together with the theorem which states ([6] p. 137) that for every
countable group G and its character group G* the group H,(X; G*) is the character
group of H"(X; G) and with the Pontriagin duality ({12] p. 259) imply that if Xis
an n-dimensional continuum and H,(X; G) # 0 for every G # 0, then Xe &
(H(X; H) denotes the Cech homology group of X over H).

It is clear that the class & is closed with respect to the one-point union.

Tn [11] it is proved that Fd(X x ¥) = Fd(X)+Fd(Y) for every compactum X
with Fd(X)>3 and every Ye #. ‘

The purpose of this note is to generalize the last theorem and to show that the
assumption that Fd(X)>3 may be replaced by the assumption that Fd(X) # 2 or
Fd(X) = 2 and X is not approximatively 2-connected.
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