

30

COROLLARY (6.2). If (X, a) is a compact n-dimensional metric \mathbb{Z}_p -space with one fixed point (or none) and with the action free outside the fixed point set, then (X, a) equivariantly embeds in $(\mathbb{R}^{2n+1}, \beta)$ if n is odd and in $(\mathbb{R}^{2n+1}, \beta')$ if n is even.

References

- R. J. Allen, Equivariant maps of Z_p-actions into polyhedra, Fund. Math. 103 (1979), pp. 9-22.
- [2] A. H. Copeland, Jr., and J. de Groot, Linearization of homeomorphisms, Math. Ann. 144 (1961), pp. 80-92.
- [3] W. Hurewicz and H. Wallman, Dimension Theory, Princeton Mathematical Series 4, Princeton, 1948.
- [4] J. W. Jaworowski, Equivariant extensions of maps, Pacific J. Math. 45 (1) (1973), pp. 229-244.
- [5] J. M. Kister and L. N. Mann, Equivariant imbeddings of compact Abelian Lie groups of transformations, Math. Ann. 148 (1962), pp. 89-93.
- [6] G. D. Mostow, Equivariant embeddings in euclidean space, Ann. of Math. 65 (2) (1957), pp. 432-446.

DEPARTMENT OF MATHEMATICS, ST. OLAF COLLEGE Northfield, Minnesota

Accepté par la Rédaction le 27. 9. 1976

Some remarks concerning the fundamental dimension of the cartesian product of two compacta

ŀ

Sławomir Nowak (Warszawa)

Abstract. It is proved that $\operatorname{Fd}(X \times Y) = \operatorname{Fd}(X) + \operatorname{Fd}(Y)$ if Y is an n-dimensional continuum such that $H^n(Y;G) \neq 0$ for every $G \neq 0$ and if X is a compactum and $\operatorname{Fd}(X) \neq 2$ or $\operatorname{Fd}(X) = 2$ and X is not approximatively 2-connected.

We will consider the problem of computing the fundamental dimension of $X \times Y$, where X and Y are compacta. From this point of view the notion of an \mathscr{F} -continuum will be very convenient. A continuum X with $0 \neq \operatorname{Fd}(X) = n < \infty$ belongs to a class \mathscr{F} (in other words X is an \mathscr{F} -continuum) iff for every abelian group $G \neq 0$ the n-dimensional Čech cohomology group $H^n(X; G)$ of X with coefficients in G is non-trivial.

Using the universal coefficient theorem and the Künneth formula for homology and cohomology ([13] p. 244 and p. 336), one can check that the class \mathscr{F} contains all connected n-dimensional ANR-sets with the non-trivial n-dimensional Čech homology group $H_n(X)$ over the group Z of integer numbers (in particular, all closed orientable manifolds) and that $X \times Y \in \mathscr{F}$ for all Γ , X, $Y \in \mathscr{F}$.

It is known ([10] p. 74) that there exists a sequence $G_1, G_2, ...$ of non-trivial countable abelian groups such that if X is an n-dimensional compactum with $H^n(X; G_k) = 0$ for every k = 1, 2, ..., then $H^n(X; G) = 0$ for every group G.

This fact together with the theorem which states ([6] p. 137) that for every countable group G and its character group G^* the group $H_n(X; G^*)$ is the character group of $H^n(X; G)$ and with the Pontriagin duality ([12] p. 259) imply that if X is an n-dimensional continuum and $H_n(X; G) \neq 0$ for every $G \neq 0$, then $X \in \mathcal{F}$ ($H_n(X; H)$) denotes the Čech homology group of X over H).

It is clear that the class \mathcal{F} is closed with respect to the one-point union.

In [11] it is proved that $Fd(X \times Y) = Fd(X) + Fd(Y)$ for every compactum X with $Fd(X) \ge 3$ and every $Y \in \mathcal{F}$.

The purpose of this note is to generalize the last theorem and to show that the assumption that $Fd(X) \ge 3$ may be replaced by the assumption that $Fd(X) \ne 2$ or Fd(X) = 2 and X is not approximatively 2-connected.

In the final part of the paper we give an algebraic characterization of all compacta X such that $\operatorname{Fd}(X \times Y) = \operatorname{Fd}(X) + \operatorname{Fd}(Y)$ for every $Y \in \mathscr{F}$.

If $f_1: X_1 \to Y_1$ and $f_2: X_2 \to Y_2$ are continuous functions, then $f_1 \times f_2$ will denote the map from $X_1 \times X_2$ to $Y_1 \times Y_2$ defined by

$$f_1 \times f_2(x_1, x_2) = (f_1(x_1), f_2(x_2))$$
 for every $(x_1, x_2) \in X_1 \times X_2$.

For all CW complexes X, Y and a map $f: (X, x_0) \rightarrow (Y, y_0)(x_0 \in X \text{ and } y_0 \in Y)$ we will denote (respectively) by \widetilde{X} , $X^{(n)}$, f_* and f_*^s ($s \ge 2$) the universal covering space of X, the n-skeleton of X, and the homomorphisms $f_*: \pi_1(X, x_0) \rightarrow \pi_1(Y, y_0)$ and $f_*^s: \pi_s(X, x_0) \rightarrow \pi_s(Y, y_0)$ induced by f.

We assume that the reader is familiar with the theory of shape and knows the notion of procategory (for references see [2] and [8]).

In the last section a knowledge of cohomology groups with local coefficients (see [15] and [13] p. 281) will also be assumed.

The author acknowledges his gratitude to Dr. J. Dydak, who made several valuable remarks concerning the present note.

1. The fundamental dimension. Suppose that W is a finite CW complex and $f: X \rightarrow W$ is a map. We say (see [9]) that $\omega(f) \leq n$ iff there exists a homotopy $\varphi: X \times [0,1] \rightarrow W$ such that

(1.1)
$$\varphi(x,0) = f(x) \quad \text{for every } x \in X$$
 and

$$\varphi(X \times \{1\}) \subset W^{(n)}.$$

If (X, x_0) , (W, w_0) are pointed CW complexes and $f: (X, x_0) \rightarrow (W, w_0)$, then the condition $\omega(f) \leq n$ implies that there exists a homotopy $\varphi: X \times [0, 1] \rightarrow W$ which satisfies (1.1) and (1.2) and fixes x_0 . We can infer this fact from the cellular approximation theorem (see [13] p. 404 and [13] p. 57, Exercise D4).

The following theorem characterizes compacta with the fundamental dimension $\leq n$ (see [9] p. 214 and compare [3] p. 80).

- (1.3) THEOREM. Let a compactum X be the inverse limit of an inverse sequence $\{X_k, p_k^{k+1}\}$ of finite CW complexes and let n be a natural number or 0. Then the following conditions are equivalent:
 - (a) $\operatorname{Fd}(X) \leq n$,
 - (b) for every k there exists a k' such that $\omega(p_k^{k'}) \leq n$.

If (X, x_0) is a pointed compactum and $\operatorname{Fd}(X) \leqslant n$, then Theorem (1.3) implies that we can assume that $(X, x_0) = \varinjlim \{(X_k, x_k), p_k^{k+1}\}$, where (X_k, x_k) is a pointed finite CW complex and $\omega(p_k^{k+1}) \leqslant n$ for every $k = 1, 2, \ldots$ It follows that p_k^{k+1} is homotopic (in the pointed sense) with a map $q_k^{k+1} \colon (X_{k+1}, x_{k+1}) \to (X_k, x_k)$ such that $q_k^{k+1}(X_{k+1}) \subset X_k^{(n)}$. It is clear that $\operatorname{Sh}(X, x_0) = \operatorname{Sh}(Y, y_0)$ and $\dim Y \leqslant n$, where $(Y, y_0) = \varprojlim \{(X_k, x_k), q_k^{k+1}\}$.

Hence, we obtain

(1.4) PROPOSITION. For every pointed compactum (X, x_0) there exists a pointed compactum (Y, y_0) such that $Sh(X, x_0) = Sh(Y, y_0)$ and dim Y = Fd(X).

Remark. Proposition (1.4) was first proved by S. Spież ([14]). Let

$$d(X, Y) = \operatorname{Fd}(X) + \operatorname{Fd}(Y) - \operatorname{Fd}(X \times Y)$$

for every compactum X and every $Y \in \mathcal{F}$.

In [11] the author has proved the following

- (1.5) THEOREM. If $3 \le \text{Fd}(X)$, then d(X, Y) = 0 for every \mathscr{F} -continuum Y. One can easily prove that the following corollary holds:
- (1.6) COROLLARY. Suppose that X is a compactum and $\operatorname{Fd}(X) < \infty$. The number d(X, Y) does not depend on $Y \in \mathcal{F}$ such that $\operatorname{Fd}(X \times Y) \geqslant 3$. If there exists a $Y_0 \in \mathcal{F}$ such that $d(X, Y_0) = 0$ and $\operatorname{Fd}(X \times Y_0) \geqslant 3$, then d(X, Y) = 0 for every $Y \in \mathcal{F}$.

Proof. Let Y be an arbitrary \mathscr{F} -continuum such that $\operatorname{Fd}(X \times Y) \geqslant 3$. From Theorem (1.5) we infer that

$$Fd(X)+Fd(Y)+3-d(X, S^3) = Fd(X\times S^3)+Fd(Y) = Fd((X\times S^3)\times Y)$$

$$= Fd((X\times Y)\times S^3) = Fd(X\times Y)+3$$

$$= Fd(X)+Fd(Y)+3-d(X, Y)$$

and

$$d(X, Y) = d(X, S^3).$$

This completes the proof of the first part of Corollary (1.6).

Let us assume that Y, Y_0 are \mathscr{F} -continua such that $\mathrm{Fd}(X\times Y_0)\geqslant 3$ and $d(X,Y_0)=0\neq d(X,Y)$. From Theorem (1.5) we infer that

$$\operatorname{Fd}(X \times Y_0 \times Y) = \operatorname{Fd}(X) + \operatorname{Fd}(Y_0) + \operatorname{Fd}(Y)$$
.

On the other hand we have

$$\operatorname{Fd}(X \times Y_0 \times Y) \leqslant \operatorname{Fd}(X \times Y) + \operatorname{Fd}(Y_0) < \operatorname{Fd}(X) + \operatorname{Fd}(Y_0) + \operatorname{Fd}(Y)$$
.

The proof of our corollary is finished.

In section four we will use the notion of a generalized local system of coefficients (see [11]).

Let X be a continuum. By a generalized local system of abelian groups on X we understand a pair $(\{X_k, p_k^{k+1}\}, \mathcal{L}_k) = \underline{\mathcal{L}}$ consisting of an inverse sequence of finite CW complexes $\{X_k, p_k^{k+1}\}$ associated with X (this means that $\mathrm{Sh}(X) = \mathrm{Sh}(\underline{\lim}\{X_k, p_k^{k+1}\})$) and a sequence \mathcal{L}_k , where \mathcal{L}_k is a local system of abelian groups on X_k for every k=1,2,... and \mathcal{L}_{k+1} is induced on X_{k+1} by \mathcal{L}_k and the map p_k^{k+1} .

For every generalized local system of abelian groups $\underline{\mathscr{L}}=(\{X_k,p_k^{k+1}\},\,\mathscr{L}_k)$ on a continuum X the direct limit $H^n(X;\,\underline{\mathscr{L}})$ of the direct sequence of abelian groups 3—Fundamenta Mathematicae T. CIII

35

 $\{H^n(X_k;\mathscr{L}_k),(p_k^{k+1})^*\}\ (H^n(X_k;\mathscr{L}_k)\ \text{denotes the n-dimensional cohomology group}$ of X_k with coefficients in \mathscr{L}_k and $(p_k^{k+1})^*\colon H^n(X_k;\mathscr{L}_k)\to H^n(X_{k+1};\mathscr{L}_{k+1})$ denotes the homomorphism which is induced by p_k^{k+1}) will be called an n-dimensional cohomology group of X with coefficients in \mathscr{L} .

If $X \neq \emptyset$ is a continuum, then let us denote by c[X] (see [11] the maximum of numbers n (finite or infinite) such that there is a generalized local system of coefficients $\mathscr L$ on X such that $H^n(X; \mathscr L) \neq 0$.

In [11] it is proved that

$$(1.7) c[X] \leqslant \operatorname{Fd}(X) \leqslant \max(2, c[X])$$

for every continuum X with $\operatorname{Fd}(X) < \infty$.

It follows from the analysis (see [11]) of the proof of (1.7) that the following theorem holds:

- (1.8) THEOREM. If X is a continuum with $3 \le n = \operatorname{Fd}(X) < \infty$ and $\{X_k, p_k^{k+1}\}$ is an arbitrary sequence of n-dimensional finite CW complexes such that its inverse limit has the same shape as X, then for every k = 1, 2, ... there exists a local system of abelian groups \mathcal{L}_k on X_k such that $\underline{\mathcal{L}} = (\{X_k, p_k^{k+1}\}, \mathcal{L}_k)$ is a generalized local system on X and $H^n(X; \mathcal{L}) \neq 0$.
- 2. Two algebraic lemmas. If G is a multiplicative group and Z is the ring of integers, then the integral group ring Z(G) of G is the set of all finite formal sums $\sum n_i g_i$, $n_i \in Z$ and $g_i \in G$, with addition and multiplication given by

$$\sum n_i g_i + \sum m_i g_i = \sum (n_i + m_i) g_i$$

and

$$\left(\sum n_i g_i\right)\left(\sum m_j g_j\right) = \sum (n_i m_j) g_i g_j.$$

We will employ the following lemma:

(2.1) LEMMA. Let G be a non-trivial multiplicative group and

$$0 \neq z = n_1 g_1 + n_2 g_2 + ... + n_k g_k \in Z(G)$$
.

For every element $a \in G$ with the order $\geqslant k$ there exists a natural number $l \leqslant k$ such that $(1a^l - 1e)z \neq 0$, where e is the unit of G.

Proof. Without loss of generality we may assume that

(2.2) $n_i \neq 0$ and $g_i \neq g_j$ for all i, j = 1, 2, ..., k such that $i \neq j$.

Let us suppose that our lemma does not hold.

This means that there is an $a \in G$ satisfying the following condition:

(2.3)
$$a^s \neq e$$
 and $n_1 a^s g_1 + n_2 a^s g_2 + ... + n_k a^s g_k = n_1 g_1 + n_2 g_2 + ... + n_k g_k$ for $s = 1, 2, ..., k$.

From (2.2) and (2.3) we infer that for every s = 1, 2, ..., k there exists a function κ_s : $\{1, 2, ..., k\} \rightarrow \{1, 2, ..., k\}$ such that

$$(2.4) \quad n_i g_i = n_{\kappa_s(i)} a^s g_{\kappa_s(i)} \text{ for } i = 1, 2, ..., k \quad \text{ and } \quad \kappa_s(i) \neq \kappa_s(j) \text{ for } i \neq j.$$

If $\kappa_s(1) = 1$, then $n_1 g_1 = n_1 a^s g_1$, and $g_1 = a^s g_1$, and $a^s = e$. Therefore (2.5) $\kappa_s(1) \neq 1$ for every s = 1, 2, ..., k.

Let us observe also that

$$\varkappa_{s_1}(i) \neq \varkappa_{s_2}(i)$$
 for $s_1, s_2, i = 1, 2, ..., k$ such that $s_1 \neq s_2$.

Indeed, from $s_1 > s_2$ and $\varkappa_{s_1}(i) = \varkappa_{s_2}(i)$ we conclude that $n_i g_i = n_{\varkappa_{s_1}(i)} a^{s_1} g_{\varkappa_{s_2}(i)} = n_{\varkappa_{s_1}(i)} a^{s_2} g_{\varkappa_{s_1}(i)}$ and $a^{s_1-s_2} = e$.

Therefore $1 \in \{\kappa_1(1), \kappa_2(1), ..., \kappa_k(1)\}$ contradicting (2.4) and (2.5). Thus the proof of Lemma (2.1) is completed.

If (W, w_0) is a pointed topological space, then every element σ of a multiplicative group $\pi_1(W, w_0)$ induces an authomorphism $h_\sigma: \pi_k(W, w_0) \to \pi_k(W, w_0)$ of an additive $(k \ge 2)$ group $\pi_k(W, w_0)$ (see [5], Theorem (14.1) of Chapter IV or [13] p. 379).

It is well known that for every pointed connected CW complex (W, w_0) and k>1 the group $\pi_k(W, w_0)$ is a left $Z(\pi_1(W, w_0))$ -module where

$$z\alpha = n_1 h_{\sigma_1}(\alpha) + n_2 h_{\sigma_2}(\alpha) + \dots + n_1 h_{\sigma_1}(\alpha)$$

for $\alpha \in \pi_k(W, w_0)$ and $z = n_1 \sigma_1 + n_2 \sigma_2 + ... + n_1 \sigma_1 \in Z(\pi_1(W, w_0))$.

We recall ([7]) that if M is a left R-module and if there exists a $B \subset M$ such that for every $m \in M$ we have

(2.6)
$$m = r_1 b_1 + ... + r_k b_k$$
 where $r_i \in R$ and $b_i \in B$ for $i = 1, 2, ..., k$

and such that presentation (2.6) is unique, then M is said to be a *free R-module* and B is said to be a *basis* for M.

Let $(X, x_0) + (Y, y_0) = X \times \{y_0\} \cup \{x_0\} \times Y \subset X \times Y$ for all pointed compacta (X, x_0) and (Y, y_0) ([2] p. 136).

We shall also use the following

(2.7) Lemma. Let $k \ge 2$ and $(Y, y_0) = (X, x_0) + (S^k, s_0)$ where (X, x_0) is a pointed connected CW complex with $\pi_i(X, x_0) = 0$ for every i = 2, 3, ..., k. Then $\pi_k(Y, y_0)$ is a free left $Z(\pi_1(Y, y_0))$ -module and the basis of $\pi_k(Y, y_0)$ consists of one element $\varepsilon \in \pi_k(Y, y_0)$.

Proof. Let $p: (\widetilde{X}, x) \to (X, x_0)$ be a universal covering projection for (X, x_0) . It is easy to check that a map $q: (\widetilde{Y}, y) = (X \times \{s_0\} \cup p^{-1}(x_0) \times S^k, (x, s_0)) \to (Y, y_0)$ given by the formula

$$q(x) = \begin{cases} (p(y), s_0) & \text{for } x = (y, s_0) \in X \times \{s_0\}, \\ (y, s) & \text{for } x = (y, s) \in p^{-1}(x_0) \times S^k \end{cases}$$

is a universal covering projection for (Y, y_0) .

Using the fact that q_*^k : $\pi_k(Y, y) \to \pi_k(Y, y_0)$ is an isomorphism one can easily verify that for every $g \in \pi_k(Y, y_0)$ there exists an $n_1 \sigma_1 + ... + n_1 \sigma_1 \in Z(\pi_1(Y, y_0))$ such that

$$g = (n_1 \sigma_1 + ... + n_1 \sigma_1) \varepsilon$$

where ε is an element of $\pi_k(Y, y_0)$ which is induced by a map $\alpha: (S^k, s_0) \rightarrow (Y, y_0)$ defined by the formula

$$\alpha(s) = (x_0, s)$$
 for every $s \in S^k$.

It is clear that $z_1 \varepsilon \neq z_2 \varepsilon$ for all $z_1, z_2 \in Z(\pi_1(Y, y_0))$ such that $z_1 \neq z_2$.

- 3. Main results. Let us prove the following
- (3.1) THEOREM. If $\operatorname{Fd}(X) = 1$ and $Y \in \mathcal{F}$, then $\operatorname{Fd}(X \times Y) = \operatorname{Fd}(Y) + 1$. Before beginning the proof of Theorem (3.1) we have to show the following lemma:
- (3.2) LEMMA. Let (K, k_0) , (W, w_0) be a finite pointed connected CW complexes, $s_0 \in S^2$, and let $f: (W, w_0) \rightarrow (K \times S^2, (k_0, s_0))$ be a map. The following conditions are equivalent:
 - (a) $\omega(f) \leq 2$,
 - (b) there exists a homotopy $\varphi: W \times [0, 1] \rightarrow K \times S^2$ such that

$$\varphi(x, t) = f(x)$$
 for every $(x, t) \in W \times \{0\} \cup \{w_0\} \times [0, 1]$

and

$$\varphi(W\times\{1\})\subset K^{(2)}\times\{s_0\}\cup\{k_0\}\times S^2.$$

Proof. It is evident that (b)⇒(a).

Now let us assume that condition (a) is satisfied. S^2 , K and $K \times S^2$ are finite CW complexes and $(S^2)^{(0)} = (S^2)^{(1)} = \{s_0\}$ and

$$(K \times S^2)^{(2)} = K^{(2)} \times \{s_0\} \cup K^{(2)} \times (s_0) \cup K^{(0)} \times S^2.$$

From the definition of ω we infer that there is a homotopy $\varphi' : W \times [0, 1] \to K \times S^2$ such that

$$\varphi'(x, t) = f(x)$$
 for $x \in W \times \{0\} \cup \{w_0\} \times [0, 1]$

and

$$\varphi'(W\times\{1\})\subset (K\times S^2)^{(2)}.$$

It is easy to check that a homotopy $\varphi: W \times [0, 1] \to K \times S^2$ defined by the formula

$$\varphi(x,t) = \begin{cases} \varphi'(x,2t) & \text{for } x \in W \text{ and } 0 \leq t \leq \frac{1}{2}, \\ \left(\psi(p_1 \varphi'(x,1), 2t-1), p_2 \varphi'(x,1) \right) & \text{for } x \in W \text{ and } \frac{1}{2} \leq t \leq 1, \end{cases}$$

where $p_1: K \times S^2 \to K$ and $p_2: K \times S^2 \to S^2$ are projections and $\psi: K \times [0, 1] \to K$ is a homotopy which compress $K^{(0)}$ to k_0 and fixes k_0 , satisfies the required conditions.

Proof of Theorem (3.1). It is sufficient to show that $\operatorname{Fd}(X \times S^2) = 3$ (see Corollary (1.6)).

For simplicity, we will assume that $(X, x_0) = \underline{\lim} \{(X_k, x_k), p_k^{k+1}\}$ where (X_k, x_k) is a finite pointed connected CW complex with $\dim X_k \leq 1$.

This implies that $(X \times S^2, (x_0, s_0)) = \underline{\lim} \{(X_k \times S^2, (x_k, s_0)), p_k^{k+1} \times \mathrm{id}_{S^2}\}$. Let us suppose that $\mathrm{Fd}(X \times S^2) = 2$.

From Theorem (1.3) and Lemma (3.2) we infer that for every k there exist a k' > k and a homotopy $\varphi: (X_k \times S^2) \times [0, 1] \to X_k \times S^2$ such that

$$\varphi(y,t) = (p_k^k(x),s) \quad \text{for} \quad (y,t) = ((x,s),t) \in (X_k \times S^2) \times \{0\} \cup \{(x_k,s_0)\} \times [0,1]$$

and

$$\varphi(Y_1 \times \{1\}) \subset X_k \times \{s_0\} \cup \{x_k\} \times S^2 = (X_k, x_k) + (S^2, s_0) = (Y_2, y_2)$$

and such that $(p_k^k)_{\#}$: $\pi_1(X_{k'}, x_{k'}) \rightarrow \pi_1(X_k, x_k)$ is a non-trivial homomorphism, where $(Y_1, y_1) = (X_{k'} \times S^2, (x_k, s_0))$.

Let $\varepsilon_1 \in \pi_2(Y_1, y_1)$ be the generator of $\pi_2(Y_1, y_1)$ and let ε_2 be an element of $\pi_2(Y_2, y_2)$ such that $\{\varepsilon_2\}$ is a basis for $Z(\pi_1(Y_2, y_2))$ -module $\pi_2(Y_2, y_2)$ (see Lemma (2.7)).

Setting

$$q(x, s) = \varphi((x, s), 1)$$
 for $(x, s) \in Y_1 = X_{k'} \times S^2$,

we obtain a map $q: (Y_1, y_1) \rightarrow (Y_2, y_2)$.

It is clear that the homomorphism q_* : $\pi_1(Y_1,y_1) \rightarrow \pi_1(Y_2,y_2)$ is non-trivial and that the homomorphism q_*^2 : $\pi_2(Y_1,y_1) \rightarrow \pi_2(Y_2,y_2)$ is a monomorphism. We have

$$q_*^2(\varepsilon_1) = (n_1 \sigma_1 + ... + n_k \sigma_k) \varepsilon_2 ,$$

where $0 \neq n_1 \sigma_1 + ... + n_k \sigma_k \subset Z(\pi_1(Y_2, y_2))$.

Let us denote by τ an element of $\pi_1(Y_1, y_1)$ such that $a = q_*(\tau)$, is a non-trivial element of $\pi_1(Y_2, y_2)$.

Since $\pi_1(Y_2, y_2)$ is isomorphic with a free group $\pi_1(X_k, x_k)$, we conclude that $q_{\#}(\tau^s) = a^s$ is a non-trivial element of $\pi_1(Y_2, y_2)$ for every s = 1, 2, ...

Lemma (2.1) implies that there exists a natural number $s_0 \le k$ such that

$$(1e-1a^{s_0})(n_1\sigma_1+...n_k\sigma_k)\neq 0$$

(e is the unit of $\pi_1(Y_2, y_2)$).

It follows that

$$n_1 \sigma_1 + n_2 \sigma_2 + ... + n_k \sigma_k \neq n_1 q_{\#}(\tau^{s_0}) \sigma_1 + ... + n_k q_{\#}(\tau^{s_0}) \sigma_k$$

and

$$q_*^2(\varepsilon_1) = (n_1 \sigma_1 + n_2 \sigma_2 + \dots + n_k \sigma_k) \varepsilon_2 \neq (n_1 q_*(\tau^{so}) \sigma_1 + \dots + n_k q_*(\tau^{so}) \sigma_k) \varepsilon_2.$$

On the other hand,

$$\begin{split} q_*^2(\varepsilon_1) &= q_*^2(\tau^{s_0}\varepsilon_1) = \left(1q_*(\tau^{s_0})\right) \cdot q_*^2(\varepsilon_1) = 1a^{s_0} \cdot q_*^2(\varepsilon_1) \\ &= n_1 q_*(\tau^{s_0}) \sigma_1 + \dots + n_k q_*(\tau^{s_0}) \sigma_k \;. \end{split}$$

Thus the proof is finished.

In this section, for every space X and for every map $f: X \to Y$ we denote by $H_n(X)$ the n-dimensional singular homology group of X with integer coefficients and by $\widehat{(f)}_n: H_n(X) \to H_n(Y)$ the homomorphism which is induced by f.

39

Let (X, x_0) , (Y, y_0) be connected pointed CW complexes and let $p: (\widetilde{X}, a_0) \to (X, x_0)$, $q: (\widetilde{Y}, b_0) \to (Y, y_0)$ be universal covering projections. Then for every map $f: (X, x_0) \to (Y, y_0)$ we will denote by $\widetilde{f}: (\widetilde{X}, a_0) \to (\widetilde{Y}, b_0)$ the (unique) lifting of $fp: (\widetilde{X}, a_0) \to (Y, y_0)$.

Let \mathfrak{W}_0 be a category whose objects are connected pointed CW complexes and whose morphisms are homotopy classes (in the pointed sense) of maps. It is well known that the tilde \sim induces a functor from \mathfrak{W}_0 to \mathfrak{W}_0 . This functor assigns to every object (W, w_0) of \mathfrak{W}_0 its universal covering space (\widetilde{W}, w) and to every morphism [f] of \mathfrak{W}_0 represented by a map $f: (W, w_0) \to (V, v_0)$ the homotopy class $[\widetilde{f}]$ of $\widetilde{f}: (\widetilde{W}, w) \to (\widetilde{V}, v)$.

As an immediate consequence of this fact we obtain the following

(3.3) LEMMA. If $X = \{X_k, p_k^{k+1}\}$ and $Y = \{Y_k, q_k^{k+1}\}$ are sequences of polyhedra and $Sh(\lim_{k \to \infty} \{X_k, p_k^{k+1}\}) = Sh(\lim_{k \to \infty} \{Y_k, q_k^{k+1}\})$, then

$$\underline{H} = \{H_n(\widetilde{X}_k), (\widehat{p_k^{k+1}})_n \quad and \quad \{H_n(Y_k), (\widehat{q_k^{k+1}})_r\} = \underline{G}$$

are isomorphic progroups for every n = 0, 1, 2, ...

Now let us prove the following

(3.4) THEOREM. If (X, x_0) is not approximatively 2-connected pointed continuum and Fd(X) = 2, then $Fd(X \times Y) = Fd(X) + Fd(Y)$ for every $Y \in \mathcal{F}$.

Proof. Without loss of generality we may assume that (X, x_0) is the inverse limit of an inverse sequence of 2-dimensional polyhedra. $\{(X_k, x_k), p_k^{k+1}\}$.

Let $\gamma_k: (\widetilde{X}_k, a_k) \to (X_k, x_k)$ be a universal covering projection for every k = 1, 2, ...

We know that $(X \times S^2, (x_0, s_0)) = \underline{\lim} \{(X_k \times S^2, (x_k, s_0)), p_k^{k+1} \times \mathrm{id}_{S^2}\}$ and that $\gamma_k \times \mathrm{id}_{S^2}$: $(\widetilde{X} \times S^2, (a_k, s_0)) \to (X_k \times S^2, (x_k, s_0))$ is a universal covering projection for every k = 1, 2, ...

It is clear that for every k = 1, 2, ... we have

$$(\gamma_k)_*^2 (p_k^{k+1})_*^2 = (p_k^{k+1})_*^2 (\gamma_{k+1})_*^2$$

and

$$\Theta_2^k(p_k^{k+1})_*^2 = \widehat{(p_k^{k+1})_2} \circ \Theta_2^k$$

where Θ_2^i : $\pi_2(\tilde{X}_i, a_i) \rightarrow H_2(\tilde{X}_i)$ is the Hurewicz homomorphism.

This means that the pair $\alpha = (id_N, \Theta_2^k)$ is a morphism from a progroup

 $\{\pi_2(X_k, x_k), (p_k^{k+1})_*\}$ to a progroup $\underline{H}' = \{H_2(X_k), (p_k^{k+1})_2\}$, where N denotes the set of natural numbers.

Since Θ_2^k : $\pi_2(X_k, a_k) \to H_2(X_k)$ is an isomorphism, we conclude that α is an isomorphism of progroups and \underline{H}' is not trivial.

The Künneth theorem for singular homology ([13] p. 235) implies that the progroups $\{H_4(X_k \times S^2), (p_k^{k+1} \times id^{S^2})_4\} = \underline{H}''$ and \underline{H}' are isomorphic.

Therefore

(3.5) $\underline{H}^{"}$ is not a trivial progroup.

The hypothesis that $\operatorname{Fd}(X \times S^2) \leq 3$ implies that $X \times S^2$ has the same shape as the inverse limit of an inverse sequence $\{Y_k, q_k^{k+1}\}$ of 3-dimensional polyhedra. From

Lemma (3.4) we infer that the progroups \underline{H}'' and $\underline{H}''' = \{H_4(\widetilde{Y}_k), (q_k^{k+1})_4\}$ are isomorphic.

Since dim $\widetilde{Y}_k \leq 3$ and $H_4(\widetilde{Y}_k) = 0$, we conclude that $\underline{H}^{"}$ and $\underline{H}^{"}$ are trivial progroups, in contradiction to (3.5). Thus the proof of (3.4) is finished.

Theorems (1.5), (3.1) and (3.4) give the following

(3.6) THEOREM. If X is a compactum and $\operatorname{Fd}(X) \neq 2$ or $\operatorname{Fd}(X) = 2$ and X is not approximatively 2-connected, then $\operatorname{Fd}(X \times Y) = \operatorname{Fd}(X) + \operatorname{Fd}(Y)$ for every $Y \in \mathcal{T}$.

Remark. The last theorem partially answers the question of K. Borsuk whether $Fd(X \times S^n) = Fd(X) + n$ for $X \neq \emptyset$ (see [1] and compare [11]).

It is known ([9] pp. 219 and 220) that if M is a PL n-manifold or a topological n-manifold with $n \ge 6$ and a compactum X is a proper subset of M, then $\mathrm{Fd}(X) \le n-1$.

Let M be a topological n-manifold and let $X \subseteq M$ be a compactum such that $\operatorname{Fd}(X) = n$, where n = 4.5. Then $X \times S^6 \subseteq M \times S^6$ and $\operatorname{Fd}(X \times S^6) \leq n+5$. On the other hand, Theorem (3.6) implies that $\operatorname{Fd}(X \times S^6) = n+6$.

We get the corollary

(3.7) COROLLARY. If M is a topological n-manifold and a compactum X is a proper subset of M, then $\operatorname{Fd}(X) < n$.

Remark. Corollary (3.7) answers Problem (3.11) of [9].

- **4. Final remarks and problems.** In this section we shall prove the following theorem:
- (4.1) Theorem. Let X be a continuum with $\operatorname{Fd}(X) < \infty$. Then the following conditions are equivalent:
 - (a) $\operatorname{Fd}(X \times Y) = \operatorname{Fd}(X) + \operatorname{Fd}(Y)$ for every $Y \in \mathscr{F}$.
 - (b) c[X] = Fd(X).

Proof. (a) \Rightarrow (b). We can assume that $X = \underline{\lim} \{X_k, p_k^{k+1}\}$, where X_k is a polyhedron and $\dim X_k = \operatorname{Fd}(X) = \dim X = n$.

It follows from Theorem (1.8) that there exists a generalized local system of coefficients $\mathcal{L} = (\{X_k \times S^3, p_k^{k+1} \times \operatorname{id}_{S^3}\}, \mathcal{L}_k')$ on $X \times S^3$ such that

$$(4.2) H^{n+3}(X \times S^3; \mathcal{L}) \neq 0.$$

Let $s_0 \in S^3$ and let \mathcal{K}_k be a local system on $X_k \times \{s_0\} = Y_k$ which is a restriction of \mathcal{L}_k to Y_k .

· ·

Setting

$$q_k^{k+1}(x, s_0) = (p_k^{k+1}(x), s_0)$$
 for every $x \in X_k$

we get a map q_k^{k+1} : $Y_{k+1} \rightarrow Y_k$.

Let $\alpha_k: X_k \times S^3 \to Y_k$ be a map defined by the formula

$$\alpha_k(x, s) = (x, s_0)$$
 for every $(x, s) \in X_k \times S^3$

and let \mathcal{L}'_k be a local system induced on $X_k \times S^3$ by α_k and \mathcal{K}_k .

It is clear that $\underline{\mathscr{H}} = (\{Y_k, q_k^{k+1}\}, \mathscr{H}_k)$ and $\underline{\mathscr{L}}' = (\{X_k \times S^3, p_k^{k+1} \times \mathrm{id}_{S^3}\}, \mathscr{L}'_k)$ are generalized local systems of abelian groups on X and $X \times S^3$.

Let us assume that $H^n(X; \mathcal{K}) = 0$.

Simce S^3 is simply connected, for every path $\tau\colon [0,1]\to X_k\times S^3$ from $(x,s_0)\in Y_k$ to $(y,s_0)\in Y_k$ the isomorphism $\mathscr{L}_k(\tau)\colon (\mathscr{L}_k)_{(x,s_0)}\to (\mathscr{L}_k)_{(y,s_0)}$ is the same as the isomorphism $\mathscr{L}_k(\alpha_k\tau)\colon (\mathscr{L}_k)_{(x,s_0)}\to (\mathscr{L}_k)_{(y,s_0)}$, where $(\mathscr{L}_k)_{(x,s_0)}$ and $(\mathscr{L}_k)_{(y,s_0)}$ are groups of \mathscr{L}_k which correspond to the points (x,s_0) and (y,s_0) and $\mathscr{L}_k(\tau)$ and $\mathscr{L}_k(\alpha_k\tau)$ are isomorphisms which are induced by τ and $\alpha_k\tau$.

This means that \mathscr{L}_k and \mathscr{L}'_k are canonically equivalent and that the groups $H^{n+3}(X\times S^3; \underline{\mathscr{L}})$ and $H^{n+3}(X\times S^3; \mathscr{L}')$ are isomorphic.

Condition (4.2) implies that $H^{n+3}(X \times S^3; \mathcal{L}') \neq 0$.

On the other hand, in the proof of Theorem (1.5) (see [11]) a more general case is considered and it is proved that

$$H^{n+3}(X\times S^3; \mathcal{L}') \approx H^n(X; \mathcal{K}) \otimes H^3(S^3; Z) = 0.$$

Therefore $H^n(X; \mathcal{L}) \neq 0$.

The proof of Theorem (1.5) (see [11]) contains also the proof of the implication $(b)\Rightarrow(a)$.

The proof of Theorem (4.1) is finished.

The following corollary is an immediate consequence of Theorems (3.6) and (4.1).

(4.3) COROLLARY. Let X be a continuum with $\operatorname{Fd}(X) < \infty$. Then $c[X] \leq \operatorname{Fd}(X) \leq \max(2, c[X])$. If $\operatorname{Fd}(X) \neq 2$ or $\operatorname{Fd}(X) = 2$ and X is not approximatively 2-connected, then $\operatorname{Fd}(X) = c[X]$.

Let us formulate some problems.

- (4.4) PROBLEM. Is it true that there exists an approximatively 2-connected continuum X such that c[X] < Fd(X)?
- (4.5) PROBLEM. Is it true that $\operatorname{Fd}(X) = c[X]$ for every continuum X with $\operatorname{Fd}(X) < \infty$?
- (4.6) PROBLEM. Is it true that $\operatorname{Fd}(X \times Y) = \operatorname{Fd}(X) + \operatorname{Fd}(Y)$ if X is a continuum and $Y \in \mathcal{F}$.

A positive answer to Problem (4.4) would give negative answers to Problems (4.5) and (4.6).

It is also clear that if X is an approximatively 2-connected continuum and $c[X] < \operatorname{Fd}(X) = 2$, then $\operatorname{Fd}(X \times S^1) = 2$ and $\operatorname{Fd}(X \times Y) < \operatorname{Fd}(X) + \operatorname{Fd}(Y)$ for every $Y \in \mathscr{F}$.

References

- [1] K. Borsuk, On several problems of the theory of shape, Proc. Topology Conference at Charlotte 1974, Studies in Topology, pp. 67-79.
- [2] Theory of Shape, Warszawa 1975.
- [3] J. Dydak, A generalization of cohomotopy groups, Fund. Math. 90 (1975), pp. 77-98.
- [4] P. J. Hilton and S. Wylie, Homology Theory, Cambridge 1960.
- [5] S. T. Hu, Homotopy Theory, New York 1959.
- [6] W. Hurewicz and H. Wallman, Dimension Theory, Princeton 1941.
- [7] J. Lambek, Lectures on Rings and Modules, London 1966.
- [8] S. Mardešić, On the Whitehead theorem in shape theory I, Fund. Math. 91 (1976), pp. 51-64.
- [9] S. Nowak, Some properties of fundamental dimension, Fund. Math. 85 (1974), pp. 211-227.
- [10] On the fundamental dimension of approximatively 1-connected compacta, Fund. Math. 89 (1975), pp. 61-79
- [11] On the fundamental dimension of the Cartesian product of two compacta, Bull. Acad. Polon. Sci. 24 (1976), pp. 1021-1028.
- [12] П. С. Понтрягин, Непрерывные Группы, Москва 1973.
- [13] E. H. Spanier, Algebraic Topology, New York 1966.
- [14] S. Spież, On characterization of shapes of several compacta, Bull. Acad. Polon. Sci. 24 (1976), pp. 225-263.
- [15] N. E. Steenrod, The Topology of Fibre Bundles, Princeton 1951.

INSTITUTE OF MATHEMATICS, UNIVERSITY OF WARSAW INSTYTUT MATEMATYKI, UNIWERSYTET WARSZAWSKI

Accepté par la Rédaction le 27, 9, 1976