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COROLLARY (6.2). If (X, ) is a compact n-dimensional meiric Z-space with
one fixed point (or none) and with the action free outside the fixed point set, then (X, )
equivariantly embeds in (R*"*1, B) if nn is odd and in (R*"Y By if n is even.
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Some remarks concerning the fundamental dimension
of the cartesian product of two compacta

* by

Stawomir Nowak (Warszawa)

Abstract. It is proved that Fd(Xx Y) = Fd(X)+Fd(Y) if Yisan n-_dimensional continuum
such that H"(Y; G) # O for every G # 0 and if X is a compactum and Fd(X) # 2 or Fd(X) =2
and X is not approximatively 2-connected. :

We will consider the problem of computing the fundamental dimension of X'x ¥,
where X and Y are compacta. From this point of view the notion of an & -continuum
will be very convenient. A continuum X with O # Fd(X) = n<oo belongs to
a class & (in other words X is an & -continuum) iff for every abelian group G # 0
the #n-dimensional Cech cohomology group H"(X; G) of X with coefficients in G is
non-trivial. . .

Using the universal coefficient theorem and the Kiinneth formula for homology
and cohomology ([13] p. 244 and p. 336), one can check that the class & contains
all connected n-dimensional ANR-sets with the non-trivial #-dimensional Cech
homology group H,(X) over the group Z of integer numbers (in particular, all closed
orientable manifolds) and that Xx Ye & for all I', X, Ye #&.

Tt is known ([10] p. 74) that there exists a sequence G, Gy, ... of non-trivial
countable abelian groups such that if X is an n-dimensional compactum with
H'(X;G) =0 for every k=1,2,..., then H"(X;G) =0 for every group G.

This fact together with the theorem which states ([6] p. 137) that for every
countable group G and its character group G* the group H,(X; G*) is the character
group of H"(X; G) and with the Pontriagin duality ({12] p. 259) imply that if Xis
an n-dimensional continuum and H,(X; G) # 0 for every G # 0, then Xe &
(H(X; H) denotes the Cech homology group of X over H).

It is clear that the class & is closed with respect to the one-point union.

Tn [11] it is proved that Fd(X x ¥) = Fd(X)+Fd(Y) for every compactum X
with Fd(X)>3 and every Ye #. ‘

The purpose of this note is to generalize the last theorem and to show that the
assumption that Fd(X)>3 may be replaced by the assumption that Fd(X) # 2 or
Fd(X) = 2 and X is not approximatively 2-connected.
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In the final part of the paper we give an algebraic characterization of all
compacta X such that Fd(Xx ¥) = Fd(X)+Fd(Y) for every Ye .

If f,: X;— Y, and f5: X,— Y, are continuous functions, then f1 x f, will denote
the map from X;x X, to Y; x Y, defined by

Suxfalxy, x3) = (fl(xl)sz(xz))

For all CW complexes X, Y and a map f: (X, x0)—= (Y, ¥o)(xo € X and y, € Y)
we will denote (respectively) by X, X, f, and f3 (s2) the universal covering
space of X, the n-skeleton of X, and the homomorpmsmsf# 7, (X, x0)— 71, (Y, ¥o)
and f5: (X, xo)—n(Y, yo) induced by f.

We assume that the reader is familiar with the theory of shape and knows the
notion of procategory (for references see [2] and [8]). ‘

In the last section a knowledge of cohomology groups with local coefficients
(see [15] and [13] p. 281) will also be assumed.

for every (x;,x,)€ X; x X, .

The author acknowlfsdges his gratitude to Dr. J. Dydak, who made several
valuable remarks concerning the present note.

1. The fundamental dimension. Suppose that W is a finite CW complex and
f: X—>W is a map. We say (see [9]) that w(f)<n iff there exists a homotopy
@: Xx[0, 1] W such that

¢(x,0) =

an’ f()t) for every xe X
and
1.2) (X x{1Hew,

If (X, x,), (W, wy) are pointed CW complexes and f: (X, xq)— (W, w,), then
the condition w( f)<n implies that there exists a homotopy ¢: X x [0, 1]— ¥ which
satisfies (1.1) and (1.2) and fixes x,. We can infer this fact from the cellular approxi-
mation theorem (see [13] p. 404 and [13] p. 57, Exercise D4).

The following theorem characterizes compacta with the fundamental dimen-
sion <n (see [9] p. 214 and compare [3] p. 80).

(1.3) THEOREM. Lei a compactum X be the inverse limit of an inverse sequence.
{Xk,p’,i“} of finite CW complexes and let n be a natural number or 0. Then the
Jollowing conditions are eguivalent:

(a) Fd(X)<n,

(b) for every k there exists a k' such thar o(p¥)<n.

If (X, x,) is a pointed compactum and Fd(X)<n, then Theorem (1.3) implies
that we can assume that (X, x,) = Im{(X;, x,), pi**}, where (X, x,) is a pointed
finite CW complex and o (p*)<n for every k = 1,2, ... Tt follows that pi+! is
homotoplc (in the pointed sense) with a map ¢¥*!: (Xx,,l,xkﬂ)—)(X,‘, x;) such
that g™ (X4 ) = X, Tt is clear that Sh(X, x,) = Sh(Y, y,) and dim Y<n, where
(}rz J’O) = m[(XM xk)’ 4k+1}
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Hence, we obtain
(1.4) ProvosiTION. For every pointed compactum (X, x,) there exists a pointed
compactum (Y, yo) such that Sh(X, x;) = Sh(Y, yo) and dim Y = Fd(X).
Remark. Proposition (1.4) was first proved by S. Spiez ([14]).
Let
d(X,Y) = Fd(X)+Fd(¥)-Fd(Xx Y)

for every compactum X and every Ye &.
In [11] the author has proved the following
(1.5) Turorem. If 3<Fd(X), then d(X,Y) =0 for every T
One can easily prove that the following corollary holds:

T -continuum Y.

(1.6) COROLLARY. Suppose that X is a compactum and Fd(X)<co. The number
d(X, Y) does not depend on Y€ such that Fd(Xx Y)=3. If there exists a Yoe &
such that d(X, Yo) = 0 and Fd(Xx Y)=3, then d(X, Y) =0 for every Ye F.

Proof. Let ¥ be an arbitrary % -continuum such that Fd(X'x ¥)>3. From

Theorem (1.5) we infer that
Fd(X)+Fd(Y)+3—d(X, $*) = Fd(Xx §%)+Fd(Y) = Fd((Xx S*)x Y)
= Fd((Xx ¥)x §%) = Fd(Xx Y)+3

= Fd(X)+Fd(Y)+3—d(X, Y)
and

d(X, Y) = d(X, S%.

This completes the proof of the first part of Corollary (1.6).
Let us assume that ¥, ¥, are % -continua such that Fd(Xx Y¥;)=>3 and

Cd(X, Y,) =0 # d(X, Y). From Theorem (1.5) we infer that

Fd(X x Yox ¥) = Fd(X)+Fd(¥,)+Fd(¥).

On the other hand we have ‘
Fd(Xx Yox Y)<Fd(Xx ¥)+Fd(¥s) <Fd(X)+Fd(¥,)+Fd(Y).

The proof of our corollary is finished.

Tn section four we will use the notion of a generalized local system of coefficients
(see [110).

Let X be a continuum. By a generalized local sysiem of abelian groups on X we
understand a pair ({X, pEr, 2 = £ consisting of an inverse sequence of
finite CW complexes {X;, pi*'} associated with X (this means that Sh(X)
= Sh(lim{X,, pf"'})) and a sequence &, where %, is a local system of abelian
groups on X, for every k = 1,2, ... and &, is induced on Xy, by ) and the

k+1

map py
For every generalized local system of abelian groups & = ({X, PP 20 on
a continuum X the direct limit H"(X; &) of the direct sequence of abelian groups

3 — Fundamenta Mathematicae T. CIII
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{H"X,; £, (0FH*) (H"(Xy; %) denotes the n-dimensional cohomology group
of X, with coefficients in %, and (pf*Y)*: H"(X,; L= H" (X1 3 Lry) denotes
the homomorphism which is induced by pi*1) will be called an n-dimensional coho-
mology group of X with coefficients in 2.

If X # @ is a continuum, then let us denote by ¢[X] (see [11] the maximum
of numbers # (finite or infinite) such that there is a generalized local system of
coefficients % on X such that H"(X; &%) 5 0.

In [11] it is proved that - -
a1.mn c[X]<Fd(X)<max(2, c[X])
for every continuum X with Fd(X)<co.

Tt follows from the analysis (see [11]) of the proof of (1.7) that the following
theorem holds:

(1.8) THEOREM. If X is a contimuwm with 3<n = Fd(X)<co and {X;, pi*1}
is an arbitrary sequence of n-dimensional finite CW complexes such that its inverse
limit has the same shape as X, then for every k = 1,2, ... there exists a local system of
abelian groups &, on X, such that £ = ({ X, pi**}, &,) is a generalized local system
on X and H"(X; Z) # 0. -

2. Two algebraic lemmas. If G is a multiplicative group and Z is the ring of
integers, then the integral group ring Z(G) of G is the set of all finite formal sums
Y. mg;, n;€Z and g; e G, with addition and multiplication given by

Yomgit Yy, mg; = Y, (+m)g;
(Z”igi)(z m;g;) = Z (nimj)gigj .

We will employ the following lemma:
(2.1) LemMmA. Let G be a non-trivial multiplicative group and

and

O0#z=ng,+mg,+..+mg.€Z(G).
For every element ae G with the order=k there exists a natural number 1<k such
that (1d'~1é)z # 0, where e is the unit of G.
Proof. Without loss of generality we may assume that

2.2) n; 0 and

gy # g; for all i,{j= 1,2, ..,k such that i 5 j.

Let us suppose that our lemma does not hold.
This means that there is an a e G satisfying the following condition:
23) a#e and

for s =1,2, .., k.
From (2.2) and (2.3) we infer that for every s = 1, 2, ..., k there exists a function
%0 {1,2, ..., k}—{1,2, ..., k} such that

Mg 4Ny gyt At = 1G9, 05+ g,

(R4 Mg = 1,0 Guy for i=1,2,..,k and  x()# 1,(;) for i #j.
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If %(1) =1, then n;g, =n,a°g,, and g, = a°g,, and a° = e. Therefore
(1) # 1

Let us observe also that

2.5) for every s=1,2, ..., k.

%, (1) # %,(1)  for sy,5,,i=1,2,.., k such that s, # s, .

Indeed, from s, >, and (i) = x,(i) we conclude that r,g; = rz,,,‘ma“ e,
= My (98 G,y and @77 = e,

Therefore 1e {x(1), 3,(1), ..., %(1)} contradicting (2.4) and (2.5). Thus the
proof of Lemma (2.1) is completed.

If (W, w,) is a pointed topological space, then every element ¢ of a multiplicative
group 7, (W, w,) induces an authomorphism 4, : (W, wo)—m (W, we) of an additive
(k=2) group m(W, wy) (see [5], Theorem (14.1) of Chapter IV or [13] p. 379).

It is well known that for every pointed connected CW complex (W, w,) and k> 1
the group 7, (W, w,) is a left Z(nI(W, wo))-module where

zo0= 1y by () 415k, (0) + .ot 1 By ()

for e m(W, wo) and z = 1,0, +1,0;+...+1, 6, € Z(m, (W, wp)).
‘We recall ((7]) that if A is a left R-module and if there exists a B< M such that
for every m e M we have

(26) m=rb +..+rb, where r,eRand beBfori=1,2,..,k

and such that presentation (2.6) is unique, then M is said to be a free R-module
and B is said to be a basis for M.
Let (X, x,) x (Y, y0) = Xx{po} U {x}x YeXx ¥ for all pointed com-
op
pacta (X, xo) and (Y, yo) ([2] p. 136).

We shall also use the following

(2.7) LEMMA. Let k=2 and (¥, yo) = (X, Xo) * (S¥, 50) where (X, x) is a pointed
connected CW complex with n(X, x,) = 0 for every i = 2,3, ..., k. Then m(Y, y,)
is a free left Z (nl(Y, yo))-module and the basis of m(Y, y,) consists of one element
eem( Y, ¥o)-

Proof. Let p: (X, x)—(X, x,) be a universal covering projection for (X, x,).
It is easy to check that 2 map g: (¥, y) = (Xx{so} U p7(x0) x 8% (x, 5= (Y, ¥
given by the formula

L [{{p(3,50) for x = (y,5)€ Xx{s},
() = 1.9 for  x=(y,8)ep Hxp)xS*
is a universal covering projection for (Y, y,).

Using the fact that qi: (Y, »)-m (Y, yo) is an isomorphism one can easily
verify that for every gem(Y,y,) there exists an noy+..ti oy eZ(nl(Y,yo))
such that

g=mo;+..+n0,)e
2%
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where ¢ is an element of m(Y, yo) which is induced by a map a: (S¥, 55)-(Y, o)
defined by the formula

a(s) = (xo,5) for every seS*.
It is clear that z ¢ # z,¢ for all z, z, eZ(n,(Y, ¥o)) such that z; # z,.

~3."Main results. Let us prove the following .

(3.1) TreoreM. If Fd(X) =1 and Ye&F, then Fd(Xx Y) = Fd(Y)+1.
Before beginning the proof of Theorem (3.1) we have to show the following
lemma: :

(3.2) Lemma. Let (K, ko), (W, wy) be a finite pointed connected CW complexes,
5o.€ 8%, and let f: (W, wo)>(Kx 82, (ky, $o)) be a map. The following conditions are
equivalent: . ) . )

(@) o(f)=<2,

(b) there exists a homotopy @: Wx [0, 1]-Kx S? such that

o(x, ) =f(x) for every (x,t) e Wx {0} U {wo}x[0, 1]
and . )
(Wx{1DcK® x {55} w {ko} x §2.

Proof. It is evident that (b)=-(a).
Now let us assume that condition (a) is satisfied. S%, K and K x S are finite CW
complexes and (§%)® = () = {s,} and

(KxSHP = KD x {55} U KP x (59) U KO x 52 .

) Frbm the deﬁnition of o we infer that there is a homotopy ¢': Wx [0, 1]=Kx S?

such that ’ :

; @', t)y=r(x) for xeWx {0} u {\{'o} % [0, 1]

and - ‘ : :
o e (Wx {1Dc(KxSHP .

CTtis eaéy to check that a homotopy ¢: W'x [0, 11K x S defined by the formula

@'(x, 21) for xe W and 0<1<4,

. v—", = .
oD {(tlf(pm’(x,1),2t—1),pz(p'(X, 1)) for xe Wand 4<i<l,

where p;: Kx 82K and p,: KxS*~S?* are projections and ¥: Kx [0, 1]-X is
a homotopy which compress K'% to kg and fixes ko, satisfies the required conditions.

Proof of Theorem (3.1). It is sufficient to show that Fd(Xx .§%) = 3 (see
Corollary (1.6)).

For simplicity, we will assume that (X, xo) = lim {(X;, x), it 1} where (X, x)
is' a finite pointed connected CW complex with dim X, <1.

This implies that (X xS, (xo, 55)) = Hm {(X, x S2, (x,, 5o), PE* L X idgs).

Let us suppose that Fd(XxS?) = 2.

Some remarks concerning the fundamental dimension of the cartesian product 37
From Theorem (1.3) and Lemma (3.2) we infer that for every k there exist
a k'>k and a homotopy ¢: (X xS?)x [0, 1] X, x S? such that

oy, 1) = (PF(x),s) for (3,0 =((x,5), )€ (XpxS?)x{0} U {(x;, 5)} [0, 1]

and : -
o(Yix {1De X x {so} v 3= 8? = (X, x) t+ (S%,50) = (Y3,¥) *
op

and such that (pf)s: m, (X, x)—m(X,, x) is 2 non-trivial homomorphism,
where (Y, y,) = (Xp x S?, (x3, 50)). :

Let &, € n,( Yy, ¥;) be the generator of m,(¥y, y;) and let &, be an element of
n,(Y,, y;) such that {g,} is a basis for Z(n,(¥,, y,))-module 7,(Y,,y,) (ses
Lemma (2.7)). .

Setting

q(x,5) = ¢((x,9,1) for (x,9)e¥, = X.xS?,

we obtain a map q: (¥Yy,y)—(Ya, ¥2).
It is clear that the homomorphism ¢u: 7, (Y7, ¥1)—7;(¥s, ¥,) is non-trivial
and that the homomorphism g2: 7,(Y;, y1)=7n,(Y5,y,) is a monomorphism.
We have
g3(E;) = (n,0;+ .. +mo)e,

where 0 # 11,0y +... + 1m0, = Z(n,( Y, ¥2)).

Let us denote by T an element of 7,;(¥;, ¥,) such that a = ¢, (), is a non-trivial
element of n,(Y,, y,)-

Since 7t,(Y>, y,) is isomorphic with a free group (X}, x,), we conclude that
q«(1°) = & is a non-trivial element of n,(Y,,y,) for every s = 1,2, ...

Lemma (2.1) implies that there exists a natural number s,<k such that

(le—1a")(n 01 +... ;o) # 0

(e is the unit of (Y3, ¥2))-

It follows that

1,0, F150,+ .+ 10 # 105700+ A1 g5 () 0y
and
qie) = (0 +1y0, 4. o) ey # (n) q#(ts")o*[-{—...+nkq*(-rs")a,‘.)sl.

On the other hand,
G2(@%e)) = (15(™)-4i(e)) = 1a™-4iley)
=1,q4(T) 0, + ... +mq. ()0, .

Thus the proof is finished.
Tn this section, for every space X and for every map f: X— Y we denote by H,(X)
the n-dimensional singular homology group of X with integer coefficients and by

I

qi(.el)

N ’
(f).: H(X)->H,(Y) the homomorphism which is induced by f. -
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Let (X, xo), (¥,¥o) be connected pointed CW complexes and let p: (¥, a,)
—(X, x0), q: (¥, by)—(Y, o) be universal covering projections. Then for every
map f: (X, x0)=(Y, yo) we will denote by J: (X, ao)—(¥, by) the (unique) lifting of
o (&, ap)—(Y, yo).

Let M, be a category whose objects are connected pointed CW complexes and
whose morphisms are homotopy classes (in the pointed sense) of maps. It is well
known that the tilde ~ induces a functor from 9B, to 9B,. This functor assigns to
every object (W, wg) of 2, its universal covering space (W, w) and to every
morphism [ /'] of Wy, represented by a map f: (W, wo)—(V, 1) the homotopy class [ f]
of J1 (W, w)y—(V, v).

As an immediate consequence of this fact we obtain the following

(3.3) LemMA. If X = { X, pi* Y and Y = { k1)
and Sh(lim {X;, p&+1}) = Sh’zllm_ {}Ek ey thZ qi” | are sequences of polyhedra

>
— = {H;I(Xk) (p +1)n and

{H(Y), (flzﬂ)r} =G
are isomorphic /Jrogroups for every n =0,1,2, ...
Now let us prove the following

(3.4) THEOREM. If (X, x,) is not approximatively 2-connected pointed continuum
and FA(X) = 2, then FAd(Xx Y) = Fd(X)+Fd(Y) for every Ye .

Proof. Without loss of ‘generality we may assume that (X, x,) is the inverse
limit of an inverse sequence of 2-dimensional polyhedra. {(X,, x,), pﬁl}

Let . (X4, @) —(X,, x,) be a universal covering projection forevery k = 1,2,

We know that (XxS2 (xo,50)) = lim{(X,xS?, (x,, o)), pEtY xidga} and
that y,xidg: (X %82, (a,, s)) ﬂ(kaS (\k,so)) is a universal

coveri
projection for every k = 1,2, "

It is clear that for every k =1,2,.. we have
(Yk)i(l’? 1)* (Pk+ 1)*(')’/:4— 1>i
and
/\
QP HE = (D), 0 0

where (?;: 72X, a)~H,(X) is the Hurewicz homomorphism.
This means that the pair o = (idy, %) is a morphism from a progroup

/\
I , NV
nz(Xk, x), (PE .} to a progroup H' = {H,(X),), (p}*1),}, where N denotes the
set of natural numbers. \
SII’ICC 0% my(X,, a)—H, (X)) is an isomorphism, we conclude that « is an iso-
morphism. of progroups and H' is not trivial.

The Kiinneth t i impli
nne heorem/fir singular homology ([13] p. 235) implies that the

progroups {H,(X,x 5%, (p"+1xidsl)4} = H" and H’ are isomorphic.
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Therefore
H'" is not a trivial progroup.
The hypothesis that Fd (X x $?)<3 implies that X x S* has the same shape as

the inverse limit of an inverse sequence { ¥;, g&**} of 3-dimensional polyhedra. From
/\

(HA(F), @ ).} are

(3.5)

Lemma (3.4) we infer that the progroups H” and H'' =
isomorphic.

Since dim ¥,<3 and H,(¥,) = 0, we conclude that H'’ and H'"' are trivial
progroups, in contradiction to (3.5). Thus the proof of (3.4) is finished.

Theorems (1.5), (3.1) and (3.4) give the following

(3.6) THEOREM. If X is a compactum and Fd(X) # 2 or Fd(X) =2 and X
is not approximatively 2-connected, then Fd(Xx Y) = Fd(X)+Fd(Y) for every
Yed.

Remark. The last theorem partially answers the question of K. Borsuk whether
Fd(Xx 8" = Fd(X)+n for X # & (see [1] and compare [11)).

Tt is known ([9] pp. 219 and 220) that if M is a PL n-manifold or a topological
n-manifold with 73> 6 and a compactum X is a proper subset of M, then Fd(X)<n—1.

Let M be a topological n-manifold and let XM be a compactum such that
Fd(X) = n, where n = 4.5. Then Xx S°SMx S° and Fd(XxS®)<n+5. On the
other hand, Theorem (3.6) implies that Fd(Xx S8 = n+6.

We get the corollary

(3.7) COROLLARY. If M is a topological n-manifold and a compactum X is a proper
subset of M, then FAd(X)<n.

Remark. Corollary (3.7) answers Problem (3.11) of [9].

4. Final remarks and problems. In this section we shall prove the following
theorem:

(4.1) TuEOREM. Let X be a continuum with Fd(X )< 0. Then the following con-
ditions are equivalent:

(@) Fd(Xx Y) = Fd(X)+Fd(Y) for every YeF

(b) c[X] = Fd(X).

Proof. (a)=>(b). We can assume that X = lim {X,, pit1), where X, is a poly-

hedron and dim X, = Fd(X) = dimX = n.
It follows from Theorem (1.8) that there exists a generalized local system of

coefficients & = ({X x 83, pitixidg}, Z1) on X'x S such that
42) H™*3 (X% 5% %) # 0.

Let 5, € S2 and let o, be a local system on X x {so} = ¥, which is a restriction
of gk to Yk
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Setting .
g (x, 50) = ('), 80)  for every xe X,
we get 2 map gi*l: Yoo Y.
Let op! X, xS*>Y, be a map defined by the formula
olx, 8) = (x,8) for every (x,s) e X,xS3
and let .%, be a local system induced on X;xS* by a, and A,. .

It is clear that & = ({¥;, gi*'}, o)) and &' = ({X,x §%, p™ ' xidg}, &5)
are generalized local systems of wbehan groups on X and XxS3.

Let us assume that H"(X; A") = 0.

Simce S is simply connected, for every path : [0, 1]= X, x S* from (x, 5,) € Y,
to (y, 55) € Y, the isomorphism £,(z): (&) x50 (Z )y, 50) 18 the same as the iso-
morphism Z(,7): (£}, 50 (Li)iy,s0> Where () oy and (L) 5y are groups
of #, which correspond to the points (x, s,) and (y, 5,) and Z,(z) and L (e, 7) are
isomorphisms which are induced by t and o,1.

This means that &, and % are canonicaly equivalent and that the groups
H"™3 (X% $; &) and H" ¥ (X% $3; &') are isomorphic:

Condition (4.2) implies that H"*3(Xx §3%; £ # 0.

On the other hand, in the proof of Theorem (1.5) (see [11]) a more general case
is considered and it'is proved that

H™ 3 (Xx 8% Y~ H"(X; HVQH(S?;Z)=0.
Therefore H'(X; A # 0.
The proof of Theorem (1.5) (see [11]) contains also the proof of the implication
(b)=(a).
The proof of Theorem (4.1) is finished.
The followin g corollary is an immediate conse’quence of Theorems (3.6) and (4.1).

(4.3) COROLLARY. Ler X be a contimuum with Fd(X)<oo. Then c[X]<Fd(X)
<max(2, ¢[X]). If FA(X) # 2 or Fd(X) = 2 and X is not approximatively 2-con-
nected, then Fd(X) = c[X].

Let us formulate some problems.

(4.4) PROBLEM. Is it true that there exists an approximatively 2-connected con-
tinuum X such that ¢[X]<Fd(X)?

(4.5) PROBLEM. Is it true that Fd (X ) = ¢[X] for every contimwum X with
Fd(X)<co?

(4.6) PROBLEM. I5 it true that Fd(Xx Y) = Fd(X)+Fd(Y) if X is a contimium
and Ye T

A positive answer to Problem (4.4) would give negative answers to Problems (4.5)
and (4.6).
It is also clear that if X is an approximatively 2-connected continuum and

clX <Fd(X)—2 then Fd(XxS‘)—Z and Fd(Xx Y)<Fd(X)+Fd(Y) for
every Ye
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