icm

Adding a random or a Cohen real: topological
consequences and the effect on Martin’s axiom

by

J. Roitman (Wellesley, Mass.)

Abstract. Let M be a model of set theory, B either the Coohen real or random real algebra.
‘Then in M the product of ccc spaces need not be cce, and there is a space all of whose finite products
are L-spaces; thus MA-+"] CH fails in M2. On the other hand, if M F MAx jinied, so does ME.

§ 0. Introduction. This paper studies the effect that adding a Cohen or a random
real to a model of set theory has on certain topological and combinatorial properties.
In particular, it is shown that MA = ~1CH fails, and that a weak form of it is pre-
served.

Since the main results are proved using forcing techniques, and since many of
them are essentially of topological interest, T have included a section which states
explicitly the forcing facts that will be used, and tries to give enough of an overview
so that the skeptical topologist with little background in forcing has at least some
chance of following the arguments. This is Section 3. The reader who wants a better
reference on forcing is referred to [6] and the forthcoming [1]; the set theorist curious
about the topology is referred to [7] and [13]. )

Thanks are due to Kenneth Kunen for much helpful and stimulating conver-
sation, and for permission to include Theorem 1.2; thanks also to Mary Ellen Rudin
for her generous hospitality in Madison, where many of these results were proved.

§ 1. Definitions and statement of results. Set theory means Zermelo-Fraenkel +
+ choice; CH is the continuum hypothesis; MA is Martin’s axiom (defined in
Section 5). Models of set theory are assumed transitive. An ordinal is the set of its
predecessors. |AL{is the cardinality of 4. —] means “not”.

A real is considered to be either a function from  into 2 or from w into w;
the choice will be clear from the context. We say, respectively, r €2® or rew®.

All spaces are assumed Hausdorff. A space is ccc iff every pairwise disjoint
family of open sets is countable. A space is hereditarily Lindelsf — abbreviated hL.
(vesp. hereditarily separable — abbreviated hs) iff every subspace is Lindeldf (resp.
separable). An L-space is regular hL not bs; an S-space is regular hs not hL. A family
of countable sets is almost disjoint iff its pairwise intersections are finite.
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Consider ‘the following sentences:

C: The product of two ccc spaces is ccc. s

L: 3X (every finite product of X is an L-space).

Ad: If {4, a<w,} is an almost disjoint family, then for some 4= ) A4,,
4] =] U 4,] and Ya<w, (|4 N 4,]|<o).

a<wy .

Ad,: If {4,: a<w,} is an almost disjoint family subsets of w, and B, then

for some infinite Ac | 4, Va<w, (|4 n 4)<weoe B).

a<wy

These sentences have the property that each of them is true under CH iff it is
false under MA + 71 CH. Precisely:

I. (Laver-Galvin) CH—"1C,
(Kunen) MA+ 1 CH-C.

1. (Juhasz—Hajnal) CH—-L,
(Kunen) MA+1CH-"1L.

I11. CH—"1Ad,

(Wage) MA+ 1 CH—Ad.

IvV. CH—"1Ad,,

(Solovay) MA + 1 CH—Ad,,.

It is the fate of these sentences with which we are concerned.

Given a model M of set theory, and a Boolean algebra B complete in M, M? is
the Boolean extension of M. (The reader who is uncomfortable with this notation is
invited to substitute M [r] for M below, where r is respectively a Cohen or a random
real, M[r] the smallest model of set theory containing M as a class and r as a set.)

THEOREM 1.1. Given a model M of set theory, and B the Cohen or randonmi real
algebra in M

() L is true in M”,

(b) C is false in M%.

The result (z) above vis-a-vis random reals is due to Kunen.

As an instant corollary we have that MA+ 71 CH is false in M%.

THEOREM 1.2 (Kunen). If M is a model of set theory, and B the Cohen real algebra
in M, then Ad is false in M". ‘

Lest this lull us into believing that M? slavishly agrees with CH in these matters,
we have ‘

a<wL

THEOREM 1.3. Let M be a model of set theory. Then
() If B is either the Cohen or random real algebra in M, and MAy g is
true in M, the MAgjeq is true in M® (Z-linked will be defined in Section 5).
(b)Y If B is the Cohen real algebra in M, and MAx coperea 1S true in M, the
MA s conterea 1S true in MP (Z-centered will be defined in.Section 5).

(©) In particular, under either of the above hypotheses, Ad, is true in MP.
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Again, (a) vis-a-vis a random real is due to Kunen.

These theorems have further topological consequences. Since a theorem of
Zenor tells us that the statement L is equivalent to 3 XVn<w (X" and S-space),
from 1.1 we have the existence in MZ of a space all of whose finite products are
S-spaces. The consequences of 1.3 are quite numerous, and only a few important
ones are listed below. Credit is given to the discoverer of the fact from MA + 71 CH.
Topological definitions and many of the proofs can- be found jn [11].

COROLLARY 1.4. Let M, B be as in any part of 1.3. Then in M the following state-
ments are true: ]

(a) (Silver) 3 a Q-set (= an uncountable subspace of the reals with every subset
a relative Gg). ‘

(b) (Tall) 3 « normal non-metrizable Moore space.

(c) (Solovay) No uncountable subset of the reals is a Luzin space (= every first
category subset is countable) or Sierpifiski (= every measure zero set is countable).

(d) (Przymusifski) The square of a x-Sorgenfrey line is normal, for #<C.

Finally, some questions:

(1) In M% is there a Suslin treg? A Luzin space? (Note that Kunen proved
that MAy enered = (3 & Luzin space «» 3 a Suslin tree), so under the hypotheses
of 1.3 these are the same question; it is well-known that if a Suslin tree exists in M,
it does in M%) .

(2) (an old chestnut) Ts there an absolute example of an L- space? An S-space ?
Are these the same question?

§ 2. The basic space. In this section we give our basic construction, prove that
it is canonical, and mention the basic criteria for L and § spaces.

Throughout this paper we will be working with subspaces of 2°, 29, 0® and 0®,
so we recall the convention that the standard basis for the space f~ is given by the
collection of N,’s, where ¢ is a finite function with domain cx and range =pf;
N, = {fef*: f} dome = o}; each N, clopen.

DEFINITION 2.1 (the basic construction). Let & = {fu: w<oa<w;} be a family

1-1
of functions such that f,: «— . Note that f, need not be onto. Suppose further
that re2® For w<a<w;, f<w;, define

bt s [ pse,

0 otherwise

and define Xz, = {g4: W< U< Wy} ‘

Xz ,— given the right # and r — will become the L-space of 1.1. (a); a twist
of it acéorc'ling to ideas of Galvin will give us 1.1 (b); and 2 modification of it will
give us 1.2. :

Xz, is quite canonical, as will be shown below. Fitst, however, we define a dual
familiar to many who work with S and L spaces.

4 — Fundamenta Mathematicae T. CIII
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DeriNITION 2.2, Let X = {g,: a<w,}=2%". The dual X* is the set of func-

tions h,, a<w;, where h,(B) = gy(e) for all o, f<w,.
~ We note that using the following characterization of hL and hs, it is easy to

prove that, if X is asin 2.2, Vn<w (X" is hL) < Vn<w (X* is hs), thus giving an
alternate proof of the theorem of Zenor quoted in Section 1. ‘ ‘

Facr 2.3. A space X is hL (resp. hs) iff' V uncountable Y< XV uncountable U
a basic open cover of Y Aue U such that {yeY: yeu} is uncountable (resp. Aye¥
such that {ue U: yeu} is uncountable).

Fact 2.3 will be used in the proof of 1.1. a.

DErFINITION 2.4. A subset of 2°% is Jef? iff it consists of a family of functions with
countable support; it is right iff it equals some X*, where X is left.

PROPOSITION 2.5. Every uncountable left set contains a subspace which is a sub-
space of an Xg ,.

Proof. Let X be an uncountable left set, X = {g,: «<w,}. By induction con-

struct a sequence f,w; where support g,f,. Let fi: k<w enumerate the ordinals
below f,. Define f,: . 1w by

Jd) =+i o fi=y, g0 =i and |{j<k: 947 = i}l = n—1L.

Let r be the characteristic function of the even integers. By definition,
L) = fe0) = 9.0) = 9.0) = r(£,) .

- Expanding {f,: a<w;} to a full set of col]apsing function &, we have X< Xy ,.

COROLLARY 2.6. Every 0-dimensional L-space contains an L-subspace under

a possibly weaker topology which is homeomorphic to a subspace of an Xg ,; and
every S-space contains an S-subspace homeomorphic to some X*, where X is a sub-
space of some Xgz.,.

Proof. Asis well known, every S-space has an S-subspace homeomorphic to
a right space, and every 0-dimensional L-space has an L-subspace which under
a possibly weaker L-space topology is homeomorphic to a left space.

A parenthetic comment: While =1 CH — every L-space has a 0-dimensional
L-subspace, and CH — 3 a 0-dimensional L-space, it is not known whether (3 an
L-space with no 0-dimensional L-subspace) is consistent.

§ 3. Some facts about forcing and a_touch of combinatorics. In this section we
identify the well-known set-theoretic facts that will be used. First, the general setting,.

Let M be a model of set theory, and in M let B be a complete Boolean algebra
(this means that A thinks B is a complete Boolean algebra). Then the Boolean-
valued model M? (not to be confused with the functions from B to M ) is defined
in M (for a definition, see e.g. [5]). The elements of M® are called terms, and a term
is best thought of as a set of possible elements together with their probabilities, the
probabilities being elements of B. Smallness in B is considered a virtue: if b<d,
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then b tells us more (the less probable an event, the more it can be distinguished
from other events). ‘

Let ¢ be a sentence with parameters in M%. If b e B, we say that b forces ¢
(abb. b1+ @)iff V&'<b, &' not - 719, and we say that ¢ holds in M® (abb. M F ¢)
iff Vbe B(b I+ @) iff {b: b1 ¢} is dense in B (where D dense in B iff Vb e BIb'
€ D (b'<b)). This is neither as circular nor as vague as it sounds, although it is
beyond the scope of this paper to go beyond this formalism; checking that ¢
holds in M% usually reduces to checking how big a chunk of a particular function
can be decided by a single condition. -

M? is also a model of ZFC — that is, if ¢ is a theorem of ZFC, M® £ ¢ — and
all the usual laws of logic hold. While M? is itself a definable subclass in M, M has
terms for all of M’s elements, and M is definably an inner model of M2, Thus in
either model we can talk about the other one.

‘We will not observe the usual typographical distinction between elements of 34
and elements of M%; thus if 4 € M, we will use the same symbol for its term in MP.
We note that M® adds no new finite sets of ordinals, and that given a set in M there
are certain things that are true of it in M iff true of it in M* — most importantly for
our discussion, the properties of being an ordinal, being finite (hence being infinite),
being an almost disjoint family, being pairwise disjoint, and, for the particular
algebras we will be using, being countable and hence being uncountable. We then
have the following principle: if ¢ is a hypothesis in which the only properties ascribed
to elements of M are as above, and ¢=M?® Fy, then M? k p—. :

A final convention: in proofs involving both M and M, unless stated otherwise,
the model to which an object belongs or in which a statement is true is assumed
to be M.

DerFiNITION 3.1, The Cohen real algebra B is the set of equivalence classes
of Borel sets of 2 modulo sets of first category. (For the proof of 1.2 we shall actually
use ©®, but this is irrelevant.) The random real algebra By is the set of equivalence
classes of Borel sets of 2 modulo sets of measure zero. p will always mean probability
measure.

DEFINITION 3.2. Let B = B, (respectively By). Then a term r € M is a Cohen
real (resp. a random real) over M iff VbebVueb (b I reu). We also say that r is
B-generic over M.

If v € b, we write b = [u] and note that in either algebra [N,] = {supb:b i re N;}
where N, as in Section 2. Using this we prove: .

FAcT 3.3. Let r be Cohen or random over M, B the appropriate algebra. Suppose
beB and {5,: n<w} e M, each o, a finite function from w into 2 (or, where the
underlying space is @, into w) and the domains of the o,’s are pairwise disjoint. Then
MPEre UN,,; and if 3kVn (Jdomo,| = k) then M** kre U N,,.

n<o n<w
Proof. Suppose not. Then for some b € B, {o,: n<w} as above, b+ r¢ UN,,.
n<a

But then b<[ ) (N,,)°] which, since the domains of the ¢,’s are disjoint, is a first
n<ao
g%
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category and, under the additional assumption, a measure zero set, which contradicts
the appropriate definition of B. .

Fact 3.3 will be used to prove the key lemma in the next section.

Both B, and By have particularly nice pictures attached. For B¢, we note
that P; = the standard neighborhood basis for 2° (respectively »®) is a countable
dense set. Hence if {p,: «<w,} € M is an uncountable set of sentences with par-
ameters in M®¢, and, for each a<w,, b, € Bc decides ¢, (that is, either b, I ¢, or
b, I @), by density of P in B¢, wlog each b, € Pg, and hence some single b decides
uncountably many ¢,. Since Vbe Bc{p: bl ¢} € M, we can roughly conclude
that M knows an uncountable piece of what M%¢ knows.

While By has no equally pleasant dense partial order, there is a separable metric
space associated with it that is quite useful: given [u], [t'] € Bg, define

d([u], [w'] = wn(udu)),

where 4 is symmetric difference. So given {¢,: a<w,}, {b,: a<w,}, such that each
b, € By, @, has all parameters in M®?, b, decides ¢,: either {b,: a<w,} is really
countable, and we can reach the same conclusion we did before, or uncountably
many b,’s cluster via the metric around some b, and thus infinitely many of them
have a common non-empty inf, b*. Since {¢: b* | ¢} € M, and since b, =b*=b* | ¢,
we can roughly conclude that M knows an infinite piece of what M®* knows.

Letting A be a term, and ¢, the sentence “a € 4™ the above argument sketches
the proof of: )

FacT 3.4. Suppose M® & A an uncountable set of ordinals, where B = B¢ or By.
Then the set W, is dense in B, where W, is the set of b € B for which A4, e M (b |- 4,
an infinite subset of A). Hence M® kA4’ e M (A’ infinite = A). In fact, if B = B¢
we can require that each Ay is uncountable.

Fact 3.4 will be used to turn terms in M?% into sets in M to which we can then
apply the key lemma derived from 3.3. We will actually apply 3.4 to terms for families
of finite sets of ordinals, or finite functions, but by canonical 1-1 maps into ordinals,
this is irrelevant. )

If b e By, b = [u], we write u(b) = p(u). Using this notation, to prove 1.3 for
the random real extension, we shall need

Fact 3.5. Ler ¢ be such that Yxe&(0,1) Abe By (b ¢ and u(b)>Xx). Then
MER . ‘

Proof. Otherwise some b1 1@ and u(b) = x (0, 1). But then b I p=-pu(h’)
<1-x&(0,1). Contradiction. '

Finally, we close this section with a combinatorial lemma due to Marczewski
that has nothing to do with forcing.

Fact 3.6. Let A be an uncountable collection of finite sets. Then A" an urcoun-
table subset of A, and F a finite set, such that a, d' e A=a na' = F and |d} = |&'].
A' is called a A-system, and F its root. (Use of fact 3.6 will be called a A-sysiem
argument.)
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§ 4. The constructive proofs; destroying MA. In this section we construct the
spaces of 1.1 and the family of sets promised in 1.2, thus demonstrating that adding
the most innocent sort of generic real destroys MA -+ —1CH. In the next section it
will be shown that the destruction is not total.

Recalling construction 2.1 let I' be the hypothesis

(I Xg, = {g 0<a<o,}eM®asin 2.1, Fe M, and r B-generic over M.

Let the hypothesis I be: I'+{range f,: @ <a<w,} is an almost disjoint family.

PrOPOSITION 4.1. Assume I', B = By or Bg; and fix infiiite a<w,. Then
MEE 3y<a3ﬂ>a(ga(ﬁ) = l—ga(y)). Furthermore, if o is a limir, then MPE
Vy<a3B>y(g.LB) = 1).

Proof. Let 4 = range f,e M. Then by 3.3 MPEre UNg 0,0 UNguys

ned ned

which by two applications of 3.3 and by definition of g, proves the first part. For
the second part, let o; o Then M® F Vn(r € U Ny, p,15) Which proves the second
j>r

part.
‘We now compress all the dirty work of this section into one lemma, which
roughly says that given a countable union {J N, in M of clopen meighborhoods

i<w
of (2°%)" with the right properties, and a term § in (Xg ,)" with all indices high enough,
g is forced to be in {J N,,. Since the lemma has to serve different theorems, it is
o
stated as a commoﬁ’ hypothesis (with explanations) followed by slightly different
hypotheses all leading to substantially the same conclusions.

Levma 4.2. Let B = Bg or Bg. Let A € M be a countable collection of disjoint
finite sets of ordinals (4 will roughly become the domains of the o’s above). Let F* be
a finite set of ordinals with infF*>sup{supF: Fe A} (F* is the set of indices for
functions in § above). Let Gr. be the term for a tuple of functions enumerating
{gy: xeF*} e M® (Gps is our § as promised). Suppose each F = \J F,, for Fe A,

aeF*
and suppose o, ¢ is a finite function into 2 with domain Fy (N, ,, is the neighborhood g,

hopes to belong to, for a.e F*). Let ® be the senferice: Gps€ Li nFN,,,, o+ Then
. FeA acF*

(2) Assume L. If 3i with range o, 5 = {i} for all Fe 4, o e F*, and all elements
of A have the same cardinality, then MEE .
(b) Assume I'. If {{o, p: € F*): Fe A} € M (implicit in the hrypothesis of (),
then MP¢ & . Furthermore, if all elements of A have the same cardinality, MBRE @,
Proof. (a) For Fe A let ap = |) range (f,)> Fo). Each ap finite of cardi-
aeF*

nality <|F|, hence wlog they all have the same cardinality, hence since each f,
is 1-1, wlog they are all disjoint. Let oy have domain ay, range o = {i}. Then
by 3.3, M®Ere | op, which by construction of X, ; proves MEE®D.

FeA

(b) Let ¢ = {y: Ja # & e Py (f.() = fe®))}. By the hypothesis, ¢ is
finite, hence wlog ¢ 0 F = @ for Fe 4. Let a, 5 = range (f/ Fo)- The a, §'s are
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disjoint since ¢ n F = @. Let o5 have domain ) 4, 5, 05(m) = o, (/5 '(m)) for
aeF% !

the unique o for which m e a, . (For B = By, the additional hypothesis ensures
the { a,, s wlog have the same cardinality.) Under the appropriate hypothesis for
asF#*

the appropriate algebra, again by 3.3 M®Fre () o5, and we are done.
Fed

For the proof of 1.1 our goal is to prove that I"=M"F Yn<w(X% , is an
L-space), where B = B; or Bg. Regularity is clear since M%F X ,c:2“’;; since
‘MPE Xy, is a left space, by the well-known fact the sup of the supp,orts of a left-
space is w; iff the space is not separable, we need

MPEsup{f: Jge Xz, (9(B) = )} = .
This follows from 4.1. The remaining step in the proof of 1.1 (a) is

. PROPOSITION 4.3. Assume I', B = B¢ or Bg. Then M®FVYn<w(X},, is hL).
Proof. Fix n, and for. U, Y terms in M®, let M® k%, where * is

() U= {E[ Ne,,;t @<} is a cover of ¥ an uncountable subset of (X )"
Jj<n -

The idea of the proof is to reduce U and ¥ so that any infinite subset of U in M
meets the hypothesis. of 4.2 (b), and covers all but countably many elements of Y,

This will mean that at least one element of U is uncountable relative to ¥, and
by 2.3 we will be done. )

The proof proceeds, then, by a sequence of reductions using 4-system and
counting arguments in M. '

Since M2 F %, wlog the conjunction of the following sentences is trué in M%:

(8) Vj<n{domo, ;: «<w,}is a A-system with each set of size k; and root F;.

(b) Vi<n¥ye FVa, & (0, ;00) = 00 ;7).

© {{oy: j<n}: {go,1 j<dye ¥} is a A-system with root F.

(d) If {gu,: j<n) and {g,;: j<n) e ¥, then o, = U0 = 0.

In other words, everything that can be a 4-system is; functions agree on the

common root of their domains, and repetitions of functions in the 7-tuples of ¥ are
‘uniform.

Letting 0, = o, ;> F; (well-defined by (b)) we have MPF Y [T ,,; by a further
counting argument we can use (c) to conclude that in MZ? th.c{fty‘:ﬂlowing is true:

(©) If {ga,: j<n), {ge,; j<nde Y and o; = o, then j = ',

And finally, using (¢) and what has gone before, wlog the following is true in M2,

(@) {domo, ;: «<®,} is a pairwise disjoint family for Jj<n.

©) {{o;: j<n}: {gsy: j<n)e Y} is a pairwise disjoint family.

Note that (¢') might reduce the size of #, but this is irrelevant,
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and g, =

o i

For notational convenience, write ¢, =[]0, ;, N, =[] N,
j<a j<n

{Gayt J<HP.

By 3.4, M®F13 infinite countable 4 M ({N,: d,e A}=U). So by 42 and
the principle mentioned before 3.1, M% kT infinite countable 4 e M such that
Y— U N, is countable (because by (¢’) at most countably many functions in ¥ do

GuEA
not' meet the hypothesis of 4.2 for a given 4 e M). But then MEr3g,e A
(Y n Nz, uncountable); so by 2.3 we are done.

The reader will note that, for n = 1, we have proved that X , has a property
suspiciously like that of an L-space of Juhdsz and Hajnal constructed from CH.
In their space, any nicely separated countably infinite uniform family of neigh-
borhoods covers all but a countable piece of the space; the construction easily adapts
to give every finite product L. That we look only at families in M is important,
because a corollary of 1.3 due to Silver is that under the appropriate hypotheses
on M the Juhdsz-Hajnal space does not exist in M. -

Now for the proof of 1.1 (b), which closely parallels the construction of Galvin
in his proof that CH—"1C.

DEerRINITION 4.4, Let E be a set of unordered pairs from o, | £ = 0;—~o.
The set How, is homogeneous for E iff Vo, pe H(a # p={B,a} e E). X is the
space for E i X = {H: H maximal homogeneous for E} under the clopen basis
consisting of {Np: F finite homogeneous}, where Ny = {H: H2F}. We note that
points of X are subsets of w;.

PROPOSITION 4.5 (Galvin). Let both E and E' satisfy the hypothesis of 4.4,
EnE =@, X the space for E, X' the space for E'. Then X+ X' is not ccc.

Proof. For o<a<w,, let u, = {(H,HY: ae HnH'}. u, # @, but if
B # o then (H,H' eu,nuy implies {f,a}cH n H" hence {f,a}e En E',
which is impossible. So each u, M uy =@, « # B.-

Now to find disjoint E, E’ whose associated spaces are ccc.

PROPOSITION 4.6. Assume I, B = B or By, and define E,, Ei in M® by
E; = {{B,0}: B<a and gp) =i}. Then if X, is the associated space for E;.
MZ ¥ X, is ccc. : .

(Since Ey N E; = @, and since by 4.1 their respective unions are large enough,
4.6 is all that is needed to prove 1.1(b). We also note that the Galvin proof from CH
essentially recomstructs the modified Juhdsz-Hajnal space mentioned after 4.3;
which can be used analogously to our use of X , in the CH proof.)

Proof of 4.6. We give the proof for i = 0. Suppose U is a term such that
M¥® E U is an uncountable family of open subsets of X,. We need to show that U is
not pairwise disjoint in M”. :

We work entirely in MZ. Suppose U = {N,: 2<w,}. We let F, be the finite
subset of w, for which N, = Ng,. Then, since U is uncountable, wlog {F,: Ny, e U}
is a A-system with root F*, and by 3.4 JA4eM (4 is countably infinite and
Fe A=Nye U). Given Ng, N € U, with inf (F— F*)>sup(F'—F*), how can they
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be disjoint? Only if Joe F—F* and 3B e F' —F* with g,(f) = 1; i.e. only if
Gp= {g,: a€F—F*)y ¢ (N, )"l where domoy = F'—F* and oy is identically 0.

Butif ¥ = {gs: Fe A4}, by 42 Y— {J Ny is countable (remember that the sets of
FeA

indices for distinct members of ¥ are disjoint). And gre N, Ngn Ny # @,
for inf(F—F*)>sup(F'—F¥*). So U is not pairwise disjoint. ‘

Note. Because of their origins in an L-space, it is easy to see that a maximal
homogeneous subset of an E; is countable, and hence that the spaces X; have the
further Suslin-tree-like property that given an uncountable collection of basic open
sets, at least two are mutually disjoint. This is true of the Galvin space as well.

This section closes with the proof of 1.2, due to Kunen. Again, the construction
used is an adaptation of X, v

DerINITION 4.9. Let & = {f,: w<a<w}, fi! rx1~+1w. Letting B be the set of
countable limits of limit ordinals, fix, for o € B, a sequence of limit ordinals f§ 7,

k<. Let ki list ;7 *([B%, Pi+1)) in increasing order. Let r € w®, and let ‘
ai = {hi(): j<rk)} .

Define, for « € B, the set 4, = ) 4f.

k<o
(What A, does is look at each interval [}, fr.); take each such interval as
a chunk of the domain of f,, and using % as a guide, throw in the first r (k) things
listed.) ‘

PROPOSITION 4.10. {4,: o € B} as in 4.9 is an almost disjoint family of countable
sets. )

Proof. Each 4, is clearly countable. Given o e B, fia and a>da B,
Ak(Br>a'); hence 4, N A= | af which is finite.
Jj<k
Under the right hypotheses, it is these 4,’s which will become the family con-
tradicting Ad.

 ProrositioN4.11. Let r be B-generic over M, and let F, {fik<w,0eB}eM.
(he;zce s k<o, ae B e M) be as in 4.9. Then where A, is defined as in 4.9,
M™€ F every uncountable subset of w, intersects some A, infinitely often.

Proof. By 4.10, M®° k {4,: o€ B} is an almost disjoint family of countable
sets. The fact that B¢ is now defined with reference to w® is no problem, since the
relevant generalizations of facts in Section 3 all go through. What we will not be
able to do, however, is put a bound on the ranges of the finite functions we tonsider.
which is why the proof we not work for Bg. ’

Again, work entirely in MZ, Suppose 4 is an uncountable subset of w,; wlog
between any two ordinals in 4 there is a limit ordinal. By 3.4 3 infinite countable
A'cd, A’ e M; and by our second assumption on A Je3{6,: k<w} e M, cach
o €', 6, nue B. Wlog we have a sequence in M ’
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Bro<00<Bror1 S Pn SOy <Py oo

and we let my = f 1(5,).
Let £ be the characteristic function of A4,. Then a similar proof to that of 4.2
gives us £€ |J N, where o, is identically O on its domain,

n<k< o
domay, = [f, Bucrs) 0 {f2 () j<sm},

for all k<w. But this implies 4, n 4 infinite, and we are done.

§ 5. A salvage operation. In Section 4, by results I, II and IIT quoted in Section 1,
MA +1CH was destroyed in three ways. Here some of it is saved. .

Recall the definition of Martin’s axiom: If P is a ccc partial order (i.e. no coun-
table antichains) and {D,: a<x<¢} is a collection of dense subsets of P, then there
is a filter G=P which intersects each D,. G is called generic for the D,’s.

Note that CH=>MA (Rasiowa-Sikorski).

If @ is a property of partial orders, we define MAg: If P is a ccc partial order
with property @ and {D,: a<x<e} is a collection of dense subsets of P, then there
is a filter G P which is generic for the D,’s.

DEFINITION 5.1, Pis X-linkediff P = |J P, where any two elements of a given P,

n<e

are compatible (we say P, is linked). P is Z-centered iff P = |J P, where any finite

n<o

subset of a given P, has non-zero inf in P (we say P, is centered).
FACT 5.2. Bg is Z-centered and By is Z-linked.

Proof. For Bg, let {b,: n<o} enumerate the countable dense set. Then letting
‘B, = {be B¢: bzb,}, we are done.

For By, we let {b,i n<w} be a dense subset of the associated separable metric
space, and if (b,)>1/m we define B, ,, = {b: p(b)>1/m and d(b, b,)<m/2}. Then
each B, , defined is linked, and we are done.

THEOREM 5.3. Let M be a model of set theory, B = B or By. Then MAg jinkea 18
true i M—>MBEMAgikea; a1d MAs. comerea 13 true in M — MEB E MAg._comered-

Proof. We give the proof only for Z-linked, since the proof for Z-centered
is exactly parallel. First we give the proof for B and then indicate how to modify
it for By.

Let B = Bg, P = P its countable dense subset. Suppose @ is a term, MPEQ
is -linked. Then 3 terms O,, n<w, such that MEE(Q =\ Q, and each Q, is

n<wo

linked). Suppose further that {D,: a<x<e}is a term, M®EVa<x (D, is dense

“in Q). We proceed to construct 0%, a ¥ -linked partial order in M, which reflects

much of the structure of Q:
0F = {5, {¢4}pesy® § @ maximal finite pairwise incompatible subset of P,
and Vb e sIn(b Fgpe O}
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The partial order is defined by:

G {Otpesy <55 {Gp}pesy iff s refines s' and if b ey, bes,

then b<b'=h IF q,<q,, .

Q* is X-linked: Given any finite s = {b,,..,b}<P and any k-tuple
<mygs ., myy of integers, {<s, {Gu}pesp: by I gy, € Q) is linked, and there are
only countably many such families defined. So Q¥, their union, is X-linked.

For be P, a<ux, let

‘Df,a = {8, {gp}pesy: A €8, b'Sh, b I gy & D,}.

Since each E, = {b: 3¢(b Ik ge D)} is dense in P, each DZ‘,“ is dense in O*.
Let G* be a filter for Q* in M, G* generic for the Dy ,’s, and define G e M® by

blrgeGiUf {b'<h: A, {g}Dres € G¥, W es, ¢ = gy} is dense below b.

_ Then by definition of the partial order on Q% MBE G a filter; and by the E,’s,
MBEGN D, # @ for all w<x. So the Cohen case is done.

For the random real case, we show that Vx<1 (b I IMAg ke =1 (B) <X).
By 3.7, this shows MP® E MAj i e- :

So suppose b IF TMAy jieq. Then 30, {D,: a<x<c} as in the Cohen case,
b -3 no filter for @ generic for the D,’s.

Fix x<1, and let B = By. Proceed as before, changing the definition of Q%
only to remove the requirement that s be maximal, and to add the condition that
H(sups)>x.

QO is X'-linked by a slightly fussier argument: Given the finite tuples {xq, .oy XD,
§YO, s Vi Ly, mo.>, v gy YD, (mf), w.> My Where each m;, my, n; are
integers, x;, y; are rationals, 3 x;— ¥ y,>x, and b,, as in the proof of 5.2, B, e

i & B, m.

i<k

defined as in 5.2, then the following set is linked:
{<S’ {Qb}bss>: § = {b0> rees bk}:r each bi € an,mu :u(bi)>xi=

‘ ' d(b;, b,)<yy2, and b | 90, € Qu} -
Again, there are only countably many such families.
& o

Now D; 1s.deﬁned tobe {{s, {}se>: Voes(b Ik gy € D} D} is dense because
all we require is p{sups)>x, and given any gq, u(sup{b: bk ¢’ € D,, ¢'< gy = 1.
G* and G are defined as before, G* generic for the Djs and by definition of D} we
have that b IF G n D, = G=pu(b)<x. Hence u(b)<x if b |- A no filter in Q generic
for the D,’s, and we are done.

How far can 5.3 be extended? Not very. A likely candidate is MA,c,, , where
a partial order has PC,, iff every uncountable subset has an uncountable 1centered
subset. But Kunen has pointed out that Hajnal and Galvin’s proof of ZFC=-(PC,
+2Z-linked) adapts to.the construction of 1.2 to give M?¢ does not preserve MApe, "

@y
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We do not know what happens in MZ® but probably the property to investigate
there, instead of PC,,, is K — every uncountable subset has an uncountable linked
subset.

§ 6. Generalizations to higher cardinals. Let x be a regular cardinal. Weak »-CH
is the statement that o<<ix=2%<x. .

Baumgartner’s axiom for » (BA (x)) says the following: if P is a partial order,
any descending chain of <x elements of P has a non-zero lower bound (we say P
is <x-closed, P = |J P, where cach P, is linked, and {D;: B<1<2*} is a family

6K
of dense subsets of P, then P has a filter generic for the Dy’s.

We say that a <#x-closed partial order is #rivial iff it contains no embedding of
the full binary tree of height »; non-trivial otherwise. BA (5),y 18 trivially true.
On the other hand, BA(%)=-(weak x-CH iff 3 non-trivial P satisfying the hypo-
thesis of BA ()). Baumgartner has proved that BA.(x)+weak »-CH+2" large is
consistent (the Rasiowa-Sikorski proof tells us that 2* = x* =BA(x)).

Then exactly imitating the proof of 5.3, if B is the algebra for adding a Cohen
subset of x (conditions are functions under reverse inclusion from ordinals <
into 2), BA(x) is true in M=>M" E BA(%).

If BA/(x) is BA (%) with the word “centered” substituted for “linked”, then the
entire discussion above holds true with BA'(x) substituted for BA.(x).

On the other hand, if » is regular and weak »-CH holds in M, and B adds
a Cohen subset of » (for (c) below we take functions into x, not 2, analogously
with 1.2) then the proofs of Section 4 generalize straight forwardly and we have
that in M? the following results hold (for definitions see [11]).

(a) The products of %™ -cc spaces need not be x*-cc (note: ccc means @;-cc).

(b) AXYn<w (X" is hereditarily »-Lindelof but no subspace of cardinality x is
dense).

(¢) 34 an almost disjoint family of %* many subsets of »*, each of cardinality x,
such that if Yex™ and | Y| = »x* the ¥ intersects some set in 4 in a set of cardi-
nality . (Here almost disjoint means a,be A= |a n b| <x.)
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Hereditarily indecomposable tree-like continua
by

W. T. Ingram (Houston, Tex.)

Abstract. In this paper it is shown that there is an uncountable collection of mutually exclusive
hereditarily indecomposable tree-like continua in the plane such that if M is a compact metric
continuum then M cannot be mapped onto every member of the collection.

1. Introduction. Tn 1951 Bing [2] asked if each non-degenerate bourded heredi-
tarily indecomposable plane continuum which does not separate the plane is a pseudo-
arc, Tn an abstract in 1951 Anderson [1] stated that there exist hereditarily inde-
composable tree-like continua which are not homeomorphic to the pseudo-arc. It
is the purpose of this paper to demonstrate that there is an hereditarily indecom-
posable tree-like continuum which is not a continuous image of the pseudo-arc.

Tn [5] we demonstrated the existence of a collection G of atriodic tree-like con-
tinua with the property that if M is a compact metric continuum then M cannot
be mapped onto every member of G. In this paper we construct a collection H of
mutually exclusive hereditarily indecomposable tree-like continua in the plane such
that if ¢ is in G then g is a continuous image of some member of H. Thus, H ilso
has the property that if M is a compact metric continuum then M cannot be mapped
onto every member of H.

For notation (including T, f, and g) and conventions used in this paper the
reader is referred to [3], [4], and [5].

2. We present in this section the main working lemma of the papsr.
Lemma. Suppose k is a mapping of T onto T such that (1) if t is a point of

A
{0, A,B,C, j} then k(f) =t and k™*(7) = {t} and (2) if tis a point of T— {0,3—}

. A o .
and o is the component of T— j 0, —i}, con‘aining t then k(1) is in a. Then there is

L

’ A
a mapping b of T onto T such that (1) if t is a point of {O,A,B, C’E} then
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