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Hereditarily indecomposable tree-like continua
by

W. T. Ingram (Houston, Tex.)

Abstract. In this paper it is shown that there is an uncountable collection of mutually exclusive
hereditarily indecomposable tree-like continua in the plane such that if M is a compact metric
continuum then M cannot be mapped onto every member of the collection.

1. Introduction. Tn 1951 Bing [2] asked if each non-degenerate bourded heredi-
tarily indecomposable plane continuum which does not separate the plane is a pseudo-
arc, Tn an abstract in 1951 Anderson [1] stated that there exist hereditarily inde-
composable tree-like continua which are not homeomorphic to the pseudo-arc. It
is the purpose of this paper to demonstrate that there is an hereditarily indecom-
posable tree-like continuum which is not a continuous image of the pseudo-arc.

Tn [5] we demonstrated the existence of a collection G of atriodic tree-like con-
tinua with the property that if M is a compact metric continuum then M cannot
be mapped onto every member of G. In this paper we construct a collection H of
mutually exclusive hereditarily indecomposable tree-like continua in the plane such
that if ¢ is in G then g is a continuous image of some member of H. Thus, H ilso
has the property that if M is a compact metric continuum then M cannot be mapped
onto every member of H.

For notation (including T, f, and g) and conventions used in this paper the
reader is referred to [3], [4], and [5].

2. We present in this section the main working lemma of the papsr.
Lemma. Suppose k is a mapping of T onto T such that (1) if t is a point of

A
{0, A,B,C, j} then k(f) =t and k™*(7) = {t} and (2) if tis a point of T— {0,3—}

. A o .
and o is the component of T— j 0, —i}, con‘aining t then k(1) is in a. Then there is

L

’ A
a mapping b of T onto T such that (1) if t is a point of {O,A,B, C’E} then
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-y
h(t) =t and k() = {1}, (2) if ¢t is a point of T—-{O, 2} and o Is the component of

A
T— {0, ~2—} containing t then h(f) is in o, and (3) kf = fh.

B\ B A A ]
Proof. Let2(0) = 0, 11(—2—) =5 and h<~2—) = 2.Supposerisin T—Jo,d Bl

177272
. A B . ,
and L is the component of T—{ 0, 35 containing £. Then, let h (1) = L £~ 1(k/(1).

It is easy to see that & is a function and kf = fh.

A A 34 B B 2B C :
LetS:jo,——,m,»-—,——»-,m b il 7 s int of $uU ! b
T 2} Note that if 7 is a point of S U {4, B, C}
then k() = ¢ and A7) = {r}. Moreover, if ¢ is in T—S and « is the component
of T'—§ containing 7 then A() is in «. Conclusions (1) and (2) are consequences of

these observations. To complete the proof of the lemma we must show that 4 is
continuous.

Suppose ¢ is a point of TS and U is an open set containing /(7). There is an
open set ¥ containing /(#) such that ¥ is a subset of U, S (V) is open, and if K is the
component of 7— S containing ¢ then ¥ is a subset of X, In fact, V.= K~ (f 717 (1)
Since kf is continuous, there is a connected open subset W of T—S containing.t such

that &f (W) is a subset of f (). Then h(W)is a subset of V. Therefore / is continuous
at each point of 77— 8.

. . A
Suppose ¢ is a point of {0, —2—} and U is an open set containing /(7). There is

an open set V' containing i (7) such that ¥ is a subset of U, £ (V) is open, and if K is
the component of (T—S) U {1} containing ¢ then ¥ is a subset of K, In fact,
V=Kan(f1f (). Since kf is continuous there is a connected open subset W of
(T—S) v {t} containing # such that kf (W) is-a subset of £ (V). Then,‘lz(W) is a subset

of V. Therefore, % is continuous at each point of j O,ﬁ},
. 2

L

A 34 B 2B C B )
nd U is open set containing /i (f).

Suppose 7 is a point of %4, PRETEY 5y a
There is an open set ¥ containing h(?) such that ¥ is a subset of U and if K is the
component of (T—S) u {f} containing ¢ then ¥ is a subset of K. In fact
V=Kn (f"’f(V)) but in this case f (V) is not open. However, there is a connectcc;
open subset W of (T—S) U {f} containing ¢ such that kf (W) is a subset of £ ().
Then, A(W) is a subset of V. Therefore, h is continuous at each poiﬁt of
{A 34 B 2B C B}

eI
This completes the proof.
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.« Remark. Tf & i3 a mapping satisfying the hypothesis of the preceding lemma,
there is a mapping h satisfying the conclusion of the lemma with condition (3) re-
placed by ky = gh.

3. Main theorems.
THEOREM 1. Suppose M is the inverse limit of the inverse limit sequence {T;, {7}
where for each i Ty = T and f* Y isin { f, g}. Then there exist an hereditarily indecom-

- posable simple triod-like contimuum M’ and a mapping of M' onto M.

Proofl. We construct M’ as the inverse limit of an inverse limit sequence { T[-,{c{ }
as follows. For cach / let Ty = T, 1F i = 2j, let k{** = fIYL If i = 2j—1, let i+t
be a sufficiently crooked map of T, onto T; which also satisfies hypothesis (1) and (2)
of the lemma of Section 2. By “sufficiently crooked” here we mean that each non-
degenerate proper subcontinuum of the resulting inverse limit should be a pseudo-arc.

That each proper subcontinuum of M is a pseudo-arc may be seen by observing
that if K is a proper subcontinuum of M’ there is a positive integer N such that if

% - . o
iz N then neither O nor S is in 7,(K). The proof of this is very much like a similar

part of the proof of Theorem 1 of [5]. Thus, X is homeomorphic to an inverse limit
on intervals with crooked maps and is therefore a pseudo-arc.

Now, we use the lemma of Section 2 to construct a mapping of M’ onto M.
Let hy be the identity mapping on 7% Note that hy k3 satisfies the hypothesis on the
mapping & of the lemma. Since /2 is in {f, ¢} and k3 is f7, there is a mapping/,
of Ty onto T, such that h k3 = fZh,. Then hyk3 satisfies the hypothesis on the
mapping k of the lemma. This yields a mapping A3 of Ts onto T such t].nat
hoki = f7 hy. Continuing this process we obtain the following inverse mapping

system.:

K% 1t - "
T, T, Ty < Tay-y Ty Thjs1
It ! 2 hy fyea
s
7} 7 -
A Ty€ Tj Tj+1 g}

Since the diagrams in this system are commutative, the sequence of mappings
hyyhy, . induce a mapping of a continuum homeomorphic to M' onto M. Thus
there is a mapping of M’ onto M.

TugoreMm 2. There exists in the plane an uncountable collection H of mutually
exclusive hereditarily indecomposable tree-like continua such that if M is a member
of G then there exists « member of H which can be mapped onto M.

Proof. That the theorem is true without the requirement that the members of A
be embedded in the plane is a consequence of Theorem 1. To carry Olli .the.plane
embedding one need observe that the insertion of the crooked maps A3}y in the
inverse limit sequences involyes changing the construction i.n Theorem 4 of [4] by
alternately inserting appropriately crooked simple‘tree-chams.
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THEOREM 3. If X is a compact metric continuum and H, is a subcollection of H such
that X can be mapped onto every member of H,, then Hy is countable.

Proof. This is a consequence of Theorem 2 of this paper and Theorem 3 of [5].

THEOREM 4. Uncountably many members of H are not a continuous image of the
pseudo-arc.
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The theory of Archimedean real closed fields
in logics with Ramsey quantifiers

by

J. Cowles (Princeton, N. T.)

Abstract. The theory of Archimedean real closed fields is shown to be complete, decidab‘le,
and model complete in a class of logics, due to Malitz and Magidor, which extend the logic with
the cardinal quantifier, “There exist infinitely many...”.

1t is assumed that the reader is familiar with the model theory of first order
logic as set forth in the book [{] of Chang and Keisler. In particular, the reader
should be acquainted with the definitions of completeness, model com'pleteness, .and
decidability in reference to first order logic and to certain of its extensions described
below. . .
Tt is well known that there is no first order theory of Archimedean real closed
fields as distinct from the theory of real closed fields. In fact, using the method of
eli}rﬂhation of quantifiers [6] or [2], it follows that the first orde}' t}'xeory of real closed
fields is complete, decidable, and model complete. The situation is'not altered Wh‘en
a new cardinal quantifier Q, with the Ko-interpretation [5], is added to th.e logic:
Add a formation rule to those of first order logic; if ¢ is a formula, then so is Oxq;
and 9 is a model of Qx¢ just in case there are infinitely many elements x in t.he
domain of 2 which satisfy ¢. In the case of real closed fields, the method Of.elilnln-
ation of quantifiers can be extended to the cardinal quantifier [3] or [7], showing that
the theory of these fields in the extended logic is complete, decidable, anc_l model
complete. Thus, as in the case of first order logic, there is no t}‘lem_'y of Archimedean
real closed fields in the logic with the quantifier “There exist infinitely many...”
which is distinct from the theory of all real closed fields. In contrast with the above,
the situation is different in logics, described below, due to Malitz and Magi.dor [41,
which are generaﬁzations of the logic with the cardinal quantifier. Th_ese logics have
enough expressive power to distinguish Archimedean from non-Archimedean fields.
Tt will be shown by the method of elimination of quantifiers that the theory of
Archimedean real closed fields in these logics of Malitz and Magidor is complete,
decidable, and model complete.
5 — Fundamenta Mathematicae T. CII
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