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Partition generation of scales
by

Paul E. Cohen (Bethlehem, Penn.)

Abstract. If f, ¢ ¢ “o then say that f<g if (@m)(¥Yn>m)[f)<g@]. A scale is defined as
a sequence ¢ fx| a<n} which is strictly increasing in this order. The partition F: [x]*—2, defined
for a<fl<x by F(a,f) = um(Yn>m){ fun)<fp()] is investigated. Conditions are found under
which a scale may be derived from a partition, and under which that scale will be unbounded in “w.

Introduction. Suppose that f, g € “0. We will say

1. f<g b.e.p. (by end piece) it @m)(Ym>n) [f(m)<g(m)]. In this case we
write (f, g) = pn (Ym>m)[f(m)<g(m)].

2. f<g s.b.e.p. (strictly, by end piece) if @En(¥Ym>m)[f(m<g(@m)]. In this
case we write (f, 9)F = mn(¥Ym>n)[f(m)<g(m)].

A subsot of “w which is well ordered (b.e.p.) (or an increasing enumeration of
such a subset) is called a scale. Tf it is well ordered (s.b.e.p.) then it is called a strict

“scale. Tn this paper we will try to give some explanation of why a strict

scale {a,| x<w,> might be unbounded.

Tt is easy to see that if 4 S “w is of power & then there is a strict scale {a,| a <,
which majorizes 4 (s.b.e.p.) (.., Vae A)Ju<wy) [a<a, s.b.e.p.]). Thus if the
continuum hypothesis is assumed then there is a strict scale {a,| «<w,)» which
majorizes . When the continuum hypothesis fails, this may still be the case, but
it is also possible that any scale so short may be bounded.

Trrorkm (Scott, Solovay [10]). If @ model of set theory satisfies V = L[G]
where G is a genevic set of random (Solovay) reals over L then “w n'L ma-
Jorizes “w b.e.p.

On the other hand, the techniques of [4] may be employed to show the following.

THEOREM. Assume Martin’s dxiom (what is called A in [5]). Any B<“w of power
less than 2° is bounded $.b.e.p. ‘ ‘

The existence or non-existence of unbounded scales of type @, has considerable
influence on the structure of sets of real numbers. Rothberger [71, [8], [9] examines
these connections in some detail. Tall [12], Heckler [4], Borel [1] and Hausdorff [3]
may also be of interest to the reader concerned with such questions,
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Rothberger also shows [9] that the existence of an unbounded scale of type w, is
equivalent to the existence of an (w,, w*) gap. We say that (4, B) is a {x, A*) gg
if AU B=“w and

1. a<b b.e.p. whenever ae 4; be B,
2. A and Bhave order types » and A* (= the reverse order type of 1) respectively;
3. There is no c &€ “w between 4 and B (b.e.p.).

‘We observe that there is an unbounded scale of type w, iff there is an unbounded
strict scale of type ;. . .

Hausdorff [3] constructs an (w, , ) gap by recursively choosing an incerasing
(b.e.p.) sequence {a,| a<w,> and a decreasing (b.e.p) sequence {b,| a<w) 50
that a,<bg (b.e.p.) for a, f<w;. Where f'(«, f) = (u,, by), he chooses the sequences
so that for cach f<w, and n<ow, {a<p| f(x, B)=n} is finite. Now if there is a ¢ s0
that a,<c<b, (b.e.p.) for all « then there is an ne » with {«| (a,, ¢)<n} uncount-
able and so a f<w,; with {a<p| (a,, )<n} infinite. But then there must be an »’
with {u<p| f(x, f)<n'} infinite (which contradicts the choice of f). Thus the
properties of the function f determine that {{a,| a<w,}, {b,] x<w,}> forms a gap.
In & 2 and 3 we investigate whether anything analogous may hold for an unbounded
scale.

§ 1. Unbounded and majorizing scales. Let us say that a scale g, | a<x) is
unbounded on all infinite subsets of w if whenever f: w—® is one to one then
{g,of] a<x) is unbounded. If

(Vhe®w)(@a<x)(Vfe“w) [fis one to one = g,ofghof b.e.p.]

then we shall say that {g,| «<x) is uniformly unbounded (on all infinite subsets
of w).

1.1 THEOREM. If {g,| a<x) is a scale then the following are equivalent.
L. (g, a<x) majorizes “o.
2. £g,l a<) is uniformly unbounded.

Proof. It is easy to see that the first statement implies the second, so suppose
the second is true. If /& “w then choose a<x using the uniform unboundedness
condition. We claim that < g, (and so, since 4 is arbitrary, {g,| o< majorizes “w.
Otherwise there must be an infinite xS such that 7 e a implies g (m)<h(n). But
then if f enumerates a, g, o f<hof which contradicts the choice of o.

In the remainder of § 1 we will assume familiarity with forcing and in particular
with Solovay and Tennenbaum’s method of iterated forcing [11]. Specifically, we
will want to iterate the forcing conditions of the following lemma.

1.2, LeMMA. If AS®0 then there is a set S 4 of countable chain condition (c.c.c.)
Jorcing conditions such that forcing with S, introduces an f such that =g (b.e.p.))
whenever g e A. : o ’
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Proof. Let S, be the set of all {u, v} where u is a function into o from a finite
subset of w and for some finite ¢S 4, v: w—w is defined by o(n) = max({w(m)| wea}).
Let Cu, vp)<(w', v") mean that u2u' and for ne dom (u—u'), u(n)=v'().

Since {u, v) and {u, v'> are always compatible, S "4 18 c.c.c. It is clear that if A
is a standard transitive model of ZFC, if 4 € M and S, is as described and if G is
Sy-generic over M then f'= {J {ul {u,v) e G} has the properties claimed.

Observe that if % is a regular cardinal and {f,| «<x) is a scale which majori-
zes “w then any unbounded scale must have cofinality %. This fact will be used to
prove the following.

1.3, THEOREM, The existence of a scale (of length w ) which is unbounded on edch
subset of w docs not imply the existence of a scale (of any length) which majorizes “o.

Proof. By the preceeding remarks, it will suffice to find 2 model of set theory
in which there are two scales of different cofinalities, each of which is unbounded
on every subset of w (where one of the scales has length w,).

Let M be any countable standard transitive model of set theory. Let P, O € M
be sets of forcing conditions obtained by iterating the forcing conditions of the lemma.
Thus P is obtained by iterating o}’ times the forcing conditions S4,, where for
a<w,; A, is the set of functions added by using the conditions S, , for B<a. Qis
obtained in a similar manner, only the iterations are carried out w} stages.

Solovay and Tennenbaum [11] show that c.c.c. is preserved in the iteration
process. It follows that if G is P-generic over M then Q is c.c.c. in M[G] and hence
that Px Q is c.c.c. in M. (Alternatively, P x Q may be viewed as having been con-
structed by an (m, +w,)"” stage iteration, so that c.c.c. is seen to follow directly
from the Solovay-Tennenbaum lemma.)

Let G'x H be P x Q-generic over M. -Since Px Q is ¢.c.c, cardinals are the same
in M as in M[Gx H] so we will write e.g. w; for o} = o¥*", Through only
a slight abuse of language we have then that G = (g,| a<w,> and H = {,| a<w,)
are scales.

To complete the proof, we need only that G (and H) is unbounded on every
subset of w. But otherwise there are f, k€ “w n M[G x H] such that {g, o f| x <)
is bounded by /o f (b.e.p.). But then for some A<w,, hofe M[{g,} a<A>] and
ga<heof which contiadicts the fact that g, is generic over M[H][{g,] a<ADL.

Remark. Tf %> is a regular cardinal then there is a natural generalization of
the notion of a scale to what we will call a x-scale. If M is a model of set theory,
G is goncric over M with respect to c.c.c. conditions and g e *x% is in M[G] where
cf()>w in M then there is an fe M such that (Ha<x)(V>w) f(B)>g(B). Thus
majorizing (unbounded) x-scales in M remain majorizing (unbounded) in M[G).
If M is taken to be a model of V = L, in the preceeding proof, then it is seen that
Theorem 1.3 is true even when there are majorizing »-scales of length x* for all
regular ». Professor Gddel suggested this added requirement to the author.

§ 2. The governing of strict scales. If X is a well ordered set and d is an ordinal
then [X7° is defined to be the set of all subsets of X with order type 8. A function
1%
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Fi y*~o is said to govern a strict scale {a,| o<y provided that when a<pf<y
then f({o, BN =, 4. f1 [P~ is said to be transitive if

f (o, ) <max(f ({or, B, S ({o, v1)
whenever o< f<d<y.
The dual of a strict scale {a,| o<y} is defined as the transitive function f where

f{a, BY) = (@, ap)°  for

‘We note that a strict scale is governed by its dual.
[+ P]*> o is said to have the scale property if

(Va<y)(Vn<w)@m<o)(YAso)[f[4d v (P sn=>Ad<m].
In this case <{a,| a<y) is called the dual of f provided that for a<y and n<ow,
' a () = (VA=) [f'[4d v {}Psn=>A<m]].

a<p<y.

2.1. LemMA. If f: [y*—w is transitive and has the scale property then f governs
its dual (which must therefore be a strict scale).

Proof. We need to show that if a<f<y and k>f({x, 8}) then a,(k) <ay(k).
Choose Aca so that 4 = a k) and f"[4 U {«}]?ck. Since f is transitive,
F'l4 v {a, B>k and so (k) Zak)+1. N

2.2. LEMMA. If there is a strict scale {a,| a<vy) which is governed by f, then f has
the scale property.

Proof. Otherwise
Fo<p)En<w)Ym<w)FAAcanf"[4 v {Pcnad>m].

But this is impossible since it follows that (Vm e w)[a (n)>m].

2.3. THEOREM. Let f: [y]>*~w be transitive. There is a scale which is governed
by f iff f has the scale property.

Proof. This follows from Lemmas 2.1 and 2.2.

Let {a,| a<y) be a strict scale and let f be its dual. We will say that <{a,| a<y)
is conservative if for a<y and n<w,

a,(n) = pm (VB <o) [f ({o, B} <n=>ap(m)<m] .
2.4. THEOREM. If f: [y]*—> w is transitive and has the scale property then the dual
of f is conservative. '
Proof: Let {a,| a<y) and f be the first and second duals of f and suppose « is
smallest so that there is an n for which

a,m)>k = pm(¥ <o) [F ({o, B}) <n=ap(n) <m].

By the definition of a, there is an A=« so that A>k and f"[4 U {a}]*=n. By
Lemma 2.1, f”[4 v {e}]*<n. But if § is the largest member of 4 then a,(n)=k
which contradicts the definition of k.
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2.5. COROLLARY. A4 conservative strict scale is its own secord dual.

Proof. Otherwise there must be a conservative strict scale <a,| a<y)> with
a second dual {@,] a<y) and a smallest & <y such that @, # &,. Let f and f be respect-
ively the duals of {a,| a<y> and <{d,| a<y). Since both scales are conservative
there must be a ff <« such that ' ({«, §}) # 7 ({er, B}). Since by Lemma 2.1, f governs

{a,| a<y), we know that
(@, ap)’ = f (o B> F (e, BY) = (@ Gp)°,
and consequently for some ne w, a,(n)<a,(n).
But by the definition of a,,
FAds)[f"[4 v &) Penad = a,m)],
and it follows that a,(n)=a,(n).
2.6. COROLLARY. Let f be the dual of a conservative strict scale {a,| a<y).

Then ‘any scale which is governed by f (such as the dual of f) wmajorizes
{a, a<y} s.b.e.p.

Proof. Suppose <b,| a<y) is governed by f. By induction on «, if 7 € @ then
a,(m) < b(n).

The following two theorems suggest why the structure of f might cause all
of the scales that are governed by f to be unbounded.

2.7. THEOREM. Suppose f: [y]>*—w is transitive and has the scale property. If
each scale which is governed by f is unbounded ther
FAnew)Vmew)@4e I f 41 cn.
Proof. Otherwise a(n) = [um(VAe ™) [f " "[4]?sn]l+2 defines a bound
for the dual of f (s.b.e.p.).
Theorem 2.7 admits a partial converse when y is regular.
.2.8. THEOREM. Suppose f: [w,P—w is transitive and has the scale property. If

VUe[w]*)@ne w)(Vme w)BA e [UM[f 4P cn],

then every scale which is governed by f is unbounded s.b.e.p.

Proof. By Corollary 2.6, it suffices to show that the dual {a,| a<m,) of fis
unbounded s.b.e.p. But suppose a is a bound for {a,| ¢<w;>. Then there is
a Uelw,]" and an n € @ so that (a,, @)°<n when « € U. There is an n’ Zn so that
(Ymew)@A4 e [U[f[41*cn’]. But this means that if k>n' then

(VYme w)a(k)>m],

which is not possible.

§ 3. Partitions with large duals.

3.1. LemMMA. If y is countable, {a,| a<v) is a conservative strict scale and b e “w
then there is a conservative strict scale {a,| a<y+w+1) such that a,,,=b s.b.e.p.
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Proof. Since y is countable, we may extend to a conservative strict scale
{a, a<y+1). Choose a,;, 80 that a,.,(m)=b(m) for all new and so that
e(m) = dypy(m)—a,(n) defines an increasing function ce®w. Now if we define

tyin(k) = ak)y+n  for k,neow

then it is easily verified that {a,] a<y+o+1 is a conservative strict scale.

3.2. THEOREM. If {b,| a<w,}S% then there is an f: [wP—~0 such that

1. There is a scale which is governed by f.

2. Every scale which is governed by f majorizes {b,| «<wi}.

Proof. By Corollary 2.6 it suffices to construct a conservative strict scale
{a,] a<w,> which majorizes {b,] a<w}. This is easily accomplished using
Lemma 3.1 to recursively choose the sequence <{a,| a<w;y so that

(VB<w)@.<0)b<a,] s.b.e.p.
Thus if there is an unbounded (major) scale {a,| a<w,y then there is an
f: [0?—w such that
1. There is a scale which is governed by f.
2. Bvery scale governed by f is unbounded ‘(major).
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Non-finitizability of a weak second-order theory
by

Wolfram Schwabhiuser (Stuttgart)

Abstract. The weak second-order theory R,, based on the axioms for ordered fields and the
continuity scheme, and Tarski’s weak second-order geometry S; are shown to be not finjtely axio-
matizable.

Introduction. Weak second-order theories are understood here in the sense of
Tarski [11] (using finite sequences). Mostowski pointed out that the weak second-
order theories of familiar mathematical structures are either finitely axiomatizable
or not recursively axiomatizable (with respect to the notion of weak second-order
consequence), in fact, the theory of real numbers does not even have an analytic
axiom system (see [6]) while the theories of natural numbers, integers, rational
numbers, and complex numbers turn out to be finitely axiomatizable.

Then, Vaught proved the existence of weak second-order theories which are
recursively but not finitely axiomatizable (see appendix of [8]). The axiom systems
in his example, however, are just constructed to get this result by a diagonal argument,
namely, they are of the form

c=k—="lo, (keN)

where c is an individual constant, k is the numeral for the number &, and o, is the
kth sentence in a recursive enumeration of all sentences or of all first-order sentences.

So, it remained an open problem to find “mathematically motivated” weak
second-order theories of the same kind. Already when writing [8], the author had
two candidates for such theories — which are recursively axiomatizable by defi-
nition - and he discussed them with colleagues. '

The aim of this paper is to show that one of these candidates (for the other one
see 7.1) is indeed not finitely axiomatizable. Tt is the theory R, based on the axioms
for ordered fields and the weak second-order continuity scheme.

With this, one also gets a negative answer to the question-raised by Tarski
in [12], p. 25 ~— if a corresponding weak second-order geometry &, is finitely axio-
matizable (6.1),

The proof of our result makes use of the observation that all models of R, are
Archimedian ordered fields. Then, a translation {from R, into the system A, of
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