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Non-axiomatizability of real general affine geometry
by

Alexander Prestel (Konstanz) and Lestaw W. Szczerba (Warszawa)

Abstract. In Szczerba-Tarski [7] the question has been reised whether general affine geometry
is an elementary theory of affine plane over field of real numbers restricted to non-empty, open and
convex set. It is proved that the answer is negative because the first theory is given axiomatically
while the second is not recursively axiomatizable. '

There is a well known axiom-system of the arithmetic of real numbers containing
just one non-elementary axiom, the so called continuity axiom. It follows from the
considerations in Tarski [9] (see also Tarski, Mc Kinsey [L1]) that by replacing the
continuity axiom by the set of all of its first order instances we get an axiom system
of the elementary arithmetic of real numbers. The same procedure may be carried
out for real Fuclidean (see Tarski [10]), hyperbolicand absolute geometry (see Szmie-
lew [8]). In Szczerba-Tarski [6], the question was asked whether the same procedure
used in the case of general affine geometry provides an axiom system for elementary
real general affine geometry.

We shall prove that it is not true. In fact, elementary real general affine geometry
turns out to be non-axiomatizable. Nevertheless the procedure of replacing the con-
tinuity axiom by the continuity schema provides us with an axiomatizable subtheory
of elementary real general affine geometry which, in some sense, is as close as possible
to it. Namely the simplest sentence discriminating these theories is of type vayv.

The method of proof may be applied to the proof of some other non-axiomati-
zability results, e.g. we may prove by its means the non-axiomatizability of the
elementary theory of rational function fields over formaly real fields, and the already
known (sec Rautenberg [4]) non-axiomatizability of the elementary theory of
Archimedean ordered fields.

§ 1. Theorems on non-axiomatizability. Let .# be a class of structures of the
some signature (which will be regarded as fixed for the whole of this section). Let
T(.#) be the elementary theory of the class .
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Assumption. Theie are- formulas

@(Vgs s V)5

(po(v07 ety 1’I’) 3

‘Pl(”o: A vl‘) 2

@4 (V05 o5 Vs Vrg1s Vri2) s
(P-(”O: e Uy Vpggy vr+2) ]
Y (0o, s Upeq)

with the following properties:
(1) There is a structure Me # and clements dg, ..., @, of M such that

ME Y [”0 "f“].
. Ay oo Opey
(2) For any M e .# and any sequence a = {dg, ..., ¢,-.1» of clements of M, if

9)1#1//[”0 v,._l]

ay ... Gy
then

<¢m,n’ (p!(l)ﬂ,a’ (PQIE’Ha QDEE’“: (p?l!,a> = <6!J, 0, 1 » >

where ¢™, o3¢, T, ..., % are the sets, elements and operations defined
in 4 by the formulas ¢, ¢g, ..., . with the sequence @ used as parameters.

In other words, the formulas ¢4, @1, ¢4, ¢. define uniformly (with parameters)
the arithmetic of natural numbers in the structure of some non-empty subclass A~ of
the class .#. The class 4" and admissible parameters are singled out by formula 1.
The existence of the formula y is essential for our purpose. Without it we would
only get undecidability of T(.#) (cf. Tarski-Mostowski~Robinson [12]). If Assump-
tion holds, we say that the arithmetic is interpretable in T ().

By the elementary arithmetic of natural numbers we mean

Ar =T(w,0,1, +,-,>).

Let o be any formula of Ar in which + and - are treated as ternary relation symbols,
but not operation symbols, and 0, 1 as unary relation symbols. Then by a” we mean
the formula obtained from o by restricting all quantifiers to the formula ¢, and
moreover by replacing to relation symbols 0, 1, + and - by the formulas ¢g, @y , @4
and ¢., respectively.

Lemma 1.1. If the arithmetic is interpretable in T(M) and o is an arithmetical
sentence, then

achr iff [Vog,..,v,_(h=c®)]eT(H#).

Proof. Let o be a sentence true in the arithmetic of natural numbers, i.e. a € Ar.

Then for any M € .# and any sequence {ag, ..., @, of elements of M by part (2) of
Assumption we have

ME (f—af) [”°’ ""‘] .

Ags eees dpy
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Therefore
‘ Vg, wes 0,1 (=) e T(A) .
If o ¢ Ar then —lazeAr and we have
Voo, .o, v, (Y= (1)) e T(#) .
But then by part (1) of Assumption
Voo, ooy 0y (fo0”)] ¢ T(A) .

“This completes the proof of the lemma.

THEOREM 1.2. If arithmetic is interpretable in V() then T(M) is not axio-
matizable.

Proof. This follows from Lemma 1.1 since Ar is not axiomatizable (see e.g.
Tarski-Mostowski-Robinson [12]).

Suppose T’ is an axiomatizable subtheory of T(.#) where . satisfles Assump-
tion. Then there has to be a sentence true in all structures of .# but not belonging
to T'.

THEOREM 1.3. If the arithmetic is interpretable in T(.#), then there is universal
arithmetic formula o with a free variable x such that for any recursively emumerable

subset T of T(AM) (e.g. any axiomatizable subtheory of it) there is a natural number my
such that

() : Yoo, s 0,3 (= Tlomr)*)]
holds in all M e M but does not belong to T'.
Proof. Matiasevich’s result (see Matiasevich [3] or Matiasevich [2]) implies,

that there is a polynomial P(xg, ..., X;) with the following property: For any re-
cursively enumerable set A of natural numbers there is a number m such that

A= {n: [Ax; .. x,(P(n, m, x5, ..., %;) = 0)] Ar}.

Let T' be a recursively enumerable subset of T(.#); then

Ap = {n: Frg oo 01 (= (x5 o 2 P(n, m, x5, 0, %) = 0)")]e T}
is a recursively enumerable set. Thus there is a number mr such that

Ay = {n: Hx, . x P(n, my, X3, .., %) = 0] ehr}.

For n = my we get
) [Exp .. x P(op, mr, X, 0 x,) = 0] Ar
' i (Vg oon 0y (= (1355 o X, PO, M1, Xay o0, X)) = 0N)leT.

We put

o(x): = " 35;2 X P(x, x, %5, 0, %) = 0.
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‘Suppose ’ﬁﬂa(m-r) e Ar. Then by (%) we have

[V 0o <. By (= [t (m1)]%)] eT'sT(#).
But, on the other hand, from Lemma 1.1 we get

Vg o 0pms (=TT (me) ) e T

“Therefore ~lo(my) ¢ Ar or, what ammounts to the same, a(mr) e Ar. Thus, by
%), Vg ... 0, 1 (¥~ (mr)]?) does not belong to T'. Nevertheles by Lemma 1.1 it
belongs to T(.#). This completes the proof.

Let V,, be the set of all sentences in prenex normal form havmg n— 1 changes of
-quantifiers, starting with the universal one.

Analogously we define 3, as the set of all sentences in prenex mormal form
having n—1 changes of quantifiers starting with existential one, since the type of
the prenex normal form of the sentence () in Theorem 1.3 does not depend on the
set T’, we get, as a simple consequence, the following

COROLLARY 1.4. If arithmetic is interpretable in T(M), then there is a natural
number m such that no subset' T from T(#) containing T(M) A\ V,, is recursively
enumerable. In particular, there is no axiomatizable subtheory of T (M) containing the
.above intersection.

§ 2. Examples of non-axiomatizable algebraic theories. We shall now give some
-applications of the theorems from Section 1. We begin with a trivial one:

ExamPLE 2.1. Arithmetic of natural numbers. Lét 4 contain just one structure
{w, 0,1, +,->. By Theorem 1.2, T(.#) is not axiomatizable, and by Theorem 1.3,
for any nz1, the set Ar n 'V, is not recursively enumerable. Both results are well
known. In fact, we have used the non-axiomatizability of T(.) in the proof
“Theorem 1.2

EXAMI’LE 2.2. Archimedean ordered fields. Let . be the class of all Archimedean
ordered fields. To prove that arithmetic is interpretable in the theory of Archimedean
-ordered fields we use the formula

e(n): = Vab{Txyz x*+ay* = b2 +2 AV m[Axyz >+ ay® = bz>+abm®+2
—3xyz x*+ay* = bz +ab(m+1)*+2]-3Axyz x* +ay* = bz +abn®+2},

stated in Robinson [5] which defines the set of integers in the ficld Q of rational
numbers, and the sentence

e A AVx[0<x<i->Tle(x)]AVxplo(x) Ao(3)~a(x—p) Aa(x-p)]A
AVx3pzlo(y) ae(z) axy = z]
{from Rautenberg [4]), which is true in an Archimedean ordered field % only if it
is the field of rational numbers. By Theorem 1.2 we get the non-axiomatizability
of T(4), proved already in Rautenberg [4]. Let us consider a theory T’ based upon

axioms obtained from those of the non-elementary theory of Archimedean ordered
fields by replacing the only non-elementary Arcliimedean axiom by its first order
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instances. The formula from Theorem 1.3 provides a solution of Problem 3 in
Rautenberg [4]. By Corollary 1.4 there is a natural number m such that the set
T(#) NV, is not contained in any recursively enumerable subset of T(.#). We
may calculate the number m from the formulas ¢ and y. We then obtain m = 6,
though the least m= 2. In fact, T(#) NV, is itself a recursively enumerable set.
This follows from

TueoreM 2.2.1. Let T’ be the theory of ordered fields. Then

DT AY, =T AV, and T(#) A3, =T ~3,,

(ii) the sentence
6] ' VxAp(O<xsx<y’api<x+1)
belohgs to T(AM) but not t9 T

Proof. (i) Since T'=T (), the inclusions

TV sT#)AY, and T I cT(#) NI,

are obvious. Any ordered field may be extended to a real closed ordered field which
is elementarily equivalent to the field of real numbers which is Archimedean-ordered.
Thus

TV, T NV, .
On the other hand, the field of rational numbers, which is also Archimedean-ordered,
may be embedded in any ordered field and therefore ’

T(A) A3, T n3;.

(ii) The sentence (45) holds in all Archimedean-ordered fields since the set of
rational numbers is dense in any of them. It is easy to prove that the sentence (%) does
not hold in a field of rational functions in one variable ¢ over the field of reals for the
ordeéring in which 7 is greater than any real number. In fact, there is no square be-
tween ¢ and 741, )

EXAMPLE 2.3. Rational function fields in one variable over formally real fields.
Let .# be the class of all rational function fields in- one variable over formally real
fields, i.c., fields in'which — I is not a sum of squares. It is easy to see that T(.#) is the
theory of rational functions (of at least one variable) over formally real fields. Any
field from the class .# is formally real. Thus the theory T’ of formally real fields is
a subtheory of T(.#). To prove that the arithmetic is interpretable in T(#) we
let ¢ be the formula Nat from [5] p. 309. Using formula Con from [5] p. 308
we set

Y i = Vx(Conx — Con(x+1)AYnow Axy 40> +w* = Xy
As in [5] we prove that § ki implies that Nat defines set of natural numbers
in Fe.
TreorEM 2.3.1. () T(#) NV, =T nV,.
(i) The sentence Ax Vy11+x* = y* belongs to T(M) but not to T'.
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Proof of (i). Since T'T (), it will suffice to prove T(#) "V, =T, Let
aeT(M) Y, and let § be any formally real field. By the Lowenheim~Skolem~
Tarski theorem, there is a countable field § elementarily equivalent to §. Thus ' is
a formally real field. Hence it contains (up to an isomorphism) the field Q of rational
numbers. We may assume that § has countable transcendence degree over Q.
We shall prove that § F o and therefore § F .

Let b be a sequence of elements of §' such-that b, is transcendent over &,
and such that § = U §,(,). Since §, = &F,-1(8,—1) € A4, by assumption §, k a.

new

Now, § = U &, F« follows from ¢ eV, by the Lo$-Suszko theorem (see Lod

nEW
—Suszko [1]).
(ii) Since the rational function 142 is not a square of any rational function,
we have

AxVy 11+ = y)eT(4) .
On the other hand, this sentence is false in the field of real numbers, and therefore
HxVy 11+ =y ¢T .

ExampLE 2.4. General affine geomerry. Let A,(M) be the affine plane over the
field of real numbers. A restricted affine plane (a restricted real affine plane) is
a restriction of ,(R) to any subset S of R, (For exact definitions as well as for the
meaning of the notions used in the subsequent text see Szezerba~Tarski [7].) Let & be
the class of all restricted Cartesian planes 20,(R, S) where S is a non-empty, open
convex set in ,(R). In Szczerba-Tarski [7] the axiomatizable theory GA,, called
general affine (plane) geometry, is defined. It is proved that T (&) is an extension
of GA,, i.e., if We o/ then A k GA,. For the sake of simplicity we shall consider
a class &' <o of those restricted real Cartesian planes from & which contain the
points eg = (0, 0), e; = ($,0), ¢} = (%, —1), e, = (1,0) and ¢, = (0, 1). Tt is easy to
see that for any structure 2 € & there is an isomorphic structure 9’ € o#’. Let & *
be the class of all expansions of structures of .o/ by points e, ¢, ¢}, ¢, and e,,
i.e., structures of the form <4, e, ey, e{, ¢, €,, B) where (4, B) o'

THEOREM 2.4.1. The arithmetic is interpretable in T(Z™).

Proof. To prove the theorem we have to provide an interpretation of the
arithmetic of natural numbers in a definable subclass of &/*. To do this we shall
need functions H* and HF* mapping the language L(©,1, +,+, <) into L(B)
and formula K* e L(B) meaning: “the given two numbers are coordinates of a given
point”. We shall define them by means of functions H, HF and formula K de-

fined in Szezerba-Tarski [7] (see Definitions 2.13 and 2.16, and Section 5). The
definitions are as follows:

H*(o) = H@) (:o vy v, "3>,

w €1 €yx €
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HE* (o) = HF (@) (”0 v v "3>,
(!0 el em _e(n

[y
Vo ¥y ¥, b3
+ o o Uy Uy U3 Uy
K —KS( )

e, e e, e, €
To define the arithmetic of natural numbers we use the following formulas:
¢ = Blegvye,)Avy # €, A .
AV vg090,00, 0, [Blegvov ) A KT — HF () +01<4)],
Py = (vy = €g),

‘Pii = (vy = e},

s vg Uy ¥
@ = H*(vo+v, = v;) <”2 v: v;0>’
RTES - Vg Vg Vyo
o W =g (1 19).
Y= e AIVov 0 A @, (vg, €1, 9)—0(8)]A

AV 00,0 A (1g, €1, 92) A B(ogv,v2) A @(0))

—vy = v VY, = 0,].

o

&y

€w

Fig. T

The intvitive meaning of this formulas is easy to see in Fig. 1. The point a is 4 natural
number (i. e. satisfies the formula o) if it belongs to the segment {eqe,) and the length
of the ray from e, through @ in 2 is equal to 2. In the case of the formula it is
said that

(i) zero (i.e. the point e,) is a natural number,

(i) if @ is a natural number, then a+1 is a natural number,
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(iii) there are no natural numbers between & and a+ 1 exept these two numbers
themselves.

Thus in any model of i belonging to <7, the formulas @, ¢g, @1, @4, ¢. define
the arithmetic of natural numbers. The sets

P, = {(x1, x2): —2/m+1+x,+nx, <0},

are the halfplanes determined by the lines —2\/ 12+ 1 +x,+ny, = 0 containing the
point (0, 0). Let S = [} P, (sec Fig. D). Tt is not difficult to see that (N, S) is
a mode! of . This completes the proof.

From Theorem 2.4.1 we get

COROLLARY 2.4.2. The arithmetic is interpretable in T(&').
and therefore

COROLLARY 2.4.3. The theories T(s2"y and T(4™) are not axiomatizable.

By Theorem 1.3 for any recursively enumerable theory TeT(#™), in particu-
lar GA}, there is an universal sentence o such that the implication Y —a«® belongs
to T(a*) but not to GA,. To calculate the type of the sentence y—a” we have to
mention that the formulas ¢, and ., being existential, may be replaced equivalently
by universal ones. Thus we may assume that the formula ¢ is universal and therefore
that the type of the sentence o is V,. The sentence y is V., and thus the sentence
Y—a® is V.

In the case of the recursively enumerable theory GA,<=T(s#") we may proceed
similarly except that we have to replace constants ¢,, ey, ey, e, e, by variables
bounded by universal quantifiers. Then we get a Y, sentence belonging to T(e?’)
and therefore to T(&) but not to GA,. ,

We shall prove that V, is the lowest type of sentence discriminating between GA,
and T(&). o

THEOREM 2.4.4. (i) There is a sentence o of type ¥ 5 such that o€ GA T ().

(i) GA, n3, = T() n 3.

The proof of the part (i) is given above. In part (ii) the inclusion

GA, n3,=T(H) N3,

is obvious. Let o € (T(2) n 3)\(GA, N T,). Thus there is a model 2 of GA, and
of —1a. 'Since A k GA,, there is a real closed field § and a set S of points of x(F)

such that W,(F, S) = A. Thus ,(F, S) F TJa. We may assume, without loss of
generality, that (0,0)e S. Let

911 = ‘1{2(83 SA)
where S* = {la: aeS}. Since for A # 0 we have %* = A, we obtain A* ko

or 1 = 0. The set of structures A* for 1>0 is directed, and I« is of type V,; there-
fore by the Eoé-Suszko theorem (see Los-Suszko [1]) U 2 F —Ja. It is easy to see
' A>0
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that A\)JQ‘)[" = Wy (F) = Ay(N). Therefore A,(R) F TIa, contrary to the assumption
that o e T(s#).

Remark. Theorem 2.4.4(i) and Theorem 2.4.3 give an answer to the problems.
posed in 3.11 of Szczerba-Tarski {7].

Modyfying the proof of Theorem 2.4.4(ii) we may strengthen it up:

THEOREM 2.4.5. If a sentence w is of the form

() @ = YV, YVviff where fe3,,

() a = Vvo Vv, VVv,y where yed,,
then o€ GA, if and only if aeT(s). v

Proof. Since GA,<T(&) the implication to the right is obvious. Suppose
then, that there is a mode!l 2 of GA, and of Tla. Since A k GA, therefore there is
a real closed field §§ and a set S of points of A,(F) such that W,(F, $)=2 . Part (i) of
the proof: The sentence ~lo is of the form 3v, Iv; 71 and 1p € V,. Therefore
there are two points ag, ¢, € S satisfying the formula 718 in Ao(F, S). Without the
loss of generality we may assume that @ = (0, 0) and a; = (1,0). Consider a line
L={(x,0): x &) in A(F. Since in GA, we may prove the existence of (hyperbolic)
parallel to any line, there are possible three cases: the line L is included in S, L n §
is a halfline with origin (4, 0) for some e & and finally L n S is an open segment
with endpoints (4, 0), (u, 0) for some 4, i € §F We shall assume that the last case
holds. The proof in the remaining cases is analogous. Consider now an affine transfor-
mation f, mapping a point (o, x;) onto the point (xo, ©x1). Let A° be an image of
the structure ,(§, S) with respect to f,, i.e.

A = QIZ(S}, {(xO: Txl): (x0> xl) € S}) .

1t is obvious that if 0<t<’ then 2 is a substructure of A”, thus by Eos-Suszko
theorem (sce Lo§-Suszko [1]) the sentence Tla is true in

&)OQI' = A,(F, {(x0, ¥t A<x<p})
and therefore e is true in a model of T(s#). Contradiction.

Part (ii) of the proof: the sentence 7o is of the form v, Av, Av, Tyand iy e V.
There are points dq, a; , ¢, €S satisfying 71y in Wo(F, ). Tt is easy to see that there is
an open triangle 7 containing o, ¢, ¢; and included in S, Since 2,(%F, T) is a sub-
structure of No(F, §) containing ag, @y, a, and 7y & V, therefore Wp(F, T) F e,
but Ay(F, 7 F T() and thus there is a model of T(«Z) in which T« is true.
Contradiction.
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Uniform approximation by real functions
by

Donald E. Marshall and Anthony G. O’Farrell (Maynooth)

Abstract. Let C'(X) denote the space of real-valued continuous functions on a compact Haus-
dorfT space X, We obtain a necessary and sufficient condition for the vectorspace sum A, + 4, of two
subalgebras to be dense in C(X). We solve the analogous problem for finitely-generated modules
over a subalgebra of C(X)., Also, we determine the conditions under which these various spaces
are closed.

In this paper, we consider some questions about approximation by real functions.
The Stone-Weierstrass theorem completed the theory of qualitative uniform approxi-
mation by elements of an algebra of real functions. We study two related structures,
namely modules and finite sums of algebras. The reader will observe that the nature
of the subject is essentially geometric, in contrast to the topological and metric
character [3], [6] of complex polynomial approximation. Even a simple rotation of
a set in R" can radically alter the closure of certain polynomial spaces.

Let us introduce some notation, If X is a compact Hausdorff space, then C(X)
denotes the space of all continuous, real-valued functions on X, If 4 is a subset of
C(X), then A denotes the closure of 4 with respect to the uniform norm, ||-]|, on X.
If fi2 /20 onf, belong to C(X), then P(fi,fs,...[,) denotes the algebra of all
polynomials in Si+Sa, oen S, with real coefficients.

Our main result is Proposition 2, which gives a necessary and sufficient condition
for the sum of two subalgebras of C(X) to be dense in C(X).

We are grateful to Robert Green for helpful conversation.

1. Sums of algebras.

(1.1) We begin with a special case. For which functions f and ¢, belonging to
X)), s ‘
0 ' P(S)+Plg) = C(X)?
Clearly it is necessary that the map from X to R?, given by F(x) = (f(x), g(x)):
be injective. Suppose I is injective. If Y is the image of X under F, then Y is homeo-
morphic to X. A moment’s thought reveals that (1) holds if and only if

(2) P()+P(y) = CLY),

4 — Fundamenta Mathematicae CV/3
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