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Uniform approximation by real functions
by

Donald E. Marshall and Anthony G. O’Farrell (Maynooth)

Abstract. Let C'(X) denote the space of real-valued continuous functions on a compact Haus-
dorfT space X, We obtain a necessary and sufficient condition for the vectorspace sum A, + 4, of two
subalgebras to be dense in C(X). We solve the analogous problem for finitely-generated modules
over a subalgebra of C(X)., Also, we determine the conditions under which these various spaces
are closed.

In this paper, we consider some questions about approximation by real functions.
The Stone-Weierstrass theorem completed the theory of qualitative uniform approxi-
mation by elements of an algebra of real functions. We study two related structures,
namely modules and finite sums of algebras. The reader will observe that the nature
of the subject is essentially geometric, in contrast to the topological and metric
character [3], [6] of complex polynomial approximation. Even a simple rotation of
a set in R" can radically alter the closure of certain polynomial spaces.

Let us introduce some notation, If X is a compact Hausdorff space, then C(X)
denotes the space of all continuous, real-valued functions on X, If 4 is a subset of
C(X), then A denotes the closure of 4 with respect to the uniform norm, ||-]|, on X.
If fi2 /20 onf, belong to C(X), then P(fi,fs,...[,) denotes the algebra of all
polynomials in Si+Sa, oen S, with real coefficients.

Our main result is Proposition 2, which gives a necessary and sufficient condition
for the sum of two subalgebras of C(X) to be dense in C(X).

We are grateful to Robert Green for helpful conversation.

1. Sums of algebras.

(1.1) We begin with a special case. For which functions f and ¢, belonging to
X)), s ‘
0 ' P(S)+Plg) = C(X)?
Clearly it is necessary that the map from X to R?, given by F(x) = (f(x), g(x)):
be injective. Suppose I is injective. If Y is the image of X under F, then Y is homeo-
morphic to X. A moment’s thought reveals that (1) holds if and only if

(2) P()+P(y) = CLY),

4 — Fundamenta Mathematicae CV/3
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where x and y denote the coordinate functions in R?. So our problem is to characterize:
the compact sets Y in R* for which (2) holds.

To analyze this question, we introduce the concept of a trip in Y. A trip in Y
is a finite ordered subset {a,, .., a} of Y with a;# a;, (i=1,..,n—1), and
either a; = (x;, 1) a3 = (x1, ¥a)s a3 = (%3, ¥2)s a4 = (X2, ¥3), s oray = (xp, yi).
a, = (x3,7,), a3 = (X3, ¥2), . A trip with at least two distinct points is called
a round trip if a, = a,. The relation on Y, defined by setting a~ b if « and b belong,
to some trip in Y, is an equivalence relation. The equivalence classes we call orbits.

PROPOSITION 1. Let Y be a compact subset of R* with all orbits closed. Then P(xy
+P(y) is uniformly dense in C(Y) if and only if Y contains no round rip.

Proof. The necessity of the condition is clear. For if’ ¥ contains a round trip,
then it contains a round trip with ‘an even number of distinct points, say
{ay, ay, ..., asy, a;}. The alternating sum

fa)=f (@) +f (a5)—-..—f (@)

vanishes for all f in P(x)+P(y). Thus P(x)+P(y) is not dense in C(Y).
Conversely, suppose Y contains no round trip. We will prove P(x)-+P(y) is
dense in C(Y) by showing that the only annihilating measure for P(x)--P(y) is
the zero measure. Let M(Y) denote the space of all real, finite, Borel-regular measures.
on Y. Let n; and 7, denote the orthogonal projections of Y into the coordinate
axes. That is, m;(x,y) = x and m,(x, y) = y, whenever (x,y) belongs to Y.
Suppose, contrary to our assertion, there exist nonzero annihilating measures

on Y for P(x)+P(y). Let K denote the closed unit ball of the space of annihilating
measures. That is,

K= M(Y) P& a PO n {u: |lull<1}.

Then K is weak-* compact and convex. By the Krein-Milman theorem, there exists.
an extreme measure u in K. The support of x must be contained in a single orbit.
To see this, note that a measure v annihilates P(x) if and only if v(n] *(E)) = 0
for every Borel subset £ of R, by the Stone—~Weierstrass theorem. If a Borel set C is
a union of orbits, then 77 * ¢ m,(a) is contained in C, whenever @ belongs to C. Thus
the restriction pu|C of p to C annihilates P(x). Similarly, u|C annihilates P(p).
Since pu is extreme, it must be supported on a single orbit. Call the orbit C.
Fix a point @, in C. Then C may be written as the union of compact sets C;,
where C; = {a;}, C, = n7' e my(Cy), Cy = 3% 0 715(C,), Cy = ny! o, (Cy), and
so on. Clearly we have C;=C,, for each i. Thus there exists a positive integer #,
such that |u](C,,)>0, where |p| denotes the total variation measure of p., Since p
annihilates P(x), it follows from the Stone-Weierstrass theorem, again, that
H#(Cyy) = 0. Hence p,(Cy,) = pu_{Cy,)>0, where y = u, —pu_ is the Haar decom-
position of u. Choose a Borel subset E, of C,,,, such that u_(E) = 0 and u..(Eo)>0.
Since x annihilates P(y), it follows that u(m;* o n,(Ep)) = 0, so we may choose
a Borel set E,, such that E,cn; e nyE)cCopyy, Ey N Ey =@, p(E) =0,
and p_(E;)= p,(E). Continuing this process, choose a Borel set E,, such that
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CEyeniton(E)=Cuiz ExnE =6, i (E) =0, and p(Ep)zu_(E;), and

50 on. . ‘ )

We see that the resulting sets, Ey, E,, E,, ..., are pairwise disjoint. For other-
wise, there would exist positive integers &k and m, with k<m, and a trip
{(Bys Beats -ors O}, such that by belongs to E, for i =k, ..., m, and b,, belongs to
E, o E,. But then there would exist trips {ay, a2, ..., 1> b} and

{ay, dy, dy, s Gy, by}
with «; and «j in C), for i = 2, .., k—1.Thus, the set

(- I !
Ly 02y vors Uimys By B 15 o5 By Gim 15 004 G2, a}

would contain a round trip. This would contradict our assumption on Y.

Since the E; are pairwise disjoint, and [ (E) = . (Eg)>0 for each i, it follows
that the total variation of y is infinite. This contradiction establishes the proposition.

(1.2) Now we turn to the general situation. Let X be a compact Hausdorff’
space. Let A4, and 4, be any two subalgebras of C(X) that contain the constants.
The problem is to decide when 4;+A4; is dense in C(X).

For i = 1,2, let X, be the quotient space of X obtained by identifying the
points « and b whenever F(a@) = f(b) for each fin 4;. Let m; be the natural pro-
jection of X onto X;. We define a rip with respect 1o (44, A,) as a finite ordercfi set
{ay, ... a,}, contained in X, such that @, # a4, for i =1,2,..,n—1, and either
wla;) = mi(a,), malas) = no(ay), my(as) = milas), ..., OF ny(as) = ma(ay), '711([’3)
= 7,(ay), ma(ay) = malas), ... As before, we say that a tiip is a round /r.ip if n>1
and a, = a,. Notice that X contains a two-point round trip {a;, a;, @ 1} with respect
to (A,, A,) if and only if 4, + A, fails to separate points on X. The relati<?n, deﬁne.d
by setting a=b if ¢ and b belong to some trip with respect to (A, A3), is an equi-
valence relation on X. We call the equivalence classes the orbits of X with respect
to (Al 2 Az)- ‘

PROPOSITION 2. Let X be a compact Hausdorff space. Let A, and A be sub-
algebras of C(X) that contain the constants. Suppose all orbits are closed: Th-en
Ay + A4y is uniformly dense in C(X) if and only if X contains no round trip with
respect to (A, A3). ) .

The proof of Proposition 2 is similar to the proof of Proposition 1. The special
casc already involves all the essential difficulties.

2. Applications and examples.
(2.1) Here arc some scts Y, contained in R?, for which (2) fails.
(@) {(0,0), (1,0, (1, 1, (0, D}.
(b {0,0),(1,0),(1,2),2,2), 2, 1), (0, D}
© {(0,0),(1,0), (1,2),(3,2,3,3),2,3), @ 1), (0, D}
(d) Any set ¥ with positive area, since any such set contains the vertices of some
rectangle with sides parallel to the axes. :
o
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(2.2) Let Y be the union of two parallel line segments in R% not parallel to
either axis. Then (2) holds, as is easily seen from Proposition 1. On the other hand,
if ¥ consists of three sufficiently long parallel line segments, then a little geometry
shows that ¥ contains a four-point or a six-point round trip with respect to
(P(x), P(3), hence (2) fails.

PrOBLEM 1. Let Y be a compact subset of R* with empty interior. Do there exist
functions f and g in C(Y) such that P(f)+P(g) is dense in C(Y)?

" If Yis totally disconnected, then there is an injective function f/in C(Y). Thus
P(f) is dense in C(Y). The general situation appears difficult.
(2.3) Let S denote the unit circle, and define

L(x, ) = xcosO-+ysinf

* whenever 0<0<2m, (.\',y)'e S. Then for each positive integer n, the sum

2n

&) + P(je
i=1

fails to be dense in C(S). An annihilating measure for the space (3) is provided by
the alternating sum of of point masses:

2n
k k
(=1 (cos o , sin ALF> ,
: ; n n
=1

(2.4) A necessary and sufficient condition that P(l,)+P(l,) be dense in C(S) is
that 8—q be an irrational multiple of w.
) .The necessity follows from (2.3). To see the sufficiency, suppose (0—¢@)/m is
irrational. Let R(0) € O(2) (the group of isometries of R?, cf. [2]) denote reflection
in the line

&
xsinf—ycos( = 0.

Let G denote the subgroup of O(2) generated by R(0) and R{¢p). Then the orbits
of § with respect to (P(/;), P(l,)) are precisely the orbits, in the usual sense, of S under
the action of G. Since (—¢)/x is irrational, the orbits of G are all dense in S,
and we obtain the result by an ergodicity argument (cf. (2.6) below).

Note that the orbits are not closed, so we cannot apply Proposilion 2.

(2.5) Let X< R? be compact, and let x, y and z denote the coordinate functions.
When is the sum P(x, y)+P(y, z)+ P(z, x) dense in C(X)? The annihilating measures
for this sum of algebras assign zero measure to each union of lines parallel to any
coordinate axis. So we may imitate the technique of Proposition I, and answer the

question in terms of suitable round trips. This method does not seem to work for
P(x)+P(y)+P(z). Notice that if

X ={0,0,1,(0,1,1),(1,0,0),2,1,0),(,2, 1), (2,2, D},
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then P(x, y)+P(2), Px,2)+P(p), and P(p,z)+P(x) are all dense in C(X), but
P(x)+P(y)+P(z) is not.

PROBLEM 2. Let X be a compact Hausdor[f space, and let Ay, A,, ..., A, be sub-
algebras of C(X) that contain the constants. Give conditions that are necessary and
sufficient for A,-..+A, 1o be dense in C(X).

(2.6) Let % be the unit sphere in R3, and let u, v and w be three real-valued
Yinear functions on R%. Suppose the gradients Vi, Vo and Pw are linearly independent,
and that at least two of the angles that the vectors Pux Vv, Pox P, Pw x Vi make
with one another are irrational multiples of n. Then P(u, v)+P(v, w)+P(w, u) is
dense in C'(S?).

To prove this, suppose x is a measure on S2 that annihilates P(u, v)+P(v, w)+
+P(w, u). Let R & O(3) [2]denote reflection in the plane through the origin spanned
by Pu and Vo, Let S and T'e O(3) be similarly defined, with (u, v) replaced by (v, w)
and (w, 1) respectively. Then for each Borel set EcS?, we have
“ H(R(E)) = w(S(E)) = w(T(E)) = —n(E).

Let G denote the subgroup of SO(3) [2] generated by RS and ST, and let H be
the connected component of the. identity in the closure of G in SO(3). Then H is
a sub-Lie group of SO(3). Since H # {1}, it equals SO(3) unless it consists of the
rotations about some fixed axis [4]. Since at least two of the angles between
Viex Vi, Vo x Vv, and Vw x Py are irrational multiples of =, it follows that H contains
all the rotations about {wo distinct axes, and so H equals all SO(3).

By (4), the measure j is invariant under the action of G, and hence under the
action of SO(3). Thus p is a multiple of the invariant measure on S2, as a homo-
gengous space under the action of SO(3), and hence p is just a multiple of surface
area on S?. But this contradicts (4), unless u = 0.

3. Modules.

(3.1) Let X be a compact Hausdorff space, and let A be a subalgebra of Cc(X)
that contains the constants. Let X be the quotient space induced by A, and let T4 be
the natural projection of X onto X,. Suppose B is a subspace of C(X) that is an
A-module, i.c. AB<B. Then, by modifying an argument of de Branges [1, 5], we
see that the extreme norm | annihilating measures for B are supported on the fibres
of ms. We deduce the following:

PROPOSIIION 3. B is dense in C(X) if and only if the restriction of B to each
Sfibre w51 (p) is dense in C(rz' )

Suppose B is a finitely-generated A-module. That is, B = fiAd+...+/,4,.
where the f; are in C(X). Then B is dense in C(X) if and only if for each y € X4
the matrix

SiGxr) o ffx)

./’] (.'xm) A f;‘l(xm) !

T, : P |
has rank at least m, whenever Xy, ..., X, are distinct points i T, ).
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For example, let X be a compact subset of R?, and let # be 4 non-negative integer,
Then P(x)+yP(x)+...+y"P(x) is dense in C(X) if and only if each line parallel to

the y-axis meets X in at most n+1 points. This is intcresting because the space

P4y P(X) .+ P(X)

is not usually closed. For instance, if X = {(x,): 0<x<l,and y =0 or y = X,
then P(x)+yP(x) is dense in C'(X), but the continuous function 4 does not belong
to (P(x)+yP(x).

4. Closed sums.

(4.1) Let X be a compact Hausdorff space. Let 4, and A, be closed subalgebras

of C(X). In some cases,. it turns out that 4, +4, is a closed subspace of C(X).
For instance, if Y consists of itwo parallel line segments in R?, one can check that

Y<R? such that P(x)+P(y) is dense in C(Y), but P(x)+P(y) is not closed. For
example, let Y= {(0’ 0)7 (_] 3 U: (_I’ '_%)1 (%1 _%)1 (’%, i)" (_dfs i)’ ("'i: "}))1
(%, =8, ..} = {ap, ay,0;,a3,...}, say. Let h be the continuous function on ¥
defined by setting 4(a) = 0, A(a,) = (—1)"/n (n = 1,2, ...). Then it is easy to see
that there cannot exist continuous functions f and g on R, such that £(x)4=g(y)
= h(x,y) for all (x,y)e Y.

(4.2) We propose to characterize the spaces X, and the closed subalgebras Ay
and A, of C(X), for which 4, +4, is closed in C(X).

Let 4 be a subalgebra of C(X) that contains the constants, Let X, and 4 be
the associated quotient space and projection. For f'e C(X), let d(f, A) be the distance
from f'to the algebra 4, and for ¥Y< X let var f be the variation of S on the set Y.

Y

That is,
d(f, 4) = inf sup| f(x)—g(x)|,
geA xeX
varf = sup £(x)~/ ().
Y x,ye¥ ~

The foilowing lemma is due to A. Petczynski [5,
the reader’s convenience.

Lemma 1. Suppose fe C(X). Then

p. 50]. We include a proof for
+

d(f,A) =} sup var f.

YeX 4 )

Proof. Fix fe C(X). Clearly, d(f, 4) is no smaller than the right-hand side.
To prove the opposite inequality, let X be the set of norm | measures M, belonging
to M(X), orthogonal to 4 and such that [fdu = d(f, A). By the Hahn-Banach
theorem, K is nonempty. Let i be an extreme point of K. Suppose there exist Borel

P‘(;5+P(y5 equals either P(X), P(y), or C(Y). On the other hand, there exist sets -
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sets E and F, contained in X, such that X, = EUF, EnF =, Iu](n;"(E))?O,
and |u| (77 "(F))>0. Let 4 be the restriction of u to 75 '(E), and v be the restriction

of p to w3 '(F). Then 4 and v annihilate 4, and

d(f, A) = [ fdv+]fdi

dv dA
= || ijVH_HMH IfHAH
< IS, D+, A
= d(f, A).
Thus
dA dv
| = l ~=d 1A 2
My =37 gy = 450

hence A/]|A|| and v/|iv]| belong to K. Since

(A >+||vu<~-“—->
w1 “(nxn‘i i)

4 cannot be extreme, This contradition shows that u is supported on some fibre
n; (). Now,
§fdu = §(f—o)dp
for all o & R. Hence
| [ fdu|<¥ var f.
Cmty)

"This proves the lemma. .
PROPOSITION 4. Let A, and A, be closed subalgebras of C(X) that cont.am‘the
constants. Let (X, my), (Xz, 13), and (X2, 7, ,_) be the quotient spaces and prajecttorfs
associated with the algebras A, Ay, and Ay 04, respectively. Then A;+A; is
closed in C(X) if and only if there exists a positive real number ¢ such that

sup var f<csup var f
zaX12 75! (@) yeXz m1(y)
Jor all fin Ay.
Proof. The linear isomorphism
' A, A+Ay CO
A n A, Ay A,
is continuous. By thc open mapping theorem, there .exists ¢>0 St'lchl thzt
d(f, A, 0 Ay)<cd( [y Ap) holds for all fin Ay, if and only 11"(41 +A2§/A1l isc ?‘Sen;
and this happens if and only if 4, +4, is closed. The proposition now follows fro

Lemma 1. . ' N
(4.3) For example, if ¥ is the closure of the interior of any ellipse in R*, then
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P(x5+P(y) is closed in C(Y). However, if Y is the closure of the region in R? bounded
by ‘the lines 2y = x, y = x, and y = 1, then P(x)+P(y) is not closed in C(Y),

(4.4) We can also answer the analogous question for finitely-generated modules
which contain the constants. An elementary application of the open mapping theorem
gives the following lemma.

LemMA 2. Let D be a Banach space. Let By, By, ..., B, be¢ closed subspaces
of D. Then B = B +...+B, is closed in D if and only if there exists K< oo such that
each b in B has a representation

b=b+..+6b,,
where bye B, for i = 1,2, ..,n, and

max [|b||<K}lb]] .
1<ign

Now suppose 4 is a closed subalgebra of C(X) that contains the constants,
and suppose B is an 4-module of the form: B = A+f; A+...+/, 4, where f; € C(X)
for i =1, ..., n. Then B is closed in C(X) if and only if there exists K < oo such that
each b in B has a representation of the form b = ay-+fia, +..4-f,a,, where a, e 4,
for i =1, ..., n, and max ||a;||<K||b||.

LESEST
To see this, choose a positive number ¢, so large that f;-+¢ is invertible in C(X)
for i=1,2,..,n. Then (fi+c)4 is closed. Clearly, B = A+(fi+e)d+ ..+
+(f,+¢)4. By Lemma 2, B is closed if and only if there exists a constant K < 0,

. -~ n
such that each b in B has the form b = a5+ ¥ (f,+¢)a;, where
i=1

max{|lao|l [[(/s +e)asll, ..., I+ al} < K1) .

Clearly, this occurs if and only if there exists a constant K’< oo such that
max |la|<K'[|b]|.
0<isn

The proposition follows. ‘

For example, let ¥ be a compact set in R? such that every line parallel to the
y-axis meets Y in at least n+1 distinct points or not at all. For each x e 7, (Y),
let §(x) denote the supremum of the positive numbers n for which there exist n+ 1
distinct points ay, ..., d,4, in 77 '(x) such that la;—a;|>n whenever i 5 j.\ Then
the module

P(x)+y P(xX)+ ... +3" P(x)
is closed in C(Y) whenever
inf{6(x): xe 7,(Y)}>0.
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Added in proof. S. Ya, Mavinson (A Chebyshev theorem for approximation of a function
of two variables by sums of the type ¢(x)-+y(p), Math USSR Izvestia 3 (1969), pp. 617-632,
especially pp. 620-622) constructed an example which shows that Proposition 1 fails without
the assumption of closed orbits. He also gave an example of the phenomenon exhibited in
@n. '

R.C. Buck and J. Overdeck were aware of spe_cial cases of Proposition 1.
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