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The open-cover topology on function spaces
by

R. A. Mc Coy (Blacksburg, Va.)

Abstract, A study is made of the convergence of sequences in the open-cover topology on
function spaces. Necessary and sufficient conditions are given for a subset of such a function space
to be sequentially compact.

1. Introduction. Bessaga and Pelezyfski use in [2, p. 121] (see also [4]) a certain
natural topology on the space of homeomorphisms from a metric space onto itself.
They credit the idea for this topology to a paper by Anderson and Bing [1] in which
several conditions are established insuring that a sequence of homeomorphisms of
a space converge to a homeomorphism. Open covers are used here to provide a
measure of how close a homeomorphism is to the identity. We call this topology the
open-cover topology. One advantage that this topology has is that it allows control
of the functions throughout the entire domain rather than just a compact set, and
does this without the range needing some special structure such as a metric or
a uniformity. Our primary concern in this paper will be the investigation of the con-
vergence of sequences in this open-cover topology, and also the characterization
of sequentially compact subsets.

If X and Y are topological spaces, the notation C(X, ¥) will be used to denote
the set of all continuous functions from X into Y. We define the open-cover topology
on C(X, Y) as follows. Let I'(Y) denote the set of all open covers of ¥. For each
Y elI'(Y) and fe C(X, Y), let ¥ (f) = {ge C(X, Y)| for every xe X, there
exists a Vev such that (f(x),g()eVxV}. The open—cover topology on
C(X, Y) is the topology generated by the subbase

{7 (A v eI(¥) adfeCX, V)}.
This topological space will be denoted by C,(X, ¥). We shall be comparing this
topology with two other function space topologies: the compact-open topology,
and the topology generated by the supremum metric for some bounded metric ¢ on
the range. These topological spaces will be denoted by C,(X, ¥) and CfX, 1),
respectively.
We now give a short discussion of several properties enjoyed by the open-cover

topology which are either known (see for example [4]) or not too difficult to prove.
1 — Pundamenta Mathematicae T. CIV
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For notational convenience, the notation X< Y, for topological spaces X and Y,
will mean that X and ¥ have the same underlying set and that the topology of X is
contained in the topology of Y. Also for convenience, all spaces will be assumed to
be Hausdorff spaces. :

First, for every two topological spaces X and ¥, C(X, Y)<C/(X, Y) and
C(X, Y)SCy (X, Y), when ¢ is any bounded metric for Y. The former inequality
is an equality if X is compact, and the latter inequality is an equality if X is pseudo-
compact. If, in addition, X is completely regular and ¥’ contains a nontrivial path,
then compactness (pseudocompactness, respectively) is not only a sufficient con-
dition but a necessary condition for C,(X, ¥) = Cy(X, ¥) (C(X, ¥) = C(X, ¥),
respectively). Finally, if X is normal and Y is the space of real numbers R, then
C,(X, ¥) is metrizable (also first countable) if and only if X is pseudocompact.

2. Convergence of sequences. In this section we investigate conditions under
which a sequence in C(X, ¥) converges in the open-cover topology. Such a set
of conditions must be stronger than that giving convergence in the compact-open
topology. The following results indicate how much stronger it must be. We say
that a sequence {f,} in C(X, Y) is eventually supported on a compact set if there
exists a compact subset K of X and an me N (N is the set of natural numbers)
such that if ne N with nzm, then filn g = fulrnx-

2.1. Lemva. If { f,} is a sequence in C(X, Y) which converges to f-in C(X, Y)
and is eventually supported on a compact set, then { f,} converges to fin C(X, Y).

Proof. Let #7(g) be a subbasic open subset of C,(X, ¥) containing f. There
exists a compact subset X of X and an m; €N such that if n>m,, then
Flrng = fudlxng- Since C(K, ¥) = C,(K, Y), then #"(glg) is an open neighborhood
of f|gin C(K, Y), so that there exists an m, € N with m,>m, such that if n=ms,,
then f,|x € ¥ (glx). Then if n=m,, f,e ¥ (g). B

Perhaps a more useful thing to know is the extent to which the converse of
Lemma 2.1 is true. First, it is easy to see that it is not true in general; for example,
take the-domain to be R and the range to be the rational numbers. However, if we
require that the range contain a nontrivial path, then we get a partial converse of
Lemma.2.1. This is given by Theorem 2.3 which follows the next lemma.

2.2. LEMMA. Let X be a completely regular space, and let Y be a regular space
containing a nontrivial path. Let { f,} be a sequence in C(X, Y), and let fe C(X, Y).
If there exists a sequence {x,} in X having no cluster point in X such that f,(x,) # /" (x,)
for every neN, then no subsequence of {f,} converges to f in C(X, Y).

Proof. Let N; be any cofinal subset of 2V, and let ¢ be a homeomorphism from
the closed unit interval, [0, 1}, into Y. Choose disjoint open subsets W, and W,
of Y so that @¢(0)e W, and ¢(1) e Wy, and so that there is a cofinal subset N,
of N, with either {f,(x,)| ne N} W, or {/,(x)| ne N,} S W, — say the latter.
Now there is a t€ (0, 1) such that ¢([0, /))<= W,. Let {#,} be a strictly decreasing
sequence.in (0, 1) converging to 0. Let y, = ¢(¥), and for each ne N, let y, = o(z,).
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There exists a cofinal subset N of N, such that for each n e N,
F) & {ful)l meN, and m<n} .

Since f is continuous and since {x,} has no cluster point in X, there exists a discrete
collection {U,| neN,} of open subsets of X such that for each 1 e N;, x,€ U, and

F(U)EYN{fulx,)| me Ny and m<n} .

Then for each n & N,, define g,: {x,} U (T, \U)—> Y by Gn(%) = ¥, and g,(x) = y,
if xe U\U,. Since X is completely regular, each g, has a continuous‘ extension
gnt U, Y such that (T, o(t,, 7]). Finally define g e C(X,Y) by g(x) = §,(%)
if xe U, and g(x) = yo if x&e XNU{U,| ne N,}. Let ¥, = {p(0} L {y,] ne N},
and for cach neNs, let ¥, = ¥,\{y,}. Also for each n € V;, define

Vo= /i) v 1),
and define

V= {V| neNs} v {I\W,, Y\Y,}.

To see Fhat Ja# 7?7 (g) for each n e N;, note that g(x) = ,. The only members
of ¥" containing y, are ¥, and ¥\W,; but fi(x,) ¢ ¥, U ( Y\W,). Finally, to see
that f'e #(g), let x € X. First note that g(X)=¢((0, )= Y\V,. If

xeINU {U,] neNs},

then g(x) = yo, so that g(x) e (Y\W,) n (Y\Y,). Since (YA\W,)) u (Y\Y,) = ¥,
then g(x) and f(x) are both contained in the same member of ¥". On the other
hand, if x € U, for some n e N, then f(x) ¢ { f,,(x,)| me N, and m<n}. If there
is an me N3 such that g(x) = y,, then g(x) = »,, then g(x) € V,; also since
g(x) e o(lt,, 1), then m<n But either f(x)e Y\W,, or, since S # L2,
f(x)e ¥V, If there is no me Ny with g(x) = y,,, then g(x) e (Y\W) N (Y\Tp).
Thus in either case, f(x) and g(x) are both contained in the same member of ¥,
Therefore f& ¥ (g), so that {f,| neN;} does not converge to f in C(X,Y). B

2.3. THEOREM. Let X be a paracompact locally compact space, and let Y be
a regular space containing a wontrivial path. Then the sequence {fu} in C(X, )
converges to fin C(X, Y) if and only if { f,} converges to f in C(X, ¥) and is eventually
supported on a compact set.

Proof. To prove the nccessity, recall that since X is a paracompact locally
compact s‘pacg, it is the free union of o-compact spaces {X,| o e 4}. Then for each
wed, X, = UtKa"' » where cach K is compact and contained in the interior of K%*+1,

n=

Suppose that { f,} is not eventually supported on a compact set. Then by induction,
‘ i~1

sequences {r;}, {&;}, and {x,} can be constructed so that for each i e N, x;¢ x.NU K

J=0

(take Ky, = @) and £, (x;) # f(x). By construction, {x;} has no cluster point in X.
Therefore by Lemma 2.2, {£,,} does not converge to £ in C,(X, Y), and hence {f,}

does not converge to fin Cy(X, ¥). @
i
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For an example, let @ denote the ordinal numbers less than the first uncountable
ordinal with the order topology. Since @ is pseudocompact, C(Q, R) = C(L, R),
where ¢ is a bounded metric on R. Thus a sequence of distinct constant functions can
be found in C(Q, R) converging to some constant function. Such a sequence is not
eventually supported on a compact set. This shows that the paracompactness of X
cannot be omitted from the hypotheses of Theorem 2.3.

3. Sequentially compact subsets. In this final section we establish a version of
Ascoli’s Theorem which characterizes the sequentially compact subsets of C(X, Y).

Recall that a subset F= C(X, Y) is evenly continuous if for every x € X, yeY,
and neighborhood ¥ of y in ¥, there exist neighborhoods U of x and Wof ¥ such
that for every fe Fwith f (x) € W, f(U)S V. Ascoli’s Theorem says that for a locally
compact space X, closed subset F is compact in C,(X, Y) if and only if F is evenly
continuous and the closed orbit F[x] is compact for every xe X (see [3].

We need to introduce an additional property in order to deal with subsets of
CAX, ). If F=C(X,Y) and S=X, we say that S is a supporting set of F if there
exists a finite subset F, of F such that for every f'e F, there exists an fo € Fy with
fiX\s =fo|X\s- ’

3.1. LeMMA. Let X be a paracompact locally compact space, and let ¥ be a regular
space containing a nontrivial path. If F is a sequentially compact subset of C(X, Y),
then F has a compact supporting set.

Proof. Suppose F does not have a compact supporting set. Using the same
technique as that in the proof of Theorem 2.3, it is possible to find sequences {x.}
in X and {f,} in F such that {x,} has no cluster point in X and, for each ne N,
For1(x) # fi(x,) for 1<i<n. But then for every fe C(X, Y), there exists a ke N
and a subsequence {x,,} of {x,} such that for every ik, fi(x,) # f (X.)-. Therefore
by Lemma 2.2, no subsequence of {f,} can converge in C,(X, Y), so that F is not
sequentially compact. &

In order to éxtend Lemma 3.1 to a characterization of sequential compactness,
we define one additional concept. If FEC(X, Y), we define 7 (F) to be the set of
equivalence classes of the equivalence relation on F defined by: fis equivalent to g if
there exists a compact subset K of X such that flxx = glr k-

3.2. THEOREM. Let X be a paracompact locally compact space, let ¥ be a metric
space containing a nontrivial path, and let F be a subset of C(X, Y). Then the following
are equivalent.

() F is sequentially compact in C{(X, Y).

(ii) F is closed in C(X, Y), F is evenly continuous, f"[;]- is compact for every
x € X, and F has a compact supporting set.

(iii)'F is compact in C(X,Y), and F'has a compact supporting set.

@v) A (F) is finite, and each member of H (F) is sequentially compact as a subset
of CLX, Y).
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P1~9of. Clearly (iv) implies (i). To see that (i) implies (i), note that if F is
sequentially compact in C,(X, ¥), then by Lemma 3.1, F has a :compact supportin,
set. Also F will be sequentially compact in Cf(X, Y), where ¢ is a metrilzpon YE':,,r
gﬁiief(‘(‘)'refﬁ'lwill be compac't in C(X, Y), and hence F is compact in C,(X, Y)
Ther :s)coc;i,;)v;shgro(;l:méscoh s Theorem. Also the fact that (ii) implies (iii)

It remains then to establish that (iii) implies (iv). Let F be a compact subset
of C(X, Y) having a compact supporting set K. Then there exists a finite subset F,
of F such that for every fe F, there exists an Jo € Fy with f| = folxnk Theﬁ
certainly 2" (F) has no more elements than Fy, and is hence ﬁnité{.\x(lso if0 FX\: .QK(F)
then the open-cover topology on F is equal to the compact-open topoh;gy on F’
since all functions in F, agree outside of the compact set K. But since the topolo X
generated by the supremum metric is sandwiched between the compact-open topologgy
an.d the open-cover topology, then Fy is metrizable as a subspace of C(X Yg’
It is not difficult to see that F; is closed in F relative to the compact-open t;pol’ogy.
so that Fy is compact as a subset of C (X, Y). Then since F, is metrizable, it i;

sequentially compact as a subset of C,(X, ¥), and hence .
o 2 sequentiall
a subset of C,(X, ¥). q ally compact as

3.3. CorROLLARY. Let X be a paracompact locally compact space, and let Y be
a metric space containing a nontrivial path If Fis a se /
5 quentially compact subset o)
Cy(X, Y), then F is compact in CyX, Y). ’ i !
Proof. By the proof of Theorem 3.2, if Fis sequentially compact in C(X, ¥),

then " (F) is finite and each element of 7" (F) is compact in C (X, Y). Therefore Fis
compact in Cy(X, ¥). B ’

follows

References

[1}] R.D. Anderson and R. H. Bing, A complete elementary proof that Hilbert space is homeo-
morphic to the countable infinite product of lines, Bull Amer. Math Soc. 74 (1968), pp. 771-792.

[2] C. Bessaga and A. Petezynski, Selected Topics in Infinite-Dimensional Topo}agy PWN—;
Polish Scientific Publishers, Warszawa 1975, |

[3] 1. L. Kelley, General Topology, D. Van Nostrand Co., Princeton, New Jersey 1955

[4] H. Toruticzyk, Skeletons and absorbing sets in complete metric spaces, Doctoral.‘Thesis
Institute of Mathematics of the Polish Academy of Sciences, to appear in Dissertationes M athj

VIRGINIA. POLYTECHNIC INSTITUTE AND STATE UNIVERSITY
Blacksburg, Virginia

Accepté par la Rédaction le 24. 1, 1977


Artur




