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Fixed-point theorems for mappings defined
on unhounded sets in Banach spaces*
by
W. A. KIRK and WILLIAM O. RAY (Iowa City, Iowa)

Abstract. Let K be a closed convex subset of a uniformly convex Banach space X
and T': K - K a nonexpansive (or more generally, a lipschitzian pseudo-contractive)
mapping. It is shown that if there exists a point ain X for which the set {s ¢ K : ||z — Tal]
< |le— af|} is bounded, then T has a fixed point in K. Related results include the fact
that surjective nonexpansive mappings, and even surjective asymptotically nonex-
pansive mappings, always have fixed points when defined on sufficiently sharp cones
m

1. Introduction. In this paper we study the problem of the existence °
of fixed points for mappings 7': K — K where K is an unbounded closed
convex subset of a Banach space (usually uniformly convex) and T is
either a nonewpansive mapping (ie., |[To—Ty| < |lz—yl, 2,y € K), or
a mapping of more general type, specifically pseudo-contractive or asymp-
totically nonexpansive. (These mappings are defined later.) Our investi-
gation is prompted by a recent paper of Goebel and Kuezumow [7] in
‘which & similar problem is treated in Z,.

The theorem of Browder-Gohde-Kirk [1], [8], [12] always assures
existence of a fixed point for nonexpansive mappings 7: K — K where K
is & bounded closed convex subset of a uniformly convex space X, while
at the same time it is clear that for a wide class of unbounded closed con-
vex sets K (e.g., subsets of Hilbert space which contain an infinite ray)
nonexpansive mappings 7': K — K may exist which fail to have a fixed
point. However, it is shown in [7] that certain unbounded closed convex
sets K in 1, have the property: inf {w—T#(: « € K} = 0 for nonexpansive
T: K - K. To describe this class, suppose B = [, is a set of the type:

B ={z = (2,5, ...) elat | < M}
where the M; are fixed positive real numbers. Obviously, such a set B
is bounded if and only if 3 M%< oo, and the prineipal result of [7] states
i=0

that if K is a (possibly unbounded) convex set contained in such a set B
and if T: K — K is nonexpansive, then inf {{lx —T|: » e K} = 0.

(*) Research supported in part by National Science Foundation grant
MCS 76-03945.
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We do not succeed here in obtaining amnother class of umbounded
closed convex sets whose members possess the above property (or
the fixed point property) with respect to monexpansive self-mappings.
Indeed, the general question as to whether a closed convex set K in a Ba-
nach space must be bounded if it has the fixed point property with respect
0 nonexpansive self-mappings apparently remains open. Although we
do show in Section 5 that certain unbounded convex sets may possess
the fixed point property for surjective nonexpansive mappings, thus par-
tially responding to the more general question, our basic results run peri-
pheral to this taking as point of departure amnother result in [7] which
asserts that if K is a closed convex subset of I, and if T': K — K is a non-
expansive mapping for which there exists a point # € K such that the set

G, =feckK: (g—a,To—a)>=0}

is bounded, then T has a fixed point in K. We begin our discussion by
giving simple extensions of this result to much wider classes of spaces.
Our development then turns to more intricate observations about the
geometry of Banach spaces which we apply to obtain further extensions
of our more basic results to wider classes of mappings. While these geo-
metrie observations (of Section 3) constitute a significant feature of this
paper, we obtain as a result the fact that if K is an unbounded closed
convex subset of a uniformly convex space X and if T: K ~ K is a lipschi-
tzian pseudo-contractive mapping for which the set {zeXK: |z—Tal
< |l¢— o]} is bounded for some a € K, then T has a fixed point in K. As
noted above, our results also yield a fixed point theorem for surjective
nonexpansive mappings defined on sufficiently ‘sharp’ cones in X, a the-
orem we are able to extend to the clasy of asymptotically nonexpansive
mappings under slightly strengthened assumptions on the cone. We
conclude by giving a characterization of the types of cones to which our
results apply.

2. Preliminary results. We begin with a definition which is used
throughout the paper. For a specified set K in a normed linear space X
and given points z, y € X we use G (=, y) to denote the set of points of K
which are nearer y than z, i.e.,

2.1) G@,y) = {eeE: lg—a> lo—yl}.

The first theorem of this section extends Theorem 2 of [7] from I,
to-the class of spaces in which bounded closed convex sets have the fixed
point property with respect to nonexpansive self-mappings. This class
of spaoes includes all uniformly convex spaces ([1 s [8]) and more generally,
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all reflexive spaces whose bounded convex subsets possess ‘normal struc-
ture® (see [127).

TaEOREM 2.1. Let X be a Banach space whose bounded closed conver
subsets have the fized point property relative fo nonexpansive self-mappings,
let K be a closed convew subset of X, and suppose T: K-> K is a nonespansive
mapping. If there exists u € K such that the set G(u, Tu) 8 bounded, then T
has @& fiwed point in K.

Proof. We reduce the problem fto the bounded case. Let B =
4sup{lle—Tull: zeG(u,Tuw)}, and let § = B(Tu; R)nE. Since Tu e 8,
8 #=0. We distinguish two cases:

(1) Suppose z € SNG (%, Tu). Then |z —ul < llg — Tul|+ [u — Tull. Since
$(w-+Tu) € G(u, Tu), it follows that lu—Tul]| << IR; thus |e—u)|
< £R < R whence by nonexpansiveness of 7T, ||Tz—Tul| < R.

(2) Ifz e S and 2 ¢ G'(u, Tu), then ||Tz —Tul| < p—u| < e —Tu]| < R

. Thus in either case T € B(Tu; R) from which T: 8- 8, completing
the proof.

DErinrTION ([10]). Let X be a linear space with K < X. For z ¢ K,
define the inward set, Iz (s), of x with respect to K as follows:

x(@) = {E+ile—2): 2eK,A>1}.

A mapping T: K — X is said to be weakly inward if To e Ix(») for each
v eK.

We now prove a substantial generalization of Theorem 2.1 for uni-
formly convex spaces.

TEEOREM 2.2. Let X be o uwiformly convew Banach space, K a closed
and conver subset of X, and T': K-~ X a weakly inwerd nonewvpansive
mapping. Suppose for some bounded set A — K the set

a4) = N 6(a, Ta)

is either empty or bounded. Then T has o fized point in K.

This theorem follows immediately from Theorem 2.3 below and
a well-known faet about nonexpansive mappings in uniformly convex
spaces: If T is defined on a closed convex subseti D of a uniformly convex
space X then the mapping f = I —T is demi-closed on D, i.e., if {#,} = D
satisfies @, - o weakly while f(x,) -y strongly, then f(z) =y (cf. [3],
8-

TEEOREM 2.3. Let X be a Banach space, K a closed convex subset of X,
and suppose T: K — X is nonexpansive and weakly imward on K. Suppose
for some bounded set A — K that the set

G(4) = N 6G(a, Ta)
aed
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is either empty or bounded. Then there ewists a bounded sequence {w,} < K
such that |, —Tz,|->'0 as n— oco. '

Proof. We may suppose without loss of generality that 0 e K. For
ae(0,1) define T,: K~ X by T,2 = aT». Then clearly T, is a weakly
inward contraction mapping and thus has a fixed point @, e £ by The-
orem 2.1 of [4]. Suppose the set {x,: «€(0,1)} is unbounded. Then it
is possible to choose a (0, 1) so that

sup | Tal| < inf [z, — af,
aed acd

and in addition if G(A4) @, then « may also be chosen so that
flwall > sup {loll: © e G(A)}.
It follows that, for each ¢ € 4,
leo—Tall = llaTw,—Tall < al|To,—Tal + (1 —c) | Tal
< alg,—all+(1—a) 5, —afl = |lw,—~al.
This implies », € G(4), a contradiction. Thus M = sup {lw.)l: @ (0, L)}
< co and we have
Iz —Ta,]| = (¢! = 1) flwoll < (@™ — 1) U,

yielding ||T%,—2,)]— 0 a8 a— 1.

3. Geometric lemmas. Many of our subsequent results depend on
facts concerning the geometry of uniformly convex spaces.

If K is a given subset of a normed linear space X, for ¢,y e K and
£>'0 we define G(z,¥) as in (2.1) and let:

Bz, y) =sup {le—yl: zeG(v, )},
Bz, y) = {z e@(@,y): le—al = le—yll},
G, y;6) = pe K: Jo—all> fe—yl—e}.
The mapping d: [0, 2]~ [0, 1] defined by
0(e) = nf{l —lz+9yl: flol, IWI<1, lo—yl= e

is called the modulus of comvewity of X. It follows immediately that if
@,y € X with |ll, lyll <r and | —y[ > e, then

(3.2) o +yl < (1—d(ajr)r.

It is known [9] that for any Banach space X the function & is nonde-
creasing, zero at 0, and continuous on [0, 2). Also, if &= sup{s: 6(s)= 0},
then clearly X is uniformly convex if and only if £, = 0.

Finally, if G(z,y) is bounded for v,y e X, o # y, (relative to given
K < X), then we define:

3.1)
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&(@,9) = 8(le—yl/B(2, y)) le—yi.

LemymA 3.1. Let K be a closed and conver subset of a uniformly conver
space X, and suppose the set G(z, y) is bounded for some pair », y with z € X,
ye K. Suppose u,veX satisfy: lo—ull<ef2, ly—ol<e/2, where s
= ¢g(®,y). Then:

(a) 3[G(z,y;8)+y] < Gx, y), and

(b) G(u,v) is bounded.

In our proof of the above we shall need the following trivial fact
{which holds in arbitrary spaces X).

LeMMA 3.2. For fived 2, v € X, the mapping 1 > [[ie—=| — [lle]| is non-
increasing in t for 1= 0.
Proof. For ¢, >0,

1+ Bz — ]| — (6 -+ B 2ll — [tz — ]| — [2l]] = N(8-+R)2— ]| — [tz — ] — B ]
< Il —hell = 0.

(3.3)

Proof of Lemma 3.1. (a) Set X = K—y, # = s—y, and define
é(,0), B(@,0), B(,0), (&, 0; ¢), and §(#, 0) as in (2.1), (3.1), and (3.2)
but relative to the set K rather than K. Tt follows thab

G(&,0) = G(z,y)—Y,
64 ) E(#,0) = B(z,9),
G(#,05¢) = G(2,y;8)—Y,
E(#,0) = ¢(2, y).
Thus to prove (a) it will suffice to show that
' 16(, 05 ¢) < G(&, 0)
for & = &(#, 0). We begin by showing
{3.5) Re—a—2el<< —e for zeH(3,0).
Let z € B(#, 0) and set r = e—&|| = |z|l. Then by (3.2),
3IE —2) + (=) < (L— 881 )r < (L — 8 (le—yl/B(2, 9))) el
from which (since [w—y|> }lo—yll for all we Bz, ), ‘
122 — &f — 1221l < (1— 6){lle— w1l /B (=, 9)) 22l — 11221
< —8{lx—yll/R(2, 9)) le—y)

—&.

/

N

This establishes (3.5).
Now let 2z € G(&, 0; ¢). We cousider two cases:
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(1) #2e6(#,0). Then, since 0 X and K is convex, }2eK. By
Lemma 8.2, [}z—4|— |2l > ll—&|— Il > 0 and thus e eG(®,0).

) (2) 2¢G(#,0). In this case lg—&|—[¢|< 0 and therefore there
exists A< 1 such that |ie—&|—|iz] = 0. This implies iz e B(%, 0)
and, in view of (3.5),

[Rle— &l — 1222] < —e.
Thus
le—&ll— el > —& = —&(w,y) > [242— & — [242]|.

By Lemms 3.2, $ < 4, and another application of this lemma yields
lhz— &~ |2l > lAz—&| — |4z] = 0.

In either case it follows that 3z e G(&, 0), proving (a).

Part (b) of Lemms 3.1 follows immediately from (a) upon observing
that for & = s(w, y), G(v,v) = G(z,y; &).

Levwma 3.3, Let K be a closed and convew subset of a uniformly conves
space X and suppose for some m € X and y € K the set G(w , Y) is bounded.
If a> B =0, then the sat G (am+(1—a)y, Bo+(L—B)y) is bounded.

Proof. Asin the proof of Lemma 3.1 we may assume without loss
of generality that ¥y = 0 € K and nse boundedness of G(z, 0) to imply
bou%lded_ness of G(az, p2).

) First note that for 1> 1, w e G(lz, 0) implies (1/2)w € G(z, 0), from
which it follows that R(iw,0) < AR(z, 0). Thus

lAa||
R(1, 0)

lll]
R(z, 0)

and thus we may choose 4, so large that A= o and te(dyw, 0) > al.
By Pem{nzf.&l(b), G (2%, ax) is bounded. We cla,imG(am,%ﬂgog’Gg);a, Jiml)|
for if th1§ is not the case then « € G (aw, A7) exists such that « ¢ G (A, am;
from which |lu—Ba| < |4 — az) and e — aml] > [lw— Ayz]l. Thus seg(fm, Aw)
< B(u; lu—az|) and since aze seg(fx, Aw), this contradicts strict
convexity of the norm of X, .

eln, y) = 6( )uamn> a( )umu

4. Pseudo-contractive mappings. In this section we apply Lemma 3.1
t0 extend Theprem 2.1‘to an important class of mappings which includes
the nonexpansive mappings. Let X be a Banach space and D = X. A map-

ping T: D— X is said to be pseudo-contractive if for each r>0 and
u,v €D,

(4.1) e —oll < WL +7) (u— v) — 7 (Tu— Tw)||.

E'Lxe'd point. theorems f'or pseudo-contractive mappings play an important
role in nonlinear mapping theory because of their connection with the ac-
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cretive transformations. (For a discussion, see [13]. We remark that a well-
known result, due independently to Browder [3] and Kato [11], character-
izes pseudo-contractive mappings as those mappings T for which the map-
ping f = I—T is accretive, i.e., Re{fe—fy,j> > 0 for some jed(z—y)
where J: X — 2% is the normalized duality mapping defined by:

I (@) = {j e X*: (, s> = ol 17l = lel}.)

THEOREM 4.1. Let K be a closed and conven subset of the uniformly
comven space X amd lei T: K— K be a lipschitzian pseudo-contractive
mapping. Suppose for some a € K the set G(a, Ta) is bounded. Then T has
a fiwed point in K.

Proof. Suppose T has Lipschitz constant & and select a €(0,1) so
that ak < 1. Then for each y € K the mapping T,: K — K given by T, (#)
= (L—a)y+aTz is a contraction mapping and hence has a fixed point
F,(y) for each y € K. Thus,

(4.2) F(y) = 1—a)y+alF,(y), yek.

A standard afgument ghows that the mapping F,: K — K is nonexpansive
on K, for if r > 0, then

e —oll < UL +7) (v —v) —r(Tu—To)j
and if, in addition, 7 is chosen so small that «(1+47)> 7, then
1. (u) — Fo(0)]] < [|(L 1) (Fulw) — Fo(0)) —7 (TFo(w) — TFo ()|

- H(l +1) (Bul) = Fo(0)) — = (Falt) — Fo(0)) —

—(1—a)(u—2)

< [a—}—r(a—l)
a

=

] () — Fy (o)l + [T—‘l—;—ﬂ] -
from which
VP () — B (o)l < J—ol.

To find o fixed point for T it suffices by (4.2) to find a fixed point
for F,, and, in view of Theorem 2.1, this can be accomplished by ghowing
G(a, F.(a)) is bounded (for fixed « e (0,1) sufficiently small).

Since F.(a) = (1—a)a-+aTF,(a), it will follow from Lemma 3.3
that ¢ (a, F.(a)) is bounded if &(a, TF,(a)} is bounded. But

I\, (a) —af] = alla—TF,(a)]| < aklla—Fo(a)] + alle —Tal
and hence [F.(a)—a]<(l—ak) ‘alle—Ta|l. Thus, given &>0, it is
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possible to choose a so small that [|Ta—T7F,(a)] < e and boundedness
of G{a, TF,(a)) now follows from Lemma 3.1(b).

5. Mappings defined on cones. If the mapping T': K — K is surjective,
then certain convex sets K must always possess points « such that the
set G (u, Tw) is bounded. This is true in particular when K is sufficiently
‘sharp’ cone. In this section we prove fixed point theorems for surjective
nonexpansive and asymptotically nonexpansive mappings defined on
such cones. Then, in Section 6, we characterize precisely the classes of
cones for which our results are valid (in spaces X for which both X and X*
are uniformly convex).

DErFINITION 5.1. Let X be a normed linear space. A convex cone ¢
in X with vertex 0 is said to be acute if for each nonzero » in ¢ the sef
G{(w, 0) is bounded.

‘We begin with a simple consequence of our previous results.

TEmOREM 5.1. Let C be an acute cone in a uniformly conves space X
and suppose T': C— (' is nonexpansive. If T is surjective, or more generally,
if there ewists f €[0,1) and @ € C such that Tw = fo, then T has a fimed
point in C.

Proof. Suppose Tw = fa for # € and f e[0,1). Since ( is acute,
the set G(x,0) is bounded and thus by Lemma 3.3 the set G(x, Tm)
= @{z, fz) is bounded. The theorem now follows from Theorem 2.1.

Remarks. (1) In view of Theorem 4.1, Theorem 5.1 remains true
if T is lipschitzian and pseudo-contractive rather than nonexpansive.

(2) The assumption T: O-> 0 is also stronger than necessary (for
nonexpansive TI) in Theorem 5.1 because by appealing to Theorem 2.2
it is clear that the assumption 7: € — X is weakly inward on C suffices.

Using Lemma 3.1 we are able to extend Theorem 5.1 to a wider class
of mappings, but for a (presumably) more restricted class of conss.

DEFINITION 5.2. A convex cone C with vertex 0 in a normed linear
space X is said to be uniformly acufe it
(5.1) sup {B(z, 0): zeC, lo]| =1} < oo.

Recall that a mapping T: D — D is asymplotically nonewpansive ([77)
if there exists a sequence {a,} of real numbers with a, -1 such that,
for each z, y € D and each n,

T s — Iyl < o, lo—y].

It is shown in [6] that such a mapping always has a fixed point for D
@ bounded closed convex subset of a uniformly convex space.

THEOREM 5.2. Let X be o uniformly convew Banach space with C

icm°

TFized-point theorems 135
a uniformly acute cone in X, and suppose T: O — C is asympiotically non-
expansive and surjective. Then T has & fived point in C.

We derive Theorem 5.2 from the following

THEOREM 5.3. Let X be ¢ uniformly conver Banach space with K a closed
and convex subset of X, and suppose that T is an asympiotically nonexpansive
mapping of K info siself. Suppose further that there ewists a sequence {a,} < K
such that

(i) G(a,, T"a,) is bounded for each n;

(i) limsup [la, —T"a,l/B(a,, IT"a,)] > 0.

=-rQ

Then T has a fived point in K.

Proof of Theorem 5.2 from Theorem 5.3. Under the assump-
tions of Theorem 5.2 there existis for each # a point 4, € O such that Ta,, = 0.
Suppose M = sup {R(, 0): # e C, |lz| = 1}. Obviously, la, | *@(a,, T"a,)
= G(la " a,, 0) so we obtain R(a,, T"a,) < lla,—T"a,|M. Thus,
lle,—T"a,||/R{a,, T"a,) > M '>0, n =1,2,..., and the assumptions
of Theorem 5.3 hold. .

Proof of Theorem 5.3. Since X is uniformly convex, (i) implies:

(5.2) limsup[e(a,, T"a,)/R(a,, T"a,)] > 0.

Thus, for N sufficiently large,
(5.3) 4{ay—1)R(ay, TN ax) < s(oy, TN ay).
Set & = e(ay, TV ay) and B = ayR, where
(64) R, =2sup [{”z_TN“N”: z e@(ay, T ay; 2)}, ”“N—TNGNH]-
By Lemma 3.1(a) and (i), By < oo. Also Lemma 3.1(a) yields for all
2eGay, TNay; e):
3e+TVay) €Gay, TV ay).
Thus )
3B, = swp[21}(2+ TV ax) — TV axll: 2 € G(ay, TV ay; &)}, lay—T" ayl]

< max[2R(ay, TV ay), lay—TVayl]

= 2R(ay, TV ay).
Now we may rewrite (5.3) as
(5.5) (ay—1) Ry < &.

Set 8 = B(TVay; R)NC. We now show that TV: §— 8. To see this
suppose z € § and consider the two cages:
(1) 2z €G(ay, TV ay; ¢). Then, using (5.4),

4 — Studia Mathematica 64.2
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VT2~ T¥ ]| < ayle—ayll <
< ayRy, = B.

aylle—T% ayl -+ 1TV ay—axl]

(2) 2 ¢ G(ay, TV ay; ¢). In this case we have (from (5.5))

1TV — TN ayll < aylle —ayll <
< oayR—ayloy—1)R, = E.

Therefore, in either case, T%: § — §. By Theorem 1 of [6] the fixed
point set F of % is nonempty (since TV is an asymptotically nonexpansive
mapping of §into §). Also Theorem 2 of [6] implies F is closed and convex,
and moreover it readily follows that T is nonexpansive on F. Since {T"2}
is bounded (i.e., finite) for » e #, it follows from the Corollary in [12]
that T has a fIXGd point in #.

ay | T¥ ayy—2||—aye

6. Characterization of acute cones. In this section we provide charac-
terizations of acute and uniformly acute cones.

‘We begin with some standard definitions (e.g., see Day [5], jpp 144-147.
A Banach space X is said to be smooth provided ;
(6:1) T~ o+l ~ Jol]
exists for each #, h € X. When this is the case, the norm of X is said to
be Gateauw differentiable, and we denote the limit in (6.1) by D,(h). The
space X is said to have uniformly Giteaus differentiable norm if for each b € X
the limit (6.1) is attained uniformly for # with | X| = 1, while X is said
to be uniformly smooth if the limit (6. l) is attamed. uniformly for all z
and 2 with lz|| = [k = 1.

It is known (cf. [8], p. 147) that X is uniformly smooth if and only
if X* is uniformly convex. In this case

(6.2) = o J (#)

where J is the duality map defined in Section 4. We note that if D, (h)
exists for all z, h € X, then Lemma 3.2 implies

(6.3) D (k) = linin |-+ b — Aal(].

Finally, suppose X' denotes the boundary of the unit ball in a smooth
Banach space X and suppose C is a given cone in X. For each zeC set

(6.4) B(z) = sup{D,(—~a): 2z OnZY.

TEROREM 6.1. Let C be 4 conver cone (with vertex 0) in a Banach space X
where both X and X* are uniformly comvem. Then C is acute if and only if
By < O for each. z e ONZ,

Proof. Since |l2|™'@(x, 0) = G(|l#| =, 0) for each nonzero # in O,
‘we note that 0 is acute if and only if G (z, 0) is hounded for each s € (NI
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Now let # e nX' and suppose f(z) = y < 0. Since the norm of X
is uniformly Gdteaux differentiable, there exists i, such that A > A, implies
liz—alj— A2 —D,(—») < —y for each ze ONX'. Since y = p(z), this
implies |22~ < [l42]. Thus ity € C and |ly| > 4, it follows that y ¢ G(, 0),
i.e., the set G(z, 0) is bounded.

Conversely, suppose # € 0NZ' and suppose G(z,0) is bounded. If
B ()= 0, then for each n there exists y, e CNX" such that D, W2V = —1 [,
and, in view of Lemma 3.2,

139, — 2l — [yl > —1/n

for all 2> 0. Hence, for 1> 0, 1y, €G(z, 0; 1/n). But by Lemma 3.1(a),
+G (%, 05 1/n) = Gz, 0) for n sufficiently large and so we have a contra-
diction.

Remarks. (1) We observe that the proof of sufficiency above only
requires that X have a uniformly Gateaux differentiable norm, while for
necessity, it need be assumed only that X is uniformly eonvex.

(2) In Hilbert space the condition g(z) < 0 reduces to: inf{(z, y):
y € 0NX'} > 0 for each # e CNE". (Thus C is acute if and only if the angle
of C is less than 90°.) o

TurOREM 6.2. Under the assumptions of Theorem 6.1, the cone C is
uniformly acute if and only if sup {f(z): # e NI} < 0.

Proof. Suppose sup{f(z): £e(CnZ'} < 0. We must show that
sup{B (2, 0): # e CNE*} < co. Under our assumptions here, however,
we may proceed as in the proof of Theorem 6.1, except that p and 3, may
be chosen so that 12> Jj, implies liz—a)— iz]|—D,(—x) < —yp for all
weCnI'. Thus sup{R(z,0): £ e CNZ"} < 4.

For the necessity, suppose sup{R(#z,0): # e CNZ"} = g < oo. Then
for each » € 2" it follows that £(z, 0) > 6(0™"). Now assume sup {3 (z):
2eCnX1}>0. Then it is possible to choose #z, yeCNI' so that Dy(—y)
= —6(0™"). Thit leads to a contradiction in the same manner as in the
proof of Theorem 6.1.

-Dyn(_a") >
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Le groupe des isométries d’un espace de Banach
par

JACQUES STERN (Paris)

Abstract. We characterize those groups @ such that, for some Banach space F, Q@
is isomorphic o the group of (norm-preserving) isometries of E: they are exactly the
groups which have a normal subgroup with two elements.

Les . isométries d’un espace de Banach E sont les aubomorphismes
de B qui conservent la norme, c’est-i-dire les surjections linéaires T': H—H
qui sont telles que

Va |T{z)] = ll2l-

Le but du présent article est de caractériser les groupes d’isométries
des espaces de Banach. Si @ est le groupe des isométries de ’espace de |
Banach E, alors @ a un sous-groupe normal & deux éléments formé de
Pidentité de la symétrie o: # — — . Inversement, on a:

THEOREME 1. Soit G wn groupe qui a wn sous-groupe normal & deus
éléments et soit & wn nombre rédl sirictement positif. Il emiste un espace de
Banach 1 + e-isomorphe & un espace de Hilbert et dont le groupe des isoméiries
est isomorphe & G.

On rappelle que deux espaces de Banach B et F sont dits 1+ &-iso-
morphes g%l existe un isomorphisme T: ¥ — F tel que ||T] ATH<L 14

Remarques. 1. Soit 4 Pélément neutre de G et {i, j} un sous-groupe
3 deux éléments. On peut alors préeiser la conclusion du théoréme 1 qui
devient:

I1 existe un espace de Banach B, 1--e-isomorphe & un espace de Hil-
bert et un isomorphisme T de G sur le groupe des isoméiries de I tel que (%)
soit Videntité de B et v(j) lo symélrie de H.

2. 8i @ est dénombrable, l’espace de Banach dont I'existence est
affirmée par le théoréme 1 peut &tre choisi séparable.

Pour établir le théoréme 1, on prouvers au préalable le résultad
suivant (suggéré 4 D'auteur par S. Shelah).

THEORIME 2. Pour fout ensemble non vide X et pour tout e> 0, il
ewiste un espace de Banach 1--e-isomorphe & 13(X) et qui n’admet comme
isoméiries que Didentité et la syméirie.


GUEST




