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The weak Radon-Nikodym property in Banach spaces
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Abstract. The notion of the weak Radon-Nikodym property of a Banach space
is introduced. The main result is that if a Banach space X is separably complementable
(i.e. each separable subspace of X is contained in a separable and eomplemented sub-
space of X) then X* possesses the weak Radon-Nikodym property if and only if X
does not contain any isomorphie copy of I;. This theorem yields some new results in
the theory of Banach spaces and in the theory of Banach space valued functions
(e.g., if a separable X is weak* w;-sequentially dense in X**, then if is weak* sequen-
tially densein X**;if X is separable, I, & X and X* is non-separable, then there
exists an X*.valued weakly measurable funetion which is not weakly equivalent to any
strongly measurable funetion).

1. Imtroduction. Let (8, X, u) be a finite complete and non-negative
measure space, and let » be a p-continuous measure taking values in a
Banach space X. We present a treatment of the following question:
when does X possess the weak Radon—Nikodym property, i.e. when, for
each (8, ¥, u) as above, and each u-confinnous measure »: S— X of
o-finite variation, does there exist a Peftis integrable function f: § - X
such that »(E) = Pettis-[fdu, for all E e X? If there exists a strongly

B

measurable function f with the above property, then X is said to have
the Radon—Nikodym property. The problem of characterization of Banach
spaces posessing the Radon-Nikodym property has been treated by many
authors (ef. [7]). :

Using the constructions of James [15] and that of Davis, Figiel
Johnson and Pelezyniski [5], we show that there are Banach spaces which
possess the weak Radon-Nikodym property and fail to possess the Radon—
Nikodym property.

In order to prove the main theorems of this paper we use methods
which are quite different from those used in the theory of Banach spaces
possessing the Radon—Nikodym property. In particular, we use some
properties of Banach spaces which do not contiain isomorphic copies of 1.

Using our main theorem (Theorem 3), we show that there exists
a Banach space nof containing any isomorphic copy of 1, and a bounded
Pettis integrable function with values in this space which is not weakly
equivalent to any strongly measurable function (Corollary 7).
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We also prove that if the set of extreme points of the unit ball of x*
is norm separable, then X” is norm separable (this was a problem posed
by Stegall [32] and first solved by Rybakov).

We also prove that a separable X is weak™ o,-sequentially dense
in X** (see Section 5 for the definition) if and only if X is weak" sequentially
dense in X**.

An gbstract of this paper was presented at the conference in Measure
Theory at Stefanova (Ozechoslovakia) in January 197 6.

2. Preliminaries. Throughout the paper the lefters X, ¥ and Z denote
infinite-dimensional Banach spaces (real or complex).

If X is a Banach space, then X* denotes the topological dual or con-
jugate space to X, and, it U: X — ¥ is an operator, then U*: ¥* > X*
is the adjoint operator to U. If 2eX and #* e X*, then (#", #) = " ().

The fopological sum of X and ¥ is denoted by X Y. We write X « ¥
whenever X is a closed subspace of ¥, with the induced topology.

T denotes a linear subset of X* total on X.

Let (8, Z, u) be a finite positive measure space. A function f: §—+ X
is I-meagurable, whenever for every 4™ e I', there exists a u-null set N € X
such that (z% f) is a measurable function on (S\N, Z|S\XN), where
S\ denotes the complement of ¥ in 8, X|S\N = {FeX: B =« S\N},
and <o, f(s) =" [f(s)], se&.

If X = Y* for a'Banach space Y and I" = ¥, we say also that f is
weak™ measurable. It I' = X*, then f is said also to be weakly measurable.
A weakly measurable and almost separable X-valued function is called
strongly measurable. k

f(8) denotes the range of the function f: §— X. :

A Imeasurable function f: §— X is said to be Iuniformly bounded
provided there is & number M < oo such that, for every «* e I', we have,
K, 1< Mle™|| p-ae.

Using the lattice properties of I,(S, X, u), we can easily see that
if f+ §— X is a I"measurable function, then there exigts a non-negative
measurable function y; with the following properties:

(i) for every «* eI [<a*, F(s))] < pf(s) 0" || wace.;
(i) 97 (8) < IF @) pae.;
(iii) if ¢: 8 = [0, oo) is & measurable function satisfying conditions (i}
and (ii) (with ¢f replaced by ¢), then yF(s) < ¢(s) p-a.e.

If If()l is & measurable function, then f(s) = [f(s)l u-a.e.
Moreover, for every I-measurable function f: 8§ X there exists
a sequence of I-uniformly bounded functions f,: §~>X, n =1,2, ...
such that f = 3 f, and the supports of £,’s are pairwise disjoint.
n
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A Imeasurable function f: § — X is Itscalorly integrable if & >
eLy(8, X, p) for every &* eI. A I'scalarly integrable function f: 8 — X
is Iintegrable if for every B e X there exists an element fz € X such that

& fgy = [ an,
4

~ for every #* e I'. In such & case we say that T 18 a Iintegral of f on the set

B e X, and we denote it by
w =T'— [fiu.
B

If X is a conjugate of a Banach space Y and I’ = ¥, then we say also
that f is weak” integrable and fg is the weak™ integral of f on B.
An X*integrable f: 8§+ X is said to be weakly (or Pettis) integrable,
and f is the weak (or Peitis) integral of f on B: f =P — [ fdu.
E

Two I'measurable functions f: §—+ X and ¢g: S— X are called
Tequivalent provided, for every o* e I', {z%, f> = <{&, g> p-a.e. As above,
we can speak about weak™ and weak equivalence of functions.

A mapping v: > X is an X-valued I-measure provided <a*,»>
is countably additive for every =™ e I. If » is countably additive in the
norm topology of X, then we say simply that » is an. X-valued measure
(by the Orlicz-Pettis theorem, » is an X-valued measure if and only if it
is an X-valued X*-measure). f X = Y" and I' = ¥, then we speak
about weak™ measures. Tt is easy to see that if f: § — X is a I-integrable
function, then the I-integral of f is an X-valued Imeasure.

»(X) is the range of the Mmeasure »: X — X. .

If »: X— X i8 & Imeasure, then by the Ivariation of »
& mapping |v|;: X~ [0, co] given by

we mean

Wlr(B) = sup 3 Ip(4)]r,
j=1

where F e X, sup is taken over all finite sequences of pairwise disjoink
elements A; of X such that 4; = B and for every e X

lelr = sup{Ka", &|: 6" <1, 4" eI},
If I' is & norming set, then
Plr(B) = sup D) (4],
j=1

‘where sup and 4, are as above. In that case || is called a variation of »,
and it is denoted by [v]. .


GUEST


154 K. Musial
A standard calculation shows that |»|r is always a non-negative
Ineagure.

It |v| - is (o-)finite, then v is said to be of (o-)finite Ivariation.

If p is o finite positive measure on (8, X)and »: ¥— X is a I“measure,
then we say that » is p-continuous if ||, is p-continuous, ie., for every
positive number &, there is & positive number & such that || B <e
for every B e X for which u(H) <.

The following theorem obtained by Rybakov [28], will be frequently
used in our considerations. For measures of finite variation it is a direct
consequence of a representation theorem of A. and C. Tonescu Tulcea
[41] (ses also Dinculeanu [9], §13, Theorem B). :

TarorEM- 0. Let (S, 2, p) be a finite complete measure space, let X
be a Banach space and let v+ Z—>X" be a p-continuous measure of o-finite
variation. Then there cxists a weak® measurable function f: 8 > X* such that

»(B) =X— [ fdu, BeZ.
B
3. The weak Radon-Nikodym property. Connections with the Radon-
Nikodym property. We begin with a theorem which shows that from the
integral point of view the only interesting Imeasures are those of o-finite

TI-variation.
ProrostrIoN 1. If f: 8§ — X is a I-iniegrable function and

»(B) =I'— [ fap, BeZ,
E .

then the I-variation |viy of v 48 @ o-finite measure and
e (B) = Efwfdu, BeX.
Proof. If e X, then we have for every «* eI’
I<a®, »(B))] < Ef IKa®, £l du < 1a*) [ vf dp.
Hence, :

Plr(B < [yfdp,
B

and the first assertion follows since v} is finite everywhere.

By the classical Radon-Nikodym theorem there existy @ non-nega-
tive measurable funetion » on § such that

r(B) = [hdu, EeZ.
B
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Now, the inequality |»|,(B) < Jvf du yields the relation
)

h(s) < 7 (8) p-ave.
If o* eI and |o*} < 1, then

Ka*, 1(B) = [ Ka*, foldp< blr(B) = [hip.
B E

Hence |<'m*, F> < h(s) p-a.e. Condition (ii) now yields uf(s)<<h(s)
p-a.e., and this completes the proof.

CoroLLARY 1 (Rybakov [29]). If f: 8- X is Peiiis integradble and
»(B) = P—[fdu, then the variation of v is o-finite.
E

COROLLARY 2. If X = Y* for a Banach space ¥ and f: 8 — X is weak™
integrable, then the (weak*) variation of the weak* measure y(H) = Y[ fau,
E e X, is o-finite. =

A Banach space X is said to have the Radon~Nikodym property (RNF)
if and only if, for each finite measure space (S, X, u) and each u-continu-
ous X-valued measure »: X X of finite variation, there exists & strong-
ly measurable function f: §— X such that

»(B) = Bochner— [ fdu.
A

Tt is easy to see that X has the RNP if and only if each X-valued
measure of o-finite variation is the Pettis integral of a strongly measur-
able function. .

If we consider weakly measurable functions, then the only natural
generalization of these two integrals is that of Pettis. So, inspired by Prop-
osition 1, we introduce the following generalization of the RNP:

DEFINITION 1. X has the weak Radon—Nikodym property (WRNT)
if and only if every X-valued measure » on a finite complete measure
space (8, X, p) which is u-continuous and of o-finite variation has a Pettis-
integrable derivative f: § X (i.e. »(B) =P —[ fdu for each F in X)

E

T4 can be shown that X has the weak Radon-Nikodym property
it and only if every X-valued measure » on a finite complete measure
space (S, X, u) which is g-continuous and of finite variation has a Peftis-
integrable derivative f: §— X.

It is quite clear that for a separable Banach space the WRNP and
the RNP are equivalent.

Tt is also clear that & Banach space X possessing the WRNP has the
RNP if and only if, given any complete measure space (8, 2, u) and any
Pettis integrable function f: § — X, there exists a strongly measurable
function g: § - X which is wealkly equivalent to f.
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In particular, if X has the WRNP and each weakly measurable
X-valued function is weakly equivalent to a strongly measurable function,
then X has the RNP.

ProBLEM 1. Let X be a Banach space with the RNP. Is each X-valued
weakly measurable function weakly equivalent to an X-valued strongly
measurable function 2

As is shown in Corollary 7, without the assumption that X has the
RNP the answer may be a negative one.

Problem 1 is connected with the following one (cf. [8]).

PROBLEM 2. Assume that X is a Banach space not containing any
isomorphic copy of ¢, (or stronger: X has the RNP). Is every weakly
scalarly integrable X-valued function Pettis integrable?

It is easy to see that the positive answer (at least for X with the RNP)
yields & positive answer to Problem 1. ’

It is shown in Section 5 that there are Banach spaces with the WRNP
and without the RNP. In particular, it is shown that the WRNP is not
hereditary with respect to subspaces. However, it is easy to prove that
the following theorem holds:

ProposrTioN 2. If X = Y@Z, then X has weak Radon—Nikodym
property if and only if both Y and Z do.

The next proposition is due to Professor 0. Ryll-Nardzewski.

PRQPOSITION 3. Iy, does not possess the weak Radon-Nikodym property.

Proof. Let (8,X,u) = ([0,1], %, u), where 4 is the Lebesgue
measure and & is the o-algebra of y-measurable sets.

For each s [0, 1] denote by 0, s,8,... its dyadic expansion. Setting
Sf(s) = {s,)52,, we get an I-valued I,-measurable function.

Now, for every E & X, put »(H) = {Efsndy}f;l. Since |»|(B) < u(B),

E e X, is an l-valued measure of finite variation. Olearly, we have

YB) =l— [fdu, BeZ.

E

However, by a theorem of Sierpiriski [31] there exists a purely additive
set function 7 on the o-algebra of all subsets of a countable set, such that
<1, f(*)) is not p-measurable (it is known that I% = 1,@et and 5 e o).

Thus, f is not weakly measurable and this implies that » cannot obe
represented as a Pettis integral.

Taking into account the above two propositions, we get

Prorosrrion 4. If X has the weak Radon-Nikodym property, then X
does mot contain any isomorphic copy of 1.

Proof. Suppose that X contains an isomorphie copy of 7. Since I,
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is a P,-space, there exists a Banach space ¥ such that X = 1.®Y. In view
of Propositions 2 and 3, X does not possess the WRNP.
Tt follows from the above Proposition 4 and the theorem of Bessaga

 and Pelezynski [3] that ¢, cannot be isomorphically embedded into any

conjugate Banach space with the WRNP.

ProBLEM 3. Can ¢, be isomorphically embedded into a Banach space
possessing the WRNP?

Tt is well known (c¢f. Lewis [17]) that Banach spaces with the RNP
cannot contain ¢,.

‘We conclude this section by indicating a class of Banach spaces for
which the WRNP and the RNP are equivalent.

We shall say that Y is separably complementable if for every separable
space X < Y there exists a separable space Z = ¥ complemented in ¥
and containing X.

TaroreM 1. If X is a subspace of a separably complementable space,
then X possesses the weak Radon-Nikodym property if and only if it possesses
the Radon-Nikodym property.

Proof. Let (§, X, u) be the unit interval [0,1] endowed with the
Lebesgue measure and the Lebesgue measurable sets, and let v: T X
be a p-continuous measure of finite variation.

If X possesses the WRNP, then there exists a function f: [0, 1]+ X
such that

»(B) =P— [fiu, BeZ.
E
Since »(Z) i separable, there exists a separable space Z < Y (where ¥

is separably complementable and contains .X) which is complemented

in ¥ and contains »(X).
T Q: ¥ — Y is the projection of ¥ onto Z, then the equality

»(B) =P— [ Qfdu
E
holds for every F e X and Qf is a strongly measurable funetion.
In virtue of a result of Rieffel ([25], Proposition 1.10) we have

Qf(8) = conv,(8) u-ae.
where

,(8) = {”(E) : BeX, ulB)> 0}

w(B)
and the closure is taken in the norm topology of Y. Thus we have @f(s) e X
u-a.e., and this shows that X possesses the RNFP with respect to (8, X, u).
In view of a result of Chatterji ([4], Theorem 2) X possesses the RNP..
This completes the proof. :
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CorOLLARY 3. A weakly compacily generated Banach space possesses
the WRNDP if and only if it possesses the RNP. An IL-space possesses the
WRNP if and only if it s isomorphic to a Banach space 1, (T) for some set T.

Proof. If X is WCG, then in virtue of a result of Amir and Linden-
strauss ([1], Lemma 4) X is separably complementable. The conclusion
follows from Theorem 1.

It is also known (cf. Grothendieck [12], p. 325, Exercise 2) that an
L-space is separably complementable. :

Assume now that ¥ = I, (8, X, y) is isomorphic to X (cf. Semadeni
[30], Theorem 26.3.1).

If x has a non-atomic part u,, then owing to the decomposition of u
into non-atomic and purely atomic parts, ¥ contains a (complemented)
copy of I, (8;, 2y, u,) which fails to have the RNP.

If u is purely atomic, then Y is isomorphic to some I,(T) which is
known to have the RNP, This proves the assertion.

I was informed by the rewiever that a result similar to that contained
in Corollary 3 was proved earlier by D. R. Lewis (Stegall [33]).

The following proposition will be needed in Section 5:

PROPOSITION 5. Let the unit interval [0, 1] be endowed with the Lebesque
(or Borel) measurable sets and the Lebesque measure u. Then there exists
o weak™ scalarly integrable function f: [0, 1] — O* [0, 1] which is not weakly
measurable. ‘

Proof(!). Let B be a not u-measurable subset of [0,1]. Define
@™ e 0**[0, 1]by '

o) = wa(B),
where u, is the atomic part of u e C*[0, 1] and put
f(s) =4,
for every se[0,1].

f is weak™ scalarly integrable but it is not weakly measurable because

2*(f) = yg is & non-measurable function.

4. A function characterization of conjugate Banach spaces possess-
ing the weak Radon-Nikodym property. We give here a characterization
of the conjugate Banach spaces possessing the weak Radon-Nikodym
property in terms of weak* scalarly integrable functions.

We begin with a lemma.

Lemwa 1. Let X be a Banach space and let ¥ be o separable subspace

of X*. If X is separably complementable, then there emists a separable comp-
lemented space 7 = X such that Y embeds isomeitrically into Z*.

@) ’.rha proof presented here was proposed by Professor C. Ryll-Nardzewski.
Our previous proof was based on the fact that each weakly p-measurable 0*[0, 1]-
valued funetion is strongly measurable.
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Proof. In order to prove the assertion it is sufficient to use the same
arguments (and the separable complementability of course) as in the classi~
cal case (cf. [11], L.emma VI. 8.8).

TEEOREM 2. The following statements concerning X* are equivalent:

(i) X" has the weak Radon-Nikodym property;

(ii) given amy complete measure space (8, X, u) and any weak* scalarly
integrable function f: 8 —~ X*; then there ewists a Pettis integrable function
g: 8 — X, which is weak® equivalent to f.

If X is separably complementable and each X*-valued measure of o-
finite variation has a norm-separable range (e.9. X is separable), then the
completeness of (8, X, u) is superfluous. For separable X the equality f = g
u-a.6. holds.

Proof. (i) - (ii). Let f: § - X* be a weak* measurable function such
that <f, #) e L,(8, 2, u) for each zeX.

An easy application of the closed graph theorem implies that for each
B e X there exists an fz € X* such that - :

gy > = f<f7m>d‘“'
B

The mapping »: X — X* given by »(H) = fy is a weak™ measure.
By a result of Diestel and Faires ([6], Corollary 1.2), » is norm countably
additive since, in view of Proposition 4, X* does not contain any isomorphic
copy of 1. Moreover, in virtue of Proposition 1, the variation of » is o-
finite.

Hence, by the assumption, there exists a weakly measurable function
g: 8 — X* such that

»(B) =P——fgd,u, BeZX.
B

Clearly, g is weak* equivalent to f.
If X is separable and (8, X, u) is not necessarily complete, then let

8, )E', %) be the completion of (8, X, u). If f is weak* scalarly integrable
with respect to (S, X, u), then it is also weak* scalarly integrable with
respect to (S, .f', ). In view of the first part of the proof there exists
a Pettis integrable g: § — X* on (8, X, u) such that

{f(8), &) = {g(s); > p-a.e. for every we X.

If {»,}2, is a countable dense subset of X, then for every # there
exists & set N, e X such that u(N,) =0 and

CF(8), @y = (g(s), ),  Whenever s ¢ N,.
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Pub F(s) =g(s) if s ¢ G N, and §(s) = 0 € X*, otherwise. Cleatly,

n=1
§: 8 — X*is Pettis integrable on (8, X, u) and f(s) = §F(s) p-a.e.
Tf X is separably complementable then there exists a complemented
separable space ¥ « X such that »(Z) = X",
Let P be a projection of X* onto ¥* and let f and » be as in the first
part of the proof. Clearly, Pf is Y-measurable and

»(B) = Y— [ Pfdu
B

for all EeX.

Since Y is separable and ¥* has the WRNP (it follows from Prop-
osition 2), there exists a ¥**-integrable function g: § ~ ¥* = X* such
that Pf =g p-a.e., and

v(H) = HelZ.

™ — f gdu,
Z
Cleaxly, ¢ is X**-integrable and it is' X-equivalent to f.
(ii) - (i) Let »: X — X* be a measure of o-finite variation. In virtue
of Theorem 0 there exists a weak* measurable function f: §—X* such
that

»(B) = X~ [fau,
E

HelX.
By the assumption there exists a Pefitis integrable funetion g: § — X*
such that for every # e X

{F(s), 8> = {g(s), ®) p-ae. for every z e X.
Let

v(B)=P— [gdu, HeZ.
# .

Since X is total on X* and (»(B), o) = (& (B),s) for every BeX
and » X, we have v (B) = »(H) for every E e X. This yields the WRNP
of X*.

COROLLARY 4. If X* has the WRNP, then for each finite complete
measure space (8, %, u) and each weak* measurable function f: §— X¥,

. there exists a weakly measurable function g: 8 — X* which is weak® equiv-
alent to f. If X is separable, then the completeness of (8, X, u) is superfluous
and f is simply weakly measurable.

Proof. Since we can decompose f: § - X into a series of weak®
uniformly bounded functions, the assertion is 2 consequence of Theorem 2.

ProBrEM 4. Is the converse of the statement of Corollary 4 frue,
ie. does X* have the WRNP if for each finite and complete measure
space (S, X, s) each weak® measurable funetion f: 8-+ X* is weak”
equivalent to a weakly measurable g: §— X*¢
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As Theorem 5 shows, in the case of separably complementable X
the answer is affirmative.

Remark 1. Assume that real measurable cardinals do mnot exist.
Then it follows from the properties of 0*[0, 1] that it is impossible to
replace in Theorem 2 weak® scalarly integrable functions by weakly
scalarly integrable functions. Namely, if f: § — 0*[0, 1]1is a weakly sca-
larly integrable function, then in view of Grothendieck’s theorem ([12],
p. 327) f is strongly measurable. Since ¢, & 0*[0, 1], it follows from the
theorem of Dimitrov [8] and Diestel, Faires ([6], Corollary 1.3) that f
is Petitis integrable. On the other hand, 0*[0, 1] does not possess the WRNP
{Corollary 3).

5. The weak Radon-Nikodym property in a space possessing a separ-
able predual. It is the aim of this section to give a complete character-
ization of Banach spaces possessing the WRNP which are conjugate to
separable Banach spaces. '

Moreover, using our main theorem, we give examples (in fact we
adapt the examples constructed by others to our purposes) of Banach
spaces which have the WRNP but fail t6 have the RNP. As is known
(cf. Musiat [22]), if X is separable then X* has the RNP if and only if
each X*-valued weak* measurable function is strongly measurable. We
give here a similar characterization of the WRNP of X*.

The main theorem is the following

TEEOREM 3. If X is separable, then the following statements concerning X
are equivalent:

(i) X* possesses the weak Radon—Nzkodym property;

(il) given any (complete) measure space (8,2, u) and any weak*
sealarly integrable function f: 8 — X*, f is Pettis integrable;

(iil) given amy (complete) measure space (S, X, u) and any wmk*
measurable function f: 8 — X* f is weakly measurable;

(iv) X does not contain any isomorphic copy of 1,.

Proof. We only prove the version with complete measures. The equiv-
alence of (i) and (ii) is proved in Theorem 2 and (iil) can be derived from
(ii) by using the decomposition property of weak™ measurable functions.

(iif) — (iv). Assume that X contains a copy of 7,. In virtue of a result
of Pelczynhski ([24], Theorem 3.4) ([0,1] is a quotient of X; let
V:X — (0[0,1] be the quotient map. Then U= V*: ¢*[0, 1] X* is an
isomorphic embedding of C*[0,1] into X* such that U*(X) < 0[0, 1].

Now, in virtue of Proposition 5, there exists a weak™ scalarly inte-
grable funetion f: [0,1]--C*[0,1] which is not weakly measurable.

Let us consider the function Uf: [0,1]— X" It follows from the
Hahn-Banach theorem that Uf is not weakly measurable.
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On the other hand, we have U*(X) = C[0,1] and this proves the
weak™ scalar integrability of Uf. Thus (iii) does not hold, and this com-
pletes the proof of the implieation.

(iv) = (i). Assume that I, ¢ X and take a finite complete measure
space (8, %, u) and a p-continuous measure »: ¥—>X* of finite wvari-
ation. In virtue of & result of Odell and Rosenthal [23] X is weak™ sequen-
tially dense in X** and in virtue of Theorem 0 there exists a weak™
measurable function f: §—X* such that

»(B) = X— [fdu, BeX.
B

Leb
Q ={a" e X™: ™ (@) = [ & fHap for all Bez).
pi

Tt can easily be shown that @ is weak™ sequentially closed in X**"
(cf. Lipecki and Musiat [20], Lemma). Hence, @ = X™* and

v(E)=P—-ffdp for Hel.
E

This proves that X* has the WRNP. (Compare the proof of this impli-
cation with a Theorem- of Wilhelm [20].)

Having proved the above theorem, we are able to give examples
of Banach spaces with the weak Radon-Nikodym property but without
the Radon—Nikodym property.

For instance, the space Y constructed in [5], p. 325, does not contain I,
and Y* is non-separable. In view of Theorem 3 and the result of Stegall [32],
Y* possesses the WRNP but does not possess the RNP.

Also the space JT*, where JT is the space constructed by James [15]
(ef. also [19]), has the WRNP but does not have the RNP.

Let Z be one of the spaces ¥ or JT and let W be a subspace of I,
which is not isomorphie to any conjugate Banach space (such a space
was constructed by Lindenstrauss [18]). Since W has the RNP (as a sub-
space of a space possessing the RNP), we infer in view of Proposition 2,
that Z*@W possesses the WRNP, does not possess the RNP, zmd, is not
isomorphic to any conjugate space.

If B is the Banach space constructed by Lindenstrauss and Stegall [19],
then all the odd conjugates of B have the RNP while the even conjugates
do not ([19], Corollary 4). It follows from the representations of the conju-
gates of B and from Theorem 3 that all even conjugates of B (excluding B)
have the WRNP.

If X = B@B*, then all the conjugates of X (excluding X) have
the WRNP and none of them have the RNP.
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COROLLARY 5. There exists a separable Banach space X such that ¢
and L;[0, 1] cannot be isomorphically embedded in X and X fails to have
¢he BNP.

Proof. Let Z be, as above, one of the spaces Y or JT, and let Z,
be a norm separable subspace of Z* not possessing the RNP. Since I, ¢ Z,
it follows from a result of Hagler ([13], Theorem 5) that L;[0,1] & Z,.
By a result of Begsaga and Petezyriski [3] we also have ¢, ¢ Z;.

Since we obtained our results a paper of Lindenstrauss and Stegall [19]
has appeared in which the authors prove ([19], Corollary 5) that there
is a weakly measurable function f from the Cantor set (endowed with the
Haar measure) into JT* which is not equivalent to any strongly measur-
able function. They prove it by using the structure of the space, howeyer,
25 we show, the only important thing is that X does not contain any iso-
morphic copy of I;.

COROLLARY 6. Let X be a separable Banach space such that X* is non-
separable and 1, & X. Then, given any finite non purely atomic measure
space (S, X, u), there ewists o Peitis integrable function f: 8 — X* which
s not weak* equivalent (and henoe not weakly equivalent either) to any strongly
measurable function g: 8—X*. E .

Proof. Let (8, X, u} be a finite non purely atomic measure spa
such that each X*-valued and Pettis integrable f: § — X* is weak* equiv-
alent to a strongly measurable X*-valued function g: §— X*,

Teb »: X X* be @ measure of finite variation. Since X* has the
‘WRNP and X is separable, we have ’

»(B) =P~ [fip, BelX,
E

for a certain weakly measurable f: § — X*, and
[ 1f1du = pI(8) < o
8

in view of Proposition 1. Hence

»(B) =P— [gap,
po

where g: § — X* is strongly measurable.

Thus X* has the RNP with respect to (8, X, u). In virtue of Chatterji’s
‘theorem [4], X* has the RNP, which contradicts Stegall’s theorem [32],
since X* is nonseparable. This proves the corollary. -

Remark 2. Using the decomposition of wealkly sealarly measurable
functions into & series of weakly uniformly bounded functions, we can.
easily see that the function f in Corollary 6 can be taken to be weakly
aniformly bounded.
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It is not known whether every separable Banach space with the RNP
can be isomorphically embedded in a separable conjugate Banach space
(Uhl [35]). The next corollary shows that a large class of separable Banach
spaces can be isometrically .embedded in conjugate Banach spaces with
the WRNP.

CoROLLARY 7. If X is separable and 1, & X*, then there exists a separ-

able Banach space Z such that Z* has the WRNP and X can be isometrically
embedded in 7.

Proof. Assume that X is canonically embedded in X**. Since X
is. separable, there exists a separable Banach space Z < X* such that X
is isometrically embedded in Z* ([11], VL. 8.8). In virtue of Theorem 3,
Z* possesses the WRNP.

In order to formulate the next theorem we need a definition.

Let T be an arbitrary subset of X*. We denote by T, the set 7' itself,
and if o« < o, is 2 non-limit ordinal, then we let 7', be the weak* sequentiak
closure of the set () T. If a < w, is a limit ordinal we put T, = T,.

p<a

B<a

We say that ' < X" is weak™ w,-sequentially dense in X*ift X* — U .

[ 2]
Having the above notion of weak* w;-sequential density, we éan

formulate a generalization of one implication of Theorem 3 in the case
of a non-separable X (the proof is essentially the same as the proof of the
appropriate implication of Theorem 3). The theorem can also be treated
a8 & generalization of Theorem 2 and of Corollary 1.3 of Diestel and Faires
[6] in the special case of X being weak* o,-sequentially dense in X**.

THEOREM 4. If X 4is weak* w;-sequentially dense in X**, then X* has
the weak Radon-Nikodym property and each X*-valued weak* scalarly inte-
grable function is Petiis integrable.

As is shown by the example of the Banach space X = ¢ (T) with
an uncountable set T, there exists a Banach space X such that X* has
the WRNP and X fails to be weak* w,-sequentially dense in X**, Thus,
the converse to Theorem 4 in false.

OOROLIARY 9. If X is separable and weak* ,-sequentially dense in X =
then X is weak* sequentially dense in X**.

Proof. In virtue of Theorem 4 X* has the WRNP and hence X
does not contain any isomorphie copy of I, (Theorem 3). Applying the
theorem of Odell and Rosenthal [23 1, we get the weak* sequential density
of X in X*,

As a simple consequence of Theorem 3 .we get the following charac-
terization of Banach spaces not containing any isomorphic copy of l:

COROLLARY 9. The following statements concerning a Banach space X
are equivalent:
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(i) X does not contain any isomorphic copy of li;
(ii) every separable subspace of X has a dual possessing the WRNP;

(iii) every separable subspace of X* embeds into a Banach space which
is conjugate to a separable Banach space and possesses the WRNP.

Proof. The equivalence of (i) and (ii) is a simple consequepcfa of The-

orem 3. Similaxly, (i) yields (iii). In order to complete the proof it is enough
hat (i) is 2 consequence of (iii).
® Shgzv ltet Y(1)oe 2 sepa.mqble subspace of X* and 1eifZ (e.g.Z*c X) bi
a separable Banach space such that ¥ etmbeds isometrically in Z* and Z
Radon—Nikod; property.

e ﬁevviﬁﬁ of Theorem 3772 ¢ Z and hence it folloxjvs f.'rom‘ the resu.'!f;
of Hagler ([13], Theorem 5) thatb Z* does not. contain any 1som.orph§§
copy of I, [0, 1]. It follows that Y does not contain I,[0,1] t_a}ther. S]J}ce]l
has been arbitrary, it follows-that L,[0,1] cannob bq.a '1somorp]nca v
embedded in X*. Hence, I; ¢ X (Pelezyriski [24], }..’roposﬂuon 3.3).

‘We conclude this section by indicating a solution of a prob}em poszd
by Stegall [32]: Is X* separable provided the set of extreme points of the

it ball in X* is separable? :

. ;his problem. WI;S earlier solved (by a different methcfd) by Ryba];«l)iv
(unpublished). After this paper had already been submitted for publi-
cation the solution of Kadets and Phonph [16] appeared.

- . d
PROPOSITION 6. If the set of the ewtreme points of the unit ball of X
is norm separable, then X* is separable.

i ble. Moreover, it
Proof. Clearly, we can assume that X is separa .
follows from the properties of ¢*[0, 1] (or I,,) that i ¢ X. Now, .the reqmz]id
result follows from & result of Odell and Rosenthal [23] statn}g that the
wnit ball of X* is the norm closed convex hull of ity extreme points.

6. The weak Radon-Nikodym property in a conju.gate Ba:r'xach s[;a]xﬁe
possessing a separably complementable predual.'It is th(-e aim ]gf clﬁ
section to generalize Theorem 3 to the case of arbitrary conjugate :1]? -
spaces possessing separably complementable preduals (by & res o
Amir and Lindenstrauss ([1], Lemma 4) each weakly compactly generate
Banach space is separably complementable).

LmvA 2. Let (8, X, i) be a finite positive measure space and lefs Xzbe a
Bamach space not containing any isomorphic copy of i, If U: X1, ( y, s 1)
is @ bounded Vinear operator whose representing weak* measure v: 2 =
(cf. [11], Theorem VIL8.1) is an X* -valued measure of o-finite variation,
then U is compact. ‘

Proof. In virtue of Theorem O there exists a weak™ scalarly inte-
grable function f: §—X* such that
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2(B) =X~ f fau
B

for every F € 2. Hence we have

Uz = <£0,f>

for every zeX.

In order to show the compactness of U take a bounded sequence

2, eX,m=1,2,...

Since I; ¢ X, there is a weak Cauchy subsequence of {#,} (Rosenthal
{27] in the case of real X and Dor [10] in the case of complex X).
For the simplicity of notation we assume that {z,} itself is weakly Cauchy.
Let x, be its weak* limit in X**.

Since I,(8, X, u) is weakly sequentially complete (cf. Dunford and
Schwartz [11], Theorem IV.8.6), {Uu,} is weakly convergent.

Since simultaneously {w,,, f(s)> — (w,, f(s)) for all s & 8, we can apply
Theorem IV.8.12. of [11] to get the norm convergence of {U»,}inL,(8,%, u)

This proves the ecompactness of U.

OOROLLARY 10 (Rybakov, unpublished). X does not contain any
isomorphic copy of 1, if and only if each X*-valued measure of o-finite vari-
ation has o conditionally compact range.

Proof. (The proof given here is: different from that of Rybakov):

— Let (8, X) be a measurable space and let v: X — X* be a measure.

‘Without loss of generality we may assume that » is of finite variation.
Denote by p the variation of ».

Let U: X L,(8, X, u) be given by Uz = d{z, »>/du (the Radon-

J.\.Tikodym derivative of (&, »» with respect to ). In virtue of Lemma 2, U
1§ compact. Hence

U*: L (8, Z, u)-»X*
is compact as well. In particular,

(%) = U*{ZE: Bex}

is a-conditionally compact set.

<~ Suppose that I, = X. Then (Petezyniski [24]) " I,[0,1] = X*
Let U: L,[0,1]- X* be an isomorphic embedding, and let X be the
o-algebra of Borel sets on the unit interval S,

If we define »(F) = 25 €L4[0,1], B e 2, then v is an I,[0, 1}-valued
measure on (S, 2)_ sueh‘tha,t I(B) = u(B), where u is the Lebesgue
’mea,sure..E.[ence v is of finite variation. Tt is also easily seen that »(X) is
Dot conditionally compact (cf. Hoffmann-J orgensen [14], Example 6)
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Tt follows that Ur: ¥—X* is an X*-valued measure of finite vari-
ation and with a non-conditionally compact range.

Chatterji [4] proved that a Banach space X has the RNP if and only
if X has the RNP with respect to the unit interval endowed with the
Lebesgue measure. It appears that a similar result holds for conjugate
spaces possessing a separably complementable predual. This is the reason
why we formulate Theorem 5 in an extended form containing funetion
characterizations of X*.

TarEOREM 5. If X is separably complementable, then the following
statements concerning X are equivalent:

(i) X* possesses the weak Radon-Nikodym property;

(ii) given any (complele) measure space (8,2, u) and any weak*
measurable function f: S->X*, f is weak* equivalent to a weakly measur-
able function; )

(iii) given any weak* measurable function f: [0,1]— X* on the unit
interval endowed with the Borel sets (the Lebesgue measurable sets) and the
Lebesgue measure, f is weak* equivalent to a weakly measurable function;

(iv) given any (complete) measure space (8,2, u) and any weak*
sealarly integrable function f: 8 — X*, f is weak* equivalent to o Peltis inte-
grable fumction; . _

(v) given any weak* scalarly integrable fumction f: [0, 1]—>X* with
the unit interval endowed with the Borel sets (the Lebesque measurable sets)
and the Lebesque measure, f is weak* equivalent to a Peltis integrable
Junction;,

(vi) X does not contain any isomorphic copy of 1.

Proof. Using the same arguments as in the proof of Theorem 3,
we see that the implications (iv) - (ii) — (iii) and (iv) — (i) - (iv) = (V)
— (iii) hold.

Thus, in order to complete the proof it is sufficient to prove that (vi)
implies (i) and (iii) yields (vi). .

(vi)~ (i) Let (8, X, u) be a finite complete measure space and let
v: = X* be a u-continuous measure of o-finite variation.

In virtue of Lemma 1 and Corollary 10 there exists a separable and
complemented space ¥ = X such that »(X) « ¥* < X*. Since Y does
"not contain any isomorphic copy of I, it follows from Theorem 3 that ¥*
has the WRNP. "

Let f: 8§ — ¥* be a function such that

y(B) = ¥ — f fau
B

6 — Studia Mathematica 64.2
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for every ¥ eZX. It follows that the equality
v(B) = X*— [fdu, BeZx,
by

holds as well.

(iif) — (vi) Suppose that X contains a separable space Y which is
isomorphic to /;. In virtue of our assumptions there exists a complemented
separable subspace Z of X which contains Y. '

It follows from the proof of Theorem 3 that there exists a weak®
measurable function f: [0, 1]->Z* (the unit interval is endowed with
the Borel or Lebesgue measurable sets) which is not Z**-measurable.
It can easily be seen that f cannot be X-equivalent to any X*-valued and
X™.measurable function.

Thus (iii) does not hold, and this completes the proof of the theorem.

As a corollary we get the following

TaroreM 6. If X is weakly compactly generated, then X* possesses the
weak Radon-Nikodym property if and only if X does not contain any iso-
morphic copy of 1,.

Proof. In virtue of a result of Amir and Lindenstrauss ([1], Lemma 4)
each weakly compactly generated Banach space is separably complemen-
table. Thus, the assertion is a consequence of Theorem 5.

ProBLEM 5. Let X be an arbitrary Banach space. Are the following
conditions equivalent?

(a) X* has the wealt Radon-Nikodym property; )

(b} X does not contain any isomorphic copy of 7,.

‘We conjecture that at least (a) implies (b).

In connection with Corollary 10 we get the following

PrOBLEM 6. Let (8, X, u) be a finite complete measure space, let X
be a Banach space and let f: §— X be a Pettis integrable function.
Must the range of a measure »: X=X be conditionally compact if
v(#) = P— [fdu, for all BeX?

E

‘We conjecture that if X has the WRNP then the answer is affirmative.

Let us observe that a negative answer to implieation (a) — (b) yields
a negative answer to Problem 6. Indeed, if X contains an isomorphic
copy of I; and X* has the WRNP, then L,[0,1] = X*, and so we can
take the Lebesgue measure on the unif interval and the measure »(H)
= yg € L,[0,1], which is of finite variation, its range not being con-
ditionally compact. On the other hand, there exists a funection i S—-X*
such that )

"(E)=P—ffd,u for FeZX.
&
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7. Determination of the weak Radon-Nikodym property by subspaces.
As has already been remarked, the weak Radon-Nikodym property
is not separably determined, however, there are cases where it is defer-
mined by weak* separable and weak* closed subspaces.

TeROREM 7. Let X be such thai, given any measurable space (S, X)
and any X*-valued measure v: X~ X* of o-finite variation, the range of »
is & norm separable set. Then, if each norm-separable subspace of X* is
a subspace of & (weak* separable) subspace of X* possessing the weak Radon—
Nikodym property, then X* possesses the weak Radon-Nikodym property.

In particular, X* possesses the weak Radon-Nikodym property if all
weak* closed subspaces of X* which are weak* separable do so.

Proof. Let (8,2, p) be a finite and complete measure space and
let v: I X* be a p-continuous X*-valued measure of ¢-finite variation.
By the assumptions there exists a (weak* separable) subspace Z of X™
possessing the WRNP and containing »(ZX).

Hence there exists a Z -integrable function f: 8 — Z such that

(B = [ au,

E

forall #* € Z* and B e . By the Hahn-Banach theorem, f is X*-measurable
and

»(B) = X*— [fdu, BEeZ.
B

This completes the proof.

Remark 3. If X is weakly compactly generated and possesses the
Dunford—Pettis property, then every weakly compact subset of X* is
norm-separable (Rosenthal [26], Proposition 4.7).

In particular, the range of each X*-valued measure, being weakly
conditionally compact (Bartle, Dunford, Schwartz [2]), is norm separable.
It has also been shown that for X not containing any isomorphic copy
of 1, each X*-valued measure of o-finite variation has a norm-separable
range (Corollary 10). Observe that there is no correlation bhetween the
above two examples. Indeed, if X =1,, then all weakly compact subsets
of I, are separable ([26], Proposition 4.7); on the other hand, if J7 is the
James tree (constructed by James in [15]), then JT™ does not contain I,
and JT** is a non-separable weakly compactly generated space [19].

It is true that if X is a Banach space such.that X* has the Radon—
Nikodym property and Z is a closed subspace of X, then (X/Z)* has the
Radon-Nikodym property as well. Indeed, the dual of X/Z can be iso-
morphically embedded into X*, and hence it must have the RNP. We
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do not know whether a similar result for the weak Radon-Nikodym prop-
erty holds.

ProerEM 7. Let X be a Banach space such that X* possesses the
weak Radon-Nikodym property. Must Z have the weak Radon-Nikodym
property whenever it is a weak* ‘closed subspace of X*? Must Z be con-
tained in a weak* separable subspace of X* possessing the weak Radon—
Nikodym property provided it is also (weak*) separable?

Having proved Theorem 7 we can easily see that the implication
(b) > (a) can be answered affirmatively if the following problem can':

ProBrEM 8. Let X be a non-separable Banach space such that I, ¢ X

and X* is weak* separable. Does X* have the weak Radon-Nikodym
Jproperty ? :

Notes added in proof. All the problems posed in this paper have been already
solved.
Assuming the existence of real measurable cardinals Edgar [35] and Rybakov
{43] proved the following: if T is a set of measurable cardinality then thereis an I,-val-
ued.' weakly scalarly integrable function which is not Pettis integrable and not w:aakly
equivalent to any strongly measurable function. This solves in the negative Problems 1
and 2. A negative answer for Problem 3 was given by Jeurnink (letter communication)
and Janicka [42]. Musiat and Ryll-Nardzewski [37] proved that if X* has the WRNP
then I, ¢ X. The converse implication also holds. Indeed, assume that X is a Banach
space }mt cogta.ining any isomorphie copy of ; and » is an X*-valued measure of finite
variation defined on a measurable space (S, ). If » hag a weak* density (with respect
to u = |v|) f: §-X* which is measurable with respect to the c-algebra of the weak™®
l.Borel subsets of X* and a measure uf~! defined on the weak* Borel subsets of X*
is regu%ar, then & simple application of Stegall’s reformulation [33] of aresult of Haydon
[40] yields the Pettis integrability of f. Moreover, the equality v

v(E) = P—Effd,u holds for every He X.

As' it was observed by Edgar [36] and Weizsicker [38 i i

exist (this fact was communicated to me by J anicka.)E ar}lds 1;:;1,11’;’ quislltytlizggi lti
the WRNP, As a direct consequence of this theorem we get an afﬁrncllative answer
to Problem 7 and the WRNP of (X|Z)* for X* possessing the WRNP and Z< X.
We can als? prove now that if X* has the WRNP with respect to the unit interva.i
endowed with the Lebesgue measure, then it has the ‘WRNP. Indeed, if X* has the

OV\;R;H:} ’:vith r‘espec.zt to the Lebesgue measure, and ¥ is a separable closed subspace
o t’h en, in v'u'bue of Theorem 3 of Musial and Ryll-Nardzewski [37], ¥*
T;LJZ e W5’RNP with respect to the Lebesgue measure as well. Hence, in virtue of
o Dl;;ma s; I:r;.faimye L& ..17 . Conseqtle..ntly X does not contain any isomorphie copy
Prol'b nas way, using Proposition 3 from [37], we can answer affirmatively

;he above lreeults can be summarized to the following general theorem:
. THEOREM &5'. For an arbitrary Banach space X the conditi B, (i), @),

. nditions (i), (i), (i), (iv),
{v) and (Vl). of Theorem 5 are equivalent (the version with complete ('rzb‘ea(su)reg').) o
ifXWIE;rse:l;J; ang Talagrand [39] and Stegall (oral communication) proved that
i 2 B nach space, (8, T, u) was perfect measure space and f: -+ X was Pettis

grable then the range of measure given by the Pettis integral of J with respec

icm®
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to p was conditionally compact. Fremlin and Talagrand proved also that in general
the perfectness of 4 could not be omitted. This gives an answer to Problem 6. I can
prove that for X possessing the WRNP Problem 6 has always affirmative answer.
Moreover, I can prove that for an arbitrary X, if X has the WRNP with respect
to the Lebesgue measure, then X has the WRNP. The proofs will appear elsewhere.

At least let us remark that the characterization of the WRNP for conjugate
spaces, a result of Johnson ([7], p. 38) and the theorem allows us to formulate the
following characterization of the conjugate Banach spaces possessing the RNP:
X* has the RNP if and only if X does not contain any isomorphic copy of I, and X*
is separably complementable. :

Rybakov’s proof of Collorary 10 (exactly the same as presented here) was
published in [43].

J. Diestel informed me that H. Maynard also obtained some results proved
in this paper.

Acknowledgements. I am grateful to J. Diestel and V. I. Rybakov for their
remarks concerning previous version of this paper.
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