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The K-functional for rearrangement invariant spaces
by

ALBERTO TORCHINSKY* (Urbana, Ill.)

Abstract. This paper deals with the explicit computation of the K-functional
for classes of rearrangement invariant spaces. As an application we discuss an exten-
sion of the characterization of sublinear operations of weak type in terms of rearrange-
ments due to A. P. Calderdn.

Let B, and B, be real linear spaces continuously embedded in a real
topological vector space V; we will call the pair (B,, B,) an interpolation
pair. Suppose that in each of the spaces B; there is a function f— [f|,,
which we shall call the quasinorm of f in By, verifying the fo]lovnng prop-
ertles

) Ifli=

(11) |Afl; = M] |fl; for all real 2;

(iii) |f+gl;<e(1fl;+1gl5) Where ¢ is a constant independent of f,
and g.

The space Bo-l-l%’JL {feV:f=fi+fi,f; ¢ B} endowed with the
quasinorm [f| = inf( |fylo~+|f.ly) I8 also a real linear space and its embed-
ding in V is continuous. In B,+ B, we define a family of equivalent quasi-
norms by means of the relation, also known as Peeire’s K-functional,

-K(t; f; Boa B,) = inf( |f0l0+t|f1l1)

where ¢ > 0 and as above the inf i taken over f = f,+f; with f; in B;.

It is our purpose to compute by elementary methods the K-functional
corresponding to interpolation pairs where the B; are r.i. spaces 4(0, X)
or M (X) defined in §1 below. Some particular instances of this result
are known [B2], [Hol, [K], [0], [Sh1] and [Sh2]. However, the result
is apparently new for arbitrary functions ¢ which are either convex or
concave. As an application we discuss an extension of the interesting
vesulty of A. P. Calderén concerning the characterization of sublinear
operations of weak type in terms of rearrangements [C], Theorem 8,
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to sublinear operations of either strong type or mixed weak and strong
type between L? classes. This will be & particular case of Theorems 6.1
and 7.1. Once this is done the corresponding interpolation results follow
readily, see [C], [HV], [Ho] and [T]. . '

The reader may also be interested in applications to some import-
ant kinds of operations, such as singular infegrals, with L? replaced by
appropriate classes. The first such class replacing I* was introduced by
Calderén in [C], Appendix, this class was later called I in [B1]. Further
results involving H” and B.M.O. are given in [FRS] [OT], [H] and [B].

The notation we use will be introduced as’ we go along. We only call
attention to the fact that the letter ¢ will denote a constant which need
not be the same in different occurrences.

1. The r.i. spaces A(X), M(X) and A(px, 0).

1.1. In what follows the letter C is reserved for a mon-decreasing
function O(t) defined from [0, oo] into [0, o], 0(0) = 0, such. that

(1) € is non-trivial, i.e. 0 5 0 or ¢ g oo for t €(0, co];

(2) O(t) is left-continuous;

(3) O(t)[t* increases in the wide sense for some p > 0.

The inverse of ¢ is defined on [0, ] by
071(t) = inf{s: C(s)> 1}, inf@ = co.

It is easily seen that ™! is a monotone non-decreasing function from
{0, o] into [0, co] which is right continuous and
oot ) << O0THO@), t=0.

Let (M, u) be a positive measure space. For a u-measurable function f
defined on M we seb

iflo =int{e>0: [C(fl/e)an < O@)}.
M

Then B = {f: |Afle < oo for some real 1} is ‘a quasinormed real linear

space. Indeed, (i) and (ii) above are clear. As for (iil) when p > 1 in (3)

this is done in [Z], pp. 173-175. If not, let |fly =¢, |glg =7 and 6 >0
“be given.
Then

- JoUf+glle+n+)dp
< [ O{Ue+8)1f1/(e+ 8) e+ 1+ 0)1+[(n + 8) g1/ (n + 8) (e 7+ 0)]) dpe
< [ OUF1/e+0) v Ollglin+ &du< 20(1). ‘
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But since C(at) < a?C(t), 0 < a < 1, We have that
0(t/2") < 0(8)/2
and consequently
JOlIF+a1/222 (o9 + 8)) ap < C(1).
‘Whence
IF+alo < 2" (Iflo+lgl0)
since &> 0 is arbitrary.
Levva 1.1, If f and g are disjointly supported functions, then

fle+lglo<21f+glo-

Proof. Since on account of our assumption [f+g| = |fl+-1lgl, it
follows that C(|f|/e) < O(|f+gl/e) for any &> 0 and consequently

Jousiieyap< [ 0(F+gl/e)du.

Similarly for g. Thus [flo<|f+9gley lglo < If+9le and our conclusion
follows.

1.2. In the sequel we shall only consider totally o-finite measure
spaces (M, u) and the spaces V of equivalence classes of real valued
meagurable functions on M, the equivalence being that of coincedence
p-almost everywhere. To define the r.i. spaces that interest us we recall the
notation m(f, 1) for the distribution function of a measurable function f
on (M, p), to wit

m(f, 4) = p(fwe M: |f(@)] > 4}), 2>0.
If m(f, 4) is finite for A sufficiently large we denote by f*(#) the unique
non-negative non-increasing left-continuous function on [0, oo] such that
the sets {|f| > 2} and {f*> 1} are equimeasurable. f* iz called the non-
dnereasing rearrangement of the funetion f. The following properties of f*
will be used latter on )

(D) I |fI< lgl, then f*<g%;

(if) I ¢ =#,+1,, then (f+¢)500)<f*(h)+5(k)

These and further properties are discussed in [C].

1.3. A Banach space X of real valued, measurable functions on
@ possibly infinite interval I = [0, 1) is said to be & function space if the
following conditions are satisfied,

(iii) 1f] < lgl ae. and g & X, then fe X and ||fllx < llgllx;

(iv) It {fudmis = X, IIfullx < ¢20d 0 < fmzf, then fe X and [flI<e.

A function space X is said o be a rearrangement invariant space
(z.i. space) if whenever feX and f' is any function on I equiveasurable
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_ with f, then ' e X and ||fllx = If'llx- Examples of r.i. spaces include the
classes B discussed above and the Lorentz spaces A, M and L(p,q)-
Also if X, Y are r.i. spaces, so is X+ Y.

The fundamental function x(f) = ¢(f) of a r.i. space is defined as
o(t) = l2pglx Where xp.q is characteristic function of the interval
0, %]. ‘
o ;_IDhe following properties will be used in what follows.
(v) @(t) is & continuous increasing function, which is absolutely
de

—d?(

(vi) X hasan equivalent r.i. norm such that the fundamental funetion
qoxu(t) = @,(t) is concave, and, moreover,

o (1) < @of) < p(21),

continuous away from the origin and <)t ae;

0<t< oo,
g dat
Let A(2) = {f: f* exists and |f luw) = [0 —< oo};

M(X) ={f: Ifllwzn = sup (FF B o) < oo};

and
Alp, O) = {f: Ifla@oey = Iffple < oo}

where the norm is taken over ([0, o), di[t).
These properties are discussed in [Lu], [Sh1] and the classes A, C)
were introduced in [T].

2. The K-functional for the pair (M(X,), M(X,)).
21. The following decomposition, introduced by Calderén in the
proof of Theorem 8 of [0], will be useful in what follows. Leb A (i) be a non-

negative function defined for ¢ > 0, and let f be a u-measurable function.
Then for a fixed value ¢ set f = f,-+f; where

fo=f=1"R@) # f>FR),

6] fo=f+fm@) i f<—fRr),
‘ fo =0  otherwise.
We then have
() =R
and
) =0 for s>h(t),
(i) S =rm) for  s<h().
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We will assume I= [0, o), the reader will have no difficulty in extend-
ing the results to the case I < co.

THEEOREM 2.2. Let X; be r.i. spaces with fundamental functions Pz, (%)

= (1) which satisfy 1.3(v), (vi). Let n(f) = @,(t) [p.(t) be a monotone func-
tion talking positive values. We then have

i&% {*(28) [po () A tou ()} S K (8, fy M(X,), M(Xy))
< sup {7 (8) [oo(8) A B (5)]}

Proof. Let 4 = {se[0, o0): 7(s) <t} and put B = [0, co) — 4,
and denote by x,(s) and yz(s) the characteristic functions of 4 and B,
respectively.

Let f = fo+fi be a decomposition of f with f; in M(X;), j =0, 1.
‘We then have for s > 0

T (8)gols) = %4 ()5 (8)@o(8) + x5 ()15 () o (8)

> £.4(8)f3 ()90 (8) +xm(8) 17 () a(s)-
Similarly

81 (8)@a(8) = 24 ()1 (8) 90 (8) +Ex5(8)f7 () pa(8).
Consequently

Wfollagiz,y + 81 1llarcxy
> i‘i}ﬁ {24 (8) (5 (8) 77 (8)) po(8) B 25(8) (75 (8) + 17 () @a(8)]}

= sup {f*(2s)[@o(s) A o (8)T}

8>0

where we have used 1.2(ii) to obtain the last inequality. Taking inf over
all possible decompositions of f we obtain the first half of our theorem.
Moreover, for the decomposition in 2.1 with k() = 5~(#), we have

t]if1”M(x1) <tf* ("7_1“))?’1 (W_l(t)) v ti&? {XB(S)f*(S)% ()}

= f*{n= () go (n™" (%) Vti‘gj {7 ()pu(s)} = L@ +14(2)
since tp; (W_l(t)) = 990(71—1@))-
Turther notice that

Ly(t), ”foHM(XO)< sup {14 (S)f* (8)@o(8)}-
Therefore s=>0
K, f, M(X,), M(X))) < Ifollaezy 1 1Fallarezy

<
< sup {ra(f* () po(8)} v tsup {a(8)f*(®) ()}

= Sl110J {*(8) [ (8) A Bo(8)1}-

- This completes the proof of our theorem.
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3. The K-functional for the pair (M(X,), 4 (px, C)): We begin by
proving the following lemma.
Luvma 3.1, Let g, denote the characieristic funciion of the interval
= [0, @). Further suppose that f is & non-increasing fumction defined
on A and @ is non-decreasing and concave. Then if there is & ¢ > p such that
C (%) [t* decreases we have

sup {xa()f(8)@(8)} < ¢lyafole

where ¢ = 0~1(24In20 (1)).
Proof. Let s € A. Then for any &> 0 we have

F(&)p(s) < e07H0(F (D)o (s)]e))

go~(19fa

a
<eC™t (—152— f0(2xA(%)f(u)¢(%) /) TM)

d
o (2u) /e u)

q d
<0 oy [ Olamr @i 5.

The desired conclusion follows by letting ¢ = [y folo.

R. Sharpley has computed the K-functional for the pair (M (X), A(X )) ,
[Sh2], we will now compute it for the pair (M (X,), A(gp,, C)).

THEOREM 3.2. Let X;, p; and n be as in Theorem 2.2. Further assume
that @, (s) /s* increases for some f > 0 and that % is & monotone function in-
creasing from 0 fo oo and 7(s)/s", increases for some r > 0.

Givent> 0let A = {s: 5(s) <}, B =[0, o) — A and B = {s: 7(s/2)

>t} and let x4, xp ond 1% denote the respective characteristic funclions of

those sets. If O(1)[i? decreases for some q > 0, we have
o fsup (24 (8)f*(28)90(8)) -+ x5 alc}
<K(t7f: M(X,), A(gq, O))
< 02{8111) (ZA(S)f*(S)‘Po(S))+t[ZBf*‘P1]c}-

Proof. Let f be in M (X,
of f in that space. Then

I follazzeg + ¢ il agey, )
> sup {75 (8)ga(5)}/2 +sup {3 ) po(s)} 2+t 5afi pulol2 +tlxafioilo/2

o)+ A(py, C) and let fy+ f, be a decomposition

= I+ I+ T+ 1) 2.
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Let us consider I, I, first. Since ip,(s) > ¢,(s) whenever y,(s) # 0,
by virtue of Lemms 3.1 with f = ff, ¢ = ¢,, & = ~'(f) we have, with ¢
the constant in that lemma,

)T (8)pe(8)} < tixafioalo

t
Zsup fuals 55 (517 (palsl} <

‘Whence it follows that

1
L+I 2> (1'\ 7) sup ACIVAOESHOITAOY

> (1/\ t)sup {14 ()1 (28)o(8)}-

§>0

Let us now consider I,+I,. On account of our assumptions we have
s7'(s) = rq(s) and since @y(n7'(s)) = @o(77"(s)) /s, we obtain

I = fC(XB(

o

ICLACIXOE
7l

d
3 (Opa(6)le) —

s) ds 1

L f (Rl el ) 5

1
r

(6))Jos) = < = f Ol o) -

’““‘f fo _.1 o(

) i -
<L POWilaazylet) [ 5775 = OUfilaylet) /o,
13

the last inequality being a consequence of the fact that O(s)/s? increases.
Let o =1v (1/rp)*?. We than have

I, < O(QHfo“M(XO)/Et)
and then it follows that
lzsfs oo < alfollarzy /-

Therefore it is readily seen that

1 .
Ii+I,> (1/\ ‘;) t{lxafi oo+ lxaftelo}

( 1 ) 27ty p(fo 1) pilo = (1 A )2“”‘7”11 7z Pulo-
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Combining these estimates we get

Wfollargeyy + 211l a0 = 01{’571]?(%4 ) (28)p0(3)) + 1z oalo}

where ¢, = %{[(1/\ i) 2'”9"1] A ~1—}
a ¢

Taking inf over all such decompositions of f we obtain the first half
of our theorem.

As for the second half we use again the decom:
0; position of f given
in 2.1 with k(f) = 47 *(¢). From the definition of f, it follows that
|f1¢’1ia = lZAf ( -1 t)) ‘PH‘ZBf 1o

<2 {ly 1 (’7"1 )991|c+ sl pulo} = 2P 4L+ 1,}.
We compute 10w |y 4¢4)q. Lebt &> 0, then

L]

[ ol 2

0
71
= [ Olntorig 2

1)
< Clptn ) ) fosl~ ) [

ds
P1(8)" —
b 8

< {0lpuln~ t)}/e)/cpl( )7 i ) )y f s””ds

T o) fe) < Cfagaln 1)) o)
1 \Up
h a=1v|]-—
where V(ﬁp) . Thusg
ond agile < a(pl(n"l(t))
< *( -1 t -1

Qonsequently 7 (’7 ()) 9’1(’7 (t))'
{)

1
a0 < 211’“{22%’ [2a(8)f* () pa(8)] 41 lzaf*@ulc}
Also from the definition of Jo it follows that

”fo”ilI(XO) < SSEE) FACTMOTRE )]
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and consequently we obtain the second half of our theorem with
0 = 12211 v (1/8)'"].

TaEOREM 3.3. Let X;, ¢;, n be defined as in Theorem 3.2 except that
now we assume that n decreases from oo to 0 and that there is a number r > 0
such that s"n(s) decreases. Then the same conclusion as in Theorem 3.2 holds.

The proof of this theorem being analogouns to that of Theorem 3.2
is omitted. We only point out that in the proof of the second inequality
we reverse the roles of fy and f;.

Remark 3.4. When €, p, and ¢, are powers the above proofs simplify
considerably. In fact, most of the assumptions on  are then automatically
satisfied. In this case the result is known, see [HO].

4. The K-functional for the spaces (A(q,, Cy, A(py, Op)). In this
section we will use the following lemma

LemMA 4.1. Let D be a positive increasing function which s concave.
Turther let O be as usual and let f be non-increasing and p non-decreasing and
concave. We then have

t a . |2
R o[ [ojwe) ] <o [Drolf@em)1-
and '
. = ds 3 T ds
(i) o[ [ olfwew) ] <o [ PO
i th

The proof being analogous to that of [T], Lemma 3.11 is omitted here.

TasorEM 4.2, Let X, ¢; and C; be as we have considered above with C;
continuous and o, (s)/s? increases for some f > 0 and suppose that n is incre-
asing from 0 to co and n(s)[s" increases for some r > 0. Further, fort>0
Tt A = {s: 5(s) < t}, B =[0, c0)—A4, A= {s: g(s/2) <t} and B = [0, )
—4 and let x 4y X5y X4 ond xp denote the corr espondmg characteristic func-
tions.

Then there are constants ¢, ¢, so that for each f in A (g, Co)+ A1, Cb)
we have

01{|X}1f*%|00 +1 lxﬁf’kfpﬂc’l} < K(t, Iy Algoy Oo)y Al@1; 01))
< e {lzaf" wolo, +tlxaf " palo, -
Proof. We consider first the case when ¢, 0y is concave. Let f = foth
be a decomposition of f in A(py, Co) + A(psy C)- ‘We will first show that

(i) xSt Polo, < €t Ixafi eilo,
and

(i)

7 — Studia Mathematica 64.2

tlzafo Ple, < clusfs Poloy-
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Sinee 0, C; " is concave and g, (s) < te, (s) whenever %4(8) # 0 from Lemma,
4.1, it follows that for any s > 0

0.0 f Qa6 o) 2] < 0,07 ”—flmcﬂ (7 (5)i(s) e |

0
77

ds
<o [ OuliFtemato) ) 5
Whence we readily see that

2af0oloy < Gbliafy palo,
and (i) holds.

Moreover, since C, (t) /#? increase and Up1 () < o (8) whenever yp(s) £ 0,

we have ’

(iii) 01(ZB(S)tfu (8)ps 3)/5) (t‘)vl(s)/%(s))ﬁol(lff(s fo )/'9)

Let 4 be the Young’s conjugate of the convex function C, 07 ie. A(2)
= sup (ts — 0,077(s)), see [Z], Chapter 1 §9. Then from (iii) and the

deﬁmhon of A we obtain

[ ealtzstoss puisye 2

8

< [ lims) o) oo (55 1autor e 2
)

7

-

~ d
< [ Altm@re) L+ [ aoro sy E
1) oty §

< [avmn®s [ g
A.tp/n(s ) — + Co(; 8)/e
g ¢ rljl.(s) ' )

)

_f,fusn) —+ [ af e s)/s)

7l

From this we readily see that

txsly Pule, <elyafy olc,
and (ii) holds as well.
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Now for our decomposition f = f,-+f, we have

1ol stwgncoy T il so,ey

= |(%4 +XB)f:%loo +il(za '['ZB)ff‘Pﬂol
%{|X4f:%|co + IXBﬁ%lou +1 i%Aff%]c'l +1 [ZBfffPﬂcl}
G{lefl;k‘Polc‘o +1 IXBf:%[al + IXAff‘Pl]cn +HXBf1*‘P1|o'1}
e{lxalfs +Mwolo, +ilxa(fo + ) e loy

= o{lxaf* wolo, + 4145 pilo.}-
By taking the inf over all possible decompositions of f in A(p,, C) -+
+ A (g, C;) we obtain the first half of our theorem in this case. The case
when 0, 0;! is convex is treated in an entively analogous fashion and the
proof is omitted here. To complete the proof of our theorem we consider
the decomposition of f given in 2.1 with h(f) = 5~ '(1).

Ag in Theorem 3.2(i) we see that

>
=
=

(i) ol gy o < L (07 (8) Ba (071 () + L xaf™ %Iol}
Now from Lemma 3.1 it follows that
(i) P ) ten (0™ (@) = £ (07 (@) @o (17 () < elgaf " Polgy -

Also from the definition of f, we have

(i) ol ato 0y < 124" Dol s
where our second inequality follows combining (i), (ii) and (iii).

THEOREM 4.3. Let X, ¢;, O; be as in Theorem 4.2 ewcept that we now
assume that 7 is decreasing from oo 0 0 and s"n(s) decreases for some r > 0.
Then the some conclusion as in Theorem 4.2 holds.

Proof. The proof is immediate once we observe that
K(t:f; A(gy, Oo), A)%: 01) = tK(l/t,f, Alpyy Cr), Aoy, 00))

»

and we apply Theorem 4.2.

5. Admissible maps from A(g,, 0,) +A(p;, C;) into M (Y,)+M(X,).

5.1. An operation g = Tf of a class of functions f in a measure space
(M, u) into a class of functions g on (I, ») is called a sublinear operation
if it satisfies the following properties:

(i) f = fo+f. and Tf; (4 = 0, 1) are defined, then Tf is defined;

(1) 1T (fo+f0)| < |Tfel +|Tfy] »-almost everywhere;

(iii) For any scalar A we have |T(Af)] = |1||Tf| »-almost everywhere.

5.2. Given two interpolation paivs (B,, B;) and { B,, B,) and a sublinear
mapping T': B,+ B, -+ By+ B, we say that T is admissible it T maps B;
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nto B, continuously, 4 = 0, 1, i.e. there exists constants ¢; such that:

ITflz, < e:lf Iz, feBi i =0,1.

LeMMA 5.3. Let T be a sulglinecw admissible mapping for the imterp-
olation pairs (By, By) and (B,, B;). Then for f in By+ B, and t > 0 we have
K(t, If, By, B) <K (i, f, By, B), ¢ =6V or.

Proof. It is an immediate consequence of the definition of the K-func-
tional, see for instance [Ho], Theorem 1.1.

‘We will assume now that we have an interpolation pair (M (Yo), M( Yl))
where the fundamentfal functions w;(f) = Wpalle,, ¢ =0,1, satisty
the hypothesis of Theorem 2.2, and an interpolation pair (d(g,, Cy),
A{gy, Cy)) where the fundamental functions ¢, satisfy the conditions of
either Theorem 4.2 or Theorem 4.3. As usual 5(f) = @o(?)/p,(t) and we
shall denote v, (f) fyq(8) = E(f).

THEOREM 5.4. Let the interpolation pairs (A(p,, Cy), Alpy, 0y)) and
(III (Yo), M (X)) be as above. Then a sublinear operator T: Al(g,, C0p) +

+Alpy, Cr) = M(Xo)+M(Y,) is admissible if and only if for each f in
11(%, Co)+ Algy, C)) and £> 0,
O] (T (267 @) @ol267 () < e {lgaf olo, + 1S Pilohy
where A = {s: n(s) <1} and B = [0, oo)—A4.

Proof. Since u,(s)/s decreases we have ,(2s) < 2y,(s). Now if T
is admissible then from Lemma 3.3 it follows that

E(t, Tf, M(Yo), M(Yy) < oK1, f, A9y, Oo), A(py, 0))

and (i) follows from the remark above and Theorems 2.2 and 4.2 or 4.3
as the case may be.

Conversely, assume that (i) holds and T is sublinear. In 4.2(ii) we
"have seen that

tlzsf gl oS GIXBf*%]co
00nsequently from (i) we have that for any ¢ > 0,
(TF2E7 () wol2 L GIES C{IXAf*%Ioo'f‘WBf*%la} 2¢ 1) aggy,0q,

where the last inequality follows from Lemma 1.1.
Therefore we obtain that

1IF gy < 20)f | 4(p,05)+
Also in 4.2(i) we have observed that

]ZAf*%b‘, < cﬂx.fif*%]al
and from (i) we get

(Tf)*(ZE_I(t)) Yo (qu (t)) <ot {Jfo*‘Pﬂcl + lZBf*.%!ol} < |f|A(vp1,Clj .
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Sinee y{ &7 ()}t = pa(£71 (1)) and y,(s)/s decreases, we then have

(TF)"(267' ) wa(2671 () < dof L0
and consequently
[TfIM(Yl) 4o ]f]zl(qa1 AR
This completes the proof that 7 is admissible.
Remark 5.5. The case ¢, (s) = s¥7* and y,(s) = s'%, ¢ = 0, 1, is Cald-
erén’s theorem alluded to above. A particularly interesting example is
that of the operators discussed in [T], Theorem 4.16.

6. Admissible maps from A(gp,,C,)+A4(¢p,, C,) into M(Y)+A(p,;, ().

THEOREM 6.1. Let ¢;, C;, 1 be as in Theorems 4.2 or 4.3 and let y;, G, &
be as in Theorems 3.2 or 3.3. Then a sublinear mapping T: A(py, Cp) +
+ Ay, Cy) >~ M (Xy) + A(yy, G,) is admissible if and only if for each f in
Algy, Oo) +Alpy, Cy) and t> 0 we have
(i) sup {4(s) Tf)* (28)po(8)} -+t lx3 (TN wale, < e {lxa f @oley +E1xa Pilo,
where A {s s) <}, B = {s: &(s/2) > 1}, A’ = {s: n(s) <1} ond

= [0, )—

Proof. That (i) holds when T is admissible follows from Lemma 5.3
and Theorems 3.2 or 3.3 and 4.2 or 4.3 as the case may be. Conversely,
if (i) holds then as in Theorem 5.4 we see that for ¢ > 0

(T2 () wol €71 (1) < € 1f Lty o)
and consequently
TS Lazerg) < ¢ Laog,0)
On the other hand, from (i) and 4.2(i) it also readily follows that

tlxs (T) puls, < et {lgaf palo, + lxe S  oalo} < 26tHfag,0n
and so
(i) IXE(Tf)*"/’llé"l < 20”’11(:;:1, ay-
Now if we let ¢ approach 0 in (ii) we obtain

ITfIA(wl,E'I) < Glfla(.pl,cl)-
This shows that T is admissible. .
Remark 6.2. For os) = w;(s) = s = 07%(s), 4 =0,1,C; =0y,
Theorem 6.1 says that a sublinear mapping T from L 4 L*1 into LPo+ L
is admissible if and only if for each f in LPo+IP1, ¢> 0 and 1/p,~1/p;
=1/o> 0 we have

sup_{(Tf)"(2) 870} +4{ [ (ZF)" (syas] ™

c
o<s<i 1o w

< c{(ff*(s)p(’ds)l'p”‘t( ff*(s)p‘ds)wl'

0 to
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This bound applies to the Hilbert transform with p, = 1, p, > 1, 0 = p]
= p,/(p,—1) for instance, although in that case & better result is known,
see [C], Appendix.

A result of the general charater of Theorem 6.1 was shown to hold
in a particular case in [JT], Theorem 4.6.

7. Admissible maps from A(g,,0,) +4(g,C,) into A(yp,, 6’0)4-A(1p1,0~1).

THEOREM T.1. Let ¢;, O;, 1, w;, 0, & be in Theorems 4.2 or 4.3. Then
a sublinear map T A(py, C)+ A(py, O1) = Ay, Gy) +A(yy, G,) is admiss-
ible if and only if for each f in A(py, Cp) + A(p,Cy) and t > 0

2z (ZF) wolay + 8128 (TF ) pulas, < e{lpaf ool +41xaf pile,}

where A= {s: &(s/2)>1}, B=[0, oo)—4, A {s:9(s) < 1} and B=[0, o) —A.
The proof of this theorem requires no new ideas and is therefore
omitted.

8. Additienal comments. The main ideas in the proof of § 1,2 can be used
to obtain a considerable extension of the results discussed here. Indeed,
suppose that we have a mapping f - I(f) with the following properties.

(i) If f is (M, p) measurable, then I(f) is (Lebesgue) measurable
in. [0, oo) 3
(i) I(f) is positive and non-increasing;

(i) LAf) = |AL(f) for some 0 < s<1 and all real 1;

() Uf+g,20) < e[U(f)()+Ug) (1)}
 Examples of I(f) are f*(4), E(t,f, By, B,)/t and @, )" where it |f]"
is locally summable we set

i
§ 1 ifr
0 = 3 [ irwr e,
. 0 .
It.is thgn Ppossible to obtain some of the results of [Ho] and [8], including
relf;emtlon. Also similar ideas can be used to obtain interpolation of
weighted L” classes, these results ‘were first arrived at in [G], see also [P2].

All these considerations would take us far from our original discugsion and
are therefore left for another occasion.
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