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On joint spectra
by
E. ALBRECHT (Saarbriicken)

Abstract. The commutation properties of some N-tuples of multiplication oper-
ators are used to show that for N > 2 there exist N-tuples T = (Ty, ..., T'y) of commut-
ing linear operators on a Banach space X with the property that there are two maximal
commutative subalgebras o/, and #, of I(X) containing Ty, ..., Ty such that the
joint spectrum of Tin 7, is different from the joint speetrum of 7'in o, . The example
is closely related to an example of J. L. Taylor in [8], [9]. It is shown that, in general,
Taylor’s functional ealeulus ([9]) is richer than the analytic funetional calculus (in
the sense of [4]) in any closed commutative subalgebra of L (X) containing Tys ooy Ty

1. Introduction. Let X be a complex Banach space and denote by
L(X) the Banach algebra of all continuous linear operators on X. For
an N-tuple I = (T, ..., Ty) of commuting operators in L(X) we may
congider the following joint spectra:

(a) o(T, X), the joint spectrum of T with respect to X in the sense
of J. L. Taylor ([8]).

(b) If & is a closed subalgebra of L(X) containing I,T,..., Ty
in its center, then we denote by o (T) the joint spectrum of T in o:

N
o (T)i=feeCV: Y (51—1T)) + of}.

=1

By [8], Lemnma 1.1, the Taylor spectrum of T is always contained in oy (T),
where (T)' is the algebra of all continuous linear operators commuting
with 7'y, ..., Ty. Moreover, J. L. Taylor showed in [8] by an example of
five operators T', ..., T that the inclusion can be strict. We modify this
example in order to show that the inclusion can be proper for every N = 2.
For this example the algebra H (e(T, X)) of germs of locally analytic
functions on ¢(T, X) is strictly larger than H(o(y (T)). Hence, Taylor’s
analytic functional calculus ([9]) is, in general, richer than the analytic
functional calculus (in the sense of [4]) in any commutative closed sub-
algebra of L(X) containing I, Ty, ..., Ty. For a second (closely related
example) we show that there exist maximal commutative subalgebras 7y
and o7, of L(X) containing Iy, ..., Ty such that o (T) # o4,(T). This
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gives an answer to a question raised by W. Zelazko at the Oberwolfach
meeting on functional analysis in 1976.
' 2. The examples. We put G: = G,u G, where
=feC¥: [pl<lfdforj=1,...,
Gy ={zeC": 12 <max{ly: j =1,...,

N,
Ny<i}.

Let us denote by #°(@) the space of all continuous functions on & and
! of
by #'(G) the space of all functions f e #°(G) such that —a;f— (in the sense
{
of distributions) is continuous on G for j =1, ..., N (see [_9], [107]). Let X,
be the Banach algebra of all continuous functions on @, endowed with
the supremum norm ||-||,, and let X; be the space of all functions f e X,
“such that the restriction of f to G belongs to %'(@) and such that for

j=1,..., N the functions gf— have continuous extensions to @ (again
]
i)
denoted by ~a—f—) Endowed with the norm ‘|-,

7

IF s = IFlle

7

| (fe Xy,

X, is a Banach algebra. Spaces of this type have also been used in [1]

and [2]. We consider the following multiplica,tion operators on X, (k = 0,1):
ey e@ (j=1,...,N).

1. Levma. For & = 0,1 the N-tuples T®: = (T(®,...,T®) are
X, -scalar (in the sense of [3]) and hence decmposa,ble mn ths sense of [6].
The (unique) spectral capacity for T® is given by
() EW(F): = {f e X;: supp(f) = F}  for
Moreover,

@)

(TPf)(2): = 2,f(2) for feX, and 2 = (2, ...,

F=TFeCV.

O'(T(k)a X,) =6= Oy (T®).

Proof. o®: X, L(X,) with O®(g)f: = gf (g,feX,) is obvi-
ously an algebraic homomorphism with &® (1) =T and &® (=) = T{?,
where 7;: G — C are the coordinate functions with m;(2) = 2; for 2 = (24, ..

-5 2y) €G. Hence T™® is decomposable by [3], Theorem 4. Obviously, a’(")
a8 deﬁned by (1) is a spectral capacity for T®(which is unique by [6]).
(2) follows by Theorem 6 in [3].

: The proof of the following proposition is similar to the proof of The-
orem 4.4.6 in [5] and of Proposition 2.4 in [1].
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2. PROPOSITION. For A e L(X,, X,,) (n, m =0, 1) the following state-
menis are equivalent:

(a) AE™(F) = 6™ (F) for every closed F < CV.

(b) A = 0 4n the case n = 0, m = L. In the case n = m, 4 is a multi-
plication operator
(3) Af =af (feX,)

with a € X,,, and in the case n =1, m =0, A is a differential operator of
the type

N af
@ 4f = af+ D'b==  (feX)

witha, by, ..., by e X,.

Proof. As obviously every operator of the type (b) fulfills condition (a),
we have only to show that (a) implies (b). Condition (a) can also be written
in the form

(5) supp (4Af) < supp(f) for all feX,.

Therefore, for every w e @ the map wuy: € (CY) - C defined by up(f):
= (4(flg)) (w) is & continuous linear functlon&l with support contained
in {w}. Henee, we have in the case n =0

(6) A(fle) (w) = a(w)f(w) for every fe%*(CV)
with a(w) e C, and in the case n =1,
)
M) (A ) = s+ Y’(bj T )+ o)1 ()
=1 !
for every f e ¢ (CV) with a(w), b, (w), ¢;(w) e C (j =1, ..., N). Applying 4
suceessively to the polynomials 1, myy ..., %y, 7y, ..., iy, We obtain

that the functions w— a(w), w—>b;(w), w—e;(w) (j =1,...
elements of X,,.

Let now w be an arbitrary point in G. There exists a function A
e ¥ (CY) with compact support contained in & such that 0 <h <1
and such that & =1 in a nexghbou:rhood U of w. Then we have (by (5))
for every feX,: (4f)(w) = (A(fW)(w )+ (A (L —B))) (10) = (A () ().
Now, if can be a;pprommmted in the norm of X, by funcmons in #*(C¥)
(by the proof of Lemms 2.6 in [9]). As 4 is continuous and h =1in U,
we obtain that (6), resp. (7), are valid for all fe X, and w €G-

In the case n = 0, (6) holds (by continuity of & and f) for all w e a
This proves (3) in the case n =m = 0.

Let us now consider the case n == 1. For an arbitrary w €@ we can
find % e #'(CY) as above, with the additional property that the diameter

, N) are
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of supp () is smaller than 1. For j =1, ..., I the functions g;, with

belong to X;. Then we have forze U

(Ag) () = a(2)gy(z +2(

i=1

for .z eéupp(h),

wj)m1]nlzj—wj]l _
for 2z ¢ supp (h),

6 7]
e @mggw)

0 0,
—aw%m+%w3%w+kwiﬁw.
T &

)
By the continuity of the functions Agy, agx, by —C;'—Z;'i, we obtain the con-
k

d .
tinuity of ok—a;& at the point w. As forze U, #, # w,
2

ﬁgﬁ( )

. ° =In|Inje, —wyl| + (20 | —w,)",
£

this is only possible if ¢, (w) = 0. As w was an arbitrary point in @ and as ¢,
is continuous on @, we have ¢, = 0 on @ and (4) is proved.
In the case n = m =1, we obtain for s e U

g
(49:)(9) = a(2)gu(2) + b () == (2)
(/]
with Agy, ag, € X,. Hence,
0 [y Do) _ O Oa P
0o, \ Oz | Omp, O | " O
g,

hag to be continuous at w. As

is not continuous at w, this is only

y

0z,
possible if by (w) =0 (k =1, ..
and (3) holds for m» =m = 1.

N). Consequently, b, = 0 (k = i,...,

. 0 '
For n =0, m =1, wed, consider ETZ..'-"- (which belongs to X,

d
because of I € X.,). As A ( 9% ) 0% € X, the function 0 A (a—%—)
0z, 0%, 0z, Oz, |

has to be continuous at w. As above, we obtain that this is only

possible if a(w) = 0. Hence, a =0 on & ie. A4 =0, and the proof
is complete.

Let now X be the Banach space X = X,®X,. We consider the
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following operators in L(X):
T:i=TO@®TP (=
O(h) := O (h) D OM (h)

e W)y

for RheXy,

. i .
D, with D; (f, 9):= (—(%,0) (j =1,...,N) for (f, 9) e X,
7

D, with Do(f,9):=(g,0) for (f,9)eX
8;:=T;+D; (j=1,...,N),
Y(k):= 0k DO  for keX,.
3. LevvaA. (a) T = (Ty,...,Ty) is & Xy-scalar N-tuple and hence

decomposable. The spectral capacity for T is given by
E(F) = 6T @V (F)
= {(f, 9) e X: supp(f) usupp(g) = F}
for F =F < C¥. Moreover,
oI, X) =@

(]3) 8 = (84, ..., 8y) is decomposable, the spectral capacity for 8 co-

incides with that of T, and
(8, X) = G.

Proof. (a) is proved in the same way as Lemma 1.

(b) The operators Sy, ..., Sy, T4y -..., Ty commute and §;—T; = D;
is nilpotent for j = 1, ..., N. Therefore, I and § are quasinilpotent equiv-
alent in the sense of [6], Definition 4.1, by Remark 4.3 in [6]. Theorem 4.1
in [6] implies that o(T, X) = (8, X). By Proposition 4.1 in' [6], the
N-tuple § is decomposable and the spectral capacities for T and § coincide.

4. PROPOSITION. For A € L(X) the following two conditions are equiv-
alent: '

(a) A&(F) < &(F) for every closed F < CV.

(b) There are functions fie Xy and ko, %1y ..., by, k€ X, such thas

N
= O(b)+P (k) + > ¥(k;)D;.
=0

Proof. Obviously, (b) implies (a), so that we have to prove only
the converse implication. Denote for n = 0,1 by J,: X, —+X the ca-
nonical injection and by P,: X - X, the canonical projection. Then, A
can be written in the form

(8) 4

A= [Aoo Aol] where A, = P;AJ; for i,j = 0,1,

10 'All
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As J,89(F) < 6(F) and P;&(F) = 69(F) for j=10,1 and every
closed F = C¥, condition (a) implies 4, % (F) = 8W(F) for every closed
FcC¥andi,j=0,1. By Proposmon 2 we obtain

Ay =dn) with heX; (i=0,1),
-A-.m = Oy

N
« 2 -
Ay = OO (k) + El Q(O)(k")@?}_ with %y, by ..., by € X,
=

Hence, 4 is of the type (8) (with h:= h, and & :== hy— k).
‘We are now able to compute the commutant algebra for T and §:
5. PROPOSITION.
N
(a) (T) = {@(h)—l—%’(k)—]—jg W(k;) Dz Ky Koy ...y by € Xy, b eX,}.
=0
(d) (8) ={D(h)+ 3 P(k;)Dy2 oy ...y oy €Xpy b e X,nH(@)},
- J=0
where H (@) is the algebra of locally analytic functions on G.

Proof. (a) Obviously, every operator of the type (8) commutes
with T, ..., Ty. On the other hand, every operator commuting with
Tyy ...y Ty fulfills condition (a) in Proposition 4 by Corollary 4.5 in [6]
and is therefore of the type (8) by Proposition 4. )

(b) Let 4 be an operator in L(X) commuting with 8, .. 3 8, As

in the proof of (a), 4 must be of the type (8), i.e. there are functions
by Koy Fyy..oy by e X, and ke X; such that

A=¢m+wm+fwww,
Consequently, for j =1, ..)., N, -
0 =8;4—A8; = (T;+D)A—A(T;+D,) = D;4—AD; =: 0
because of (a). Now, D;D; = D;¥ (k) =0 for i, =0,1,..., N. Hence
0 =0; =D;®(h)—S(h)D;+¥(k)D; for =1, ey N

v

Therefore,
0 = 0;(0,1) = (i_;f—,()) for j=1,...,. N

0z; _

and 8o k € H(G). This implies D(h) D; = D,;P(h) and therefore
0 =0;(0,7) = (k,0), ie k=0,

and we have shown that 4 is of the desired type. On the other hand,
if A= ¢(h)—l—2 ¥(k;) Dy with Ty, &y ouuy kyy € X, and b € X, NH (@), then
clearly AS; —SA for j =1,...,¥.
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6. THEOREM. () &y:= {@(h)+W¥(k)Dy: heX,, ke X} and of,
= (8)' are magimal commutative subalgebras of L(X) contwining Ty, ..., Ty.
If N >2, then

0 (T) =G #K:={eC": |5|<1 for j =1,..., N} = O, (T)

(0) oy (8) = K # & =o(8, X).

Proof. (a) Obviously «, and o, are commutative subalgebras of
L(X) with Ty, ..., Ty e o; (j =1,2). As &, = (8)' is the maximal sub-
algebra of L(X) containing 8, ..., Sy in its center, it is 2 maximal com-
mutative subalgebra of L(X).

Let now 4 e L(X) be an operator commuting with all B € &/,. By
Proposition 5(a) there are functions &, ko, &y, ..., ky € X, and he X,
such that

N
A=) +PE)+ D P(k)D;
i=0
As D, = P(1)D, € o,, we obtain
= (4D, — Dy 4)(0,1) = (&, 0)
and therefore % = 0. &(w;) e o, implies
= (AP(m) — B (m) A)(0, 1) = (k;, 0),

ie. k; =0 (j =1,..., N). Therefore, 4 e o, and we have shown that o/
is 2 maximal commutative subalgebra of L(X).

As {B(h): heX;} < o, we have o, (T) =supp(P) =& by The-
orem 6 in [3].

Let us now prove that o, (I) = K. If w ¢ K, ie. |w,| > 1 for some

pefl,..., N}, then we obtain with u,(2) := (w,—2,)" and u; = 0 for
j¢p7j=11-”7N7 :

N

D wI—-Ty)dluy) = d(1) =1,

=1

hence 2 ¢ oy, (T). If w ¢ 04,(T), then there are Uyyeooy Uy € oAy,
N
U; = ®(u)+ ) Pl ) Dy
p=0

with k,; € Xy, w, e HANKX, (j=1,...,N;p =0,1,..., N), such that

N

DI —T)T; =1.

J=1
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If we apply this equation to (1, 0) € X, we obtain
N
( ‘(wj—'”j)uj ’ 0) =(1,0),
j=1
hence

N
(9) (w;—2)u;(2) =1 for all ¢ e@z.
=1 :

J

As N > 2, there are unique continuous functions v;: K - ¢ which are
;réajlgfu]; 1; (Jg) a:;(; i%?;iije with u; on G (§ =1,...,N) (cf. [7], Theorem
»

Z(Wj”‘zj)”j(z) =1
j=1
This is only possible if w ¢ K. Thus o, (T) = K.
(b) Let A(s,) be the space of all non trivial multiplicative linear

for all ze K.

functionals on 7, = (8)". Then
G(S)'(S) = {(‘P(Sl)) sy ?’(‘SN)): P e A("?{z)}
={{p(T), ..., o(Ty)): @ € A(3))

K

1l

O, (T)

by (a) and becanse of p(D;) = Oforall g & 4(7,) (as D} =0)forj=1,...c
-++3 V. Together with Lemma 3 (b) this proves (b). T

7. Remarks. (a) Part (b) in the preceeding theorem shows that
for N > 2 the Taylor spectrum may be strictly smaller than the commu-
tant spectrum (ef. Theoregl 4.1 in [8] for N > B). Moreover, in our example
H{og(8)) = H(E) S H(@) = H(o(8, X)).. For example, the germ  of
the @netion T, which vanishes in a neighbourhood of @, and is identical
to1L na neighbourhood of &, is in H () but not in H(K). The operator
®(R) is in the algebra generated by Taylor’s analytic functional calculus
(‘[9]) but not in the algebra generated by the analytic functional calculus
gm ‘the sense of [4]) in any closed commutative subalgebra of L(X) contain-
ing I, 84y..., 8y. This shows that, in general, Taylor’s analytic functi-
onal caleulus is richer than the analytic functional ealeulus in closed
commutative subalgebras.

(b) There is no admissible algebra U of functions (in the sense of [3D
such that there exists a homomorphism ¥y: A—> L(X) with P,(1) =T
and ¥(m;) = §; for j =1,..., N. Otherwise, by Theorem 6 i.no [3] we
'WO'lll‘d have ¢(8, X) = o(gy(S) in contradiction o part (b) in the pre-
egedmg theorem. In the case N =1, a corresponding example has been
given in [1].
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