

On joint spectra

by

E. ALBRECHT (Saarbrücken)

Abstract. The commutation properties of some N-tuples of multiplication operators are used to show that for N>2 there exist N-tuples $T=(T_1,\ldots,T_N)$ of commuting linear operators on a Banach space X with the property that there are two maximal commutative subalgebras \mathscr{A}_1 and \mathscr{A}_2 of L(X) containing T_1,\ldots,T_N such that the joint spectrum of T in \mathscr{A}_1 is different from the joint spectrum of T in \mathscr{A}_2 . The example is closely related to an example of J. L. Taylor in [8], [9]. It is shown that, in general, Taylor's functional calculus ([9]) is richer than the analytic functional calculus (in the sense of [4]) in any closed commutative subalgebra of L(X) containing T_1,\ldots,T_N .

- 1. Introduction. Let X be a complex Banach space and denote by L(X) the Banach algebra of all continuous linear operators on X. For an N-tuple $T=(T_1,\ldots,T_N)$ of commuting operators in L(X) we may consider the following joint spectra:
- (a) $\sigma(T, X)$, the joint spectrum of T with respect to X in the sense of J. L. Taylor ([8]).
- (b) If $\mathscr A$ is a closed subalgebra of L(X) containing I, T_1, \ldots, T_N in its center, then we denote by $\sigma_{\mathscr A}(T)$ the joint spectrum of T in $\mathscr A$:

$$\sigma_{\mathscr{A}}(T):=\{z\in C^N\colon \sum_{j=1}^N(z_jI-T_j)\mathscr{A}\neq \mathscr{A}\}.$$

By [8], Lemma 1.1, the Taylor spectrum of T is always contained in $\sigma_{(T)'}(T)$, where (T)' is the algebra of all continuous linear operators commuting with T_1,\ldots,T_N . Moreover, J. L. Taylor showed in [8] by an example of five operators T_1,\ldots,T_5 that the inclusion can be strict. We modify this example in order to show that the inclusion can be proper for every $N\geqslant 2$. For this example the algebra $H(\sigma(T,X))$ of germs of locally analytic functions on $\sigma(T,X)$ is strictly larger than $H(\sigma_{(T)'}(T))$. Hence, Taylor's analytic functional calculus ([9]) is, in general, richer than the analytic functional calculus (in the sense of [4]) in any commutative closed subalgebra of L(X) containing I,T_1,\ldots,T_N . For a second (closely related example) we show that there exist maximal commutative subalgebras \mathscr{A}_1 and \mathscr{A}_2 of L(X) containing T_1,\ldots,T_N such that $\sigma_{\mathscr{A}_1}(T)\neq\sigma_{\mathscr{A}_2}(T)$. This

gives an answer to a question raised by W. Żelazko at the Oberwolfach meeting on functional analysis in 1976.

2. The examples. We put $G:=G_1\cup G_2$ where

$$\begin{split} G_1 &:= \{z \in C^N \colon |z_j| < 1/4 \text{ for } j = 1, \dots, N\}, \\ G_2 &:= \{z \in C^N \colon 1/2 < \max\{|z_j| \colon j = 1, \dots, N\} < 1\}. \end{split}$$

Let us denote by $\mathscr{B}^0(G)$ the space of all continuous functions on G and by $\mathscr{B}^1(G)$ the space of all functions $f \in \mathscr{B}^0(G)$ such that $\frac{\partial f}{\partial \overline{z_j}}$ (in the sense of distributions) is continuous on G for $j=1,\ldots,N$ (see [9], [10]). Let X_0 be the Banach algebra of all continuous functions on G, endowed with the supremum norm $\|\cdot\|_0$, and let X_1 be the space of all functions $f \in X_0$ such that the restriction of f to G belongs to $\mathscr{B}^1(G)$ and such that for $j=1,\ldots,N$ the functions $\frac{\partial f}{\partial \overline{z_j}}$ have continuous extensions to \overline{G} (again denoted by $\frac{\partial f}{\partial \overline{z_j}}$). Endowed with the norm $\|\cdot\|_1$,

$$\|f\|_1:=\|f\|_0+\sum_{i=1}^N\left\|rac{\partial f}{\partial\overline{z_i}}
ight\|_0 \qquad (f\in X_1),$$

 X_1 is a Banach algebra. Spaces of this type have also been used in [1] and [2]. We consider the following multiplication operators on $X_k(k=0,1)$:

$$(T_j^{(k)}f)(z) := z_j f(z) \text{ for } f \in X_k \text{ and } z = (z_1, \ldots, z_N) \in \overline{G} \ (j = 1, \ldots, N).$$

1. Lemma. For k=0,1 the N-tuples $T^{(k)}:=(T_1^{(k)},\ldots,T_N^{(k)})$ are X_k -scalar (in the sense of [3]) and hence decomposable in the sense of [6]. The (unique) spectral capacity for $T^{(k)}$ is given by

(1)
$$\mathscr{E}^{(k)}(F) := \{ f \in X_k \colon \operatorname{supp}(f) \subset F \} \quad \text{ for } \quad F = \overline{F} \in C^N.$$
 Moreover,

(2)
$$\sigma(T^{(k)}, X_k) = \overline{G} = \sigma_{(T^{(k)})^{\bullet}}(T^{(k)}).$$

Proof. $\Phi^{(k)}\colon X_k\to L(X_k)$ with $\Phi^{(k)}(g)f\colon=gf\ (g\,,f\in X_k)$ is obviously an algebraic homomorphism with $\Phi^{(k)}(1)=I$ and $\Phi^{(k)}(\pi_j)=T_j^{(k)},$ where $\pi_j\colon G\to C$ are the coordinate functions with $\pi_j(z)=z_j$ for $z=(z_1,\ldots,z_N)\in G$. Hence $T^{(k)}$ is decomposable by [3], Theorem 4. Obviously, $\mathcal{E}^{(k)}$, as defined by (1) is a spectral capacity for $T^{(k)}$ (which is unique by [6]). (2) follows by Theorem 6 in [3].

The proof of the following proposition is similar to the proof of Theorem 4.4.6 in [5] and of Proposition 2.4 in [1].

- (a) $A\mathscr{E}^{(n)}(F) \subset \mathscr{E}^{(m)}(F)$ for every closed $F \subset C^N$.
- (b) A=0 in the case $n=0,\,m=1.$ In the case $n=m,\,A$ is a multiplication operator

$$Af = af \quad (f \in X_n)$$

with $a \in X_n$, and in the case n = 1, m = 0, A is a differential operator of the type

(4)
$$Af = af + \sum_{j=1}^{N} b_j \frac{\partial f}{\partial \overline{z_j}} \quad (f \in X_1)$$

with $a, b_1, \ldots, b_N \in X_0$.

Proof. As obviously every operator of the type (b) fulfills condition (a), we have only to show that (a) implies (b). Condition (a) can also be written in the form

(5)
$$\operatorname{supp}(Af) \subset \operatorname{supp}(f) \quad \text{for all } f \in X_n,$$

Therefore, for every $w \in \overline{G}$ the map $u_{\overline{W}} \colon \mathscr{C}^1(C^N) \to C$ defined by $u_{\overline{W}}(f) \colon = (A(f|_{\overline{G}}))(w)$ is a continuous linear functional with support contained in $\{w\}$. Hence, we have in the case n = 0

(6)
$$(A(f|_G))(w) = a(w)f(w) \quad \text{for every } f \in \mathscr{C}^1(\mathbb{C}^N)$$

with $a(w) \in C$, and in the case n = 1,

(7)
$$(A(f|g))(w) = a(w)f(w) + \sum_{i=1}^{N} \left(b_{j}(w) \frac{\partial f}{\partial \overline{z_{j}}}(w) + c_{j}(w) \frac{\partial f}{\partial z_{j}}(w) \right)$$

for every $f \in \mathscr{C}^1(C^N)$ with $a(w), b_j(w), c_j(w) \in C$ $(j = 1, \ldots, N)$. Applying A successively to the polynomials $1, \pi_1, \ldots, \pi_N, \ \overline{\pi}_1, \ldots, \overline{\pi}_N$, we obtain that the functions $w \to a(w), \ w \to b_j(w), \ w \to c_j(w) \ (j = 1, \ldots, N)$ are elements of X_m .

Let now w be an arbitrary point in G. There exists a function $h \in \mathscr{C}^1(C^N)$ with compact support contained in G, such that $0 \le h \le 1$ and such that $h \equiv 1$ in a neighbourhood U of w. Then we have (by (5)) for every $f \in X_n$: (Af)(w) = (A(fh))(w) + (A((1-h)f))(w) = (A(hf))(w). Now, hf can be approximated in the norm of X_n by functions in $\mathscr{C}^1(C^N)$ (by the proof of Lemma 2.6 in [9]). As A is continuous and $h \equiv 1$ in U, we obtain that (6), resp. (7), are valid for all $f \in X_n$ and $w \in G$.

In the case n = 0, (6) holds (by continuity of a and f) for all $w \in \overline{G}$. This proves (3) in the case n = m = 0.

Let us now consider the case n=1. For an arbitrary $w \in G$ we can find $h \in \mathscr{C}^1(\mathbb{C}^N)$ as above, with the additional property that the diameter

of supp (h) is smaller than 1. For j = 1, ..., N the functions g_j , with

$$g_j(z) := \begin{cases} h\left(z\right)(z_j - w_j) \ln \left| \ln |z_j - w_j| \right| & \text{ for } z \in \text{supp}\left(h\right), \\ 0 & \text{ for } z \notin \text{supp}\left(h\right), \end{cases}$$

belong to X_1 . Then we have for $z \in U$

$$\begin{split} (Ag_k)(z) &= a(z)g_k(z) + \sum_{j=1}^N \left(b_j(z) \, \frac{\partial g_k}{\partial \overline{z_j}}(z) + c_j(z) \, \frac{\partial g_k}{\partial z_j}(z)\right) \\ &= a(z)g_k(z) + b_k(z) \, \frac{\partial g_k}{\partial \overline{z_k}}(z) + c_k(z) \, \frac{\partial g_k}{\partial z_k}(z) \, . \end{split}$$

By the continuity of the functions Ag_k , ag_k , $b_k \frac{\partial g_k}{\partial \overline{z_k}}$, we obtain the continuity of $c_k \frac{\partial g_k}{\partial z_k}$ at the point w. As for $z \in U$, $z_k \neq w_k$

$$\frac{\partial g_k}{\partial z_k}(z) = \ln \left| \ln |z_k - w_k| \right| + (2\ln |z_k - w_k|)^{-1},$$

this is only possible if $c_k(w)=0$. As w was an arbitrary point in G and as c_k is continuous on \overline{G} , we have $c_k\equiv 0$ on \overline{G} and (4) is proved.

In the case n=m=1, we obtain for $z\in U$

$$(Ag_k)(z) = a(z)g_k(z) + b_k(z)\frac{\partial g_k}{\partial \overline{z_k}}(z)$$

with Ag_k , $ag_k \in X_1$. Hence,

$$\frac{\partial}{\partial \overline{z_k}} \left(b_k \frac{\partial g_k}{\partial \overline{z_k}} \right) = \frac{\partial b_k}{\partial \overline{z_k}} \cdot \frac{\partial g_k}{\partial \overline{z_k}} + b_k \frac{\partial^2 g_k}{\partial \overline{z_k}^2}$$

has to be continuous at w. As $\frac{\partial^2 g_k}{\partial \overline{z_k^2}}$ is not continuous at w, this is only possible if $b_k(w)=0$ $(k=1,\ldots,N)$. Consequently, $b_k\equiv 0$ $(k=1,\ldots,N)$, and (3) holds for n=m=1.

For $n=0,\ m=1,\ w\in G$, consider $\frac{\partial g_k}{\partial \overline{z_k}}$ (which belongs to X_0 because of $g_k\in X_1$). As $A\left(\frac{\partial g_k}{\partial \overline{z_k}}\right)=a\,\frac{\partial g_k}{\partial \overline{z_k}}\in X_1$, the function $\frac{\partial}{\partial \overline{z_k}}\left(A\left(\frac{\partial g_k}{\partial \overline{z_k}}\right)\right)$ has to be continuous at w. As above, we obtain that this is only possible if a(w)=0. Hence, $a\equiv 0$ on \overline{G} , i.e. A=0, and the proof is complete.

Let now X be the Banach space $X = X_0 \oplus X_1$. We consider the

following operators in L(X):

$$egin{aligned} T_j &:= T_j^{(0)} \oplus T_j^{(1)} & (j=1,\ldots,N), \ & \varPhi(h) &:= \varPhi^{(0)}(h) \oplus \varPhi^{(1)}(h) & ext{for} & h \in X_1, \ & D_j & ext{with} & D_j & (f,g) &:= \left(rac{\partial g}{\partial ar{z}_j},0
ight) & (j=1,\ldots,N) & ext{for} & (f,g) \in X, \ & D_0 & ext{with} & D_0(f,g) &:= (g,0) & ext{for} & (f,g) \in X, \ & S_j &:= T_j + D_j & (j=1,\ldots,N), \ & \varPsi(k) &:= \varPhi^{(0)}(k) \oplus 0 & ext{for} & k \in X_0. \end{aligned}$$

3. LEMMA. (a) $T=(T_1,\ldots,T_N)$ is a X_1 -scalar N-tuple and hence decomposable. The spectral capacity for T is given by

$$\mathscr{E}(F) = \mathscr{E}^{(0)}(F) \oplus \mathscr{E}^{(1)}(F)$$
$$= \{ (f, g) \in X \colon \operatorname{supp}(f) \cup \operatorname{supp}(g) \subset F \}$$

for $F = \overline{F} \subset \mathbb{C}^N$. Moreover,

$$\sigma(T,X)=\bar{G}.$$

(b) $S=(S_1,\ldots,S_N)$ is decomposable, the spectral capacity for S coincides with that of T, and

$$\sigma(S,X)=\bar{G}.$$

Proof. (a) is proved in the same way as Lemma 1.

- (b) The operators $S_1, \ldots, S_N, T_1, \ldots, T_N$ commute and $S_j T_j = D_j$ is nilpotent for $j = 1, \ldots, N$. Therefore, T and S are quasinilpotent equivalent in the sense of [6], Definition 4.1, by Remark 4.3 in [6]. Theorem 4.1 in [6] implies that $\sigma(T, X) = \sigma(S, X)$. By Proposition 4.1 in [6], the N-tuple S is decomposable and the spectral capacities for T and S coincide.
- 4. Proposition. For $A \in L(X)$ the following two conditions are equivalent:
 - (a) $A\mathscr{E}(F) \subset \mathscr{E}(F)$ for every closed $F \subset \mathbb{C}^N$.
 - (b) There are functions $\hbar \in X_1$ and $k_0, k_1, ..., k_N, k \in X_0$ such that

(8)
$$A = \Phi(h) + \Psi(k) + \sum_{i=0}^{N} \Psi(k_i) D_i.$$

Proof. Obviously, (b) implies (a), so that we have to prove only the converse implication. Denote for n=0,1 by $J_n\colon X_n\to X$ the canonical injection and by $P_n\colon X\to X_n$ the canonical projection. Then, A can be written in the form

$$A = egin{bmatrix} A_{00} & A_{01} \ A_{10} & A_{11} \end{bmatrix} \quad ext{where} \quad A_{ji} = P_j A J_i \; ext{ for } i,j=0,1.$$

As $J_i\mathscr{E}^{(j)}(F)\subset\mathscr{E}(F)$ and $P_i\mathscr{E}(F)\subset\mathscr{E}^{(j)}(F)$ for j=0,1 and every closed $F \subset \mathbb{C}^N$, condition (a) implies $A_{ii} \mathscr{E}^{(i)}(F) \subset \mathscr{E}^{(j)}(F)$ for every closed $F \subset \mathbb{C}^N$ and i, j = 0, 1. By Proposition 2 we obtain

$$egin{aligned} A_{ii} &= arPhi^{(i)}(h_i) & ext{ with } & h_i \in X_i \ (i=0\,,1)\,, \ A_{10} &= 0\,, \ A_{01} &= arPhi^{(0)}(k_0) + \sum_{i=0}^N arPhi^{(0)}(k_j) \, rac{\partial}{\partial \overline{z_i}} & ext{ with } & k_0\,,\,k_1\,,\,\ldots\,,\,k_N \in X_0\,. \end{aligned}$$

Hence, A is of the type (8) (with $h := h_1$ and $k := h_0 - h_1$).

We are now able to compute the commutant algebra for T and S: 5. Proposition.

(a)
$$(T)' = \{\Phi(h) + \Psi(k) + \sum_{j=0}^{N} \Psi(k_j) D_j : k, k_0, \dots, k_N \in X_0, h \in X_1 \}.$$

(b) $(S)' = \{\Phi(h) + \sum_{j=0}^{N} \Psi(k_j) D_j : k_0, \dots, k_N \in X_0, h \in X_1 \cap H(G) \},$

(b)
$$(S)' = \{ \Phi(h) + \sum_{i=0}^{N} \Psi(k_i) D_i : k_0, ..., k_N \in X_0, h \in X_1 \cap H(G) \}$$

where H(G) is the algebra of locally analytic functions on G.

Proof. (a) Obviously, every operator of the type (8) commutes with T_1, \ldots, T_N . On the other hand, every operator commuting with T_1, \ldots, T_N fulfills condition (a) in Proposition 4 by Corollary 4.5 in [6] and is therefore of the type (8) by Proposition 4.

(b) Let A be an operator in L(X) commuting with S_1, \ldots, S_n . As in the proof of (a), A must be of the type (8), i.e. there are functions $k, k_0, k_1, \ldots, k_N \in X_0$ and $h \in X_1$ such that

$$A = \Phi(h) + \Psi(k) + \sum_{j=0}^{N} \Psi(k_j) D_j.$$

Consequently, for j = 1, ..., N,

$$0 = S_j A - A S_j = (T_j + D_j) A - A (T_j + D_j) = D_j A - A D_j = : C_j$$

because of (a). Now, $D_iD_i=D_i\Psi(k)=0$ for $i,j=0,1,\ldots,N$. Hence

$$0 = C_j = D_j \Phi(h) - \Phi(h) D_j + \Psi(k) D_j \quad \text{for} \quad j = 1, ..., N.$$

Therefore.

$$0 = \mathit{C}_{j}(0,1) = \left(rac{\partial h}{\partial \overline{z_{j}}},0
ight) \quad ext{for} \quad j = 1,...,N$$

and so $h \in H(G)$. This implies $\Phi(h) D_i = D_i \Phi(h)$ and therefore

$$0 = C_j(0, \overline{\pi}_j) = (k, 0),$$
 i.e. $k = 0$,

and we have shown that A is of the desired type. On the other hand, if $A = \Phi(h) + \sum_{i=0}^N \Psi(k_i) D_i$ with $k_0, k_1, \dots, k_N \in X_0$ and $h \in X_1 \cap H(G)$, then clearly $AS_i = S_i A$ for i = 1, ..., N

6. THEOREM. (a) $\mathscr{A}_1 := \{ \Phi(h) + \Psi(k_0) D_0 : h \in X_1, k_0 \in X_0 \}$ and \mathscr{A}_2 :=(S)' are maximal commutative subalgebras of L(X) containing T_1,\ldots,T_N . If $N \geqslant 2$, then

$$\sigma_{\mathscr{A}_{\gamma}}(T) = \overline{G} \neq K := \{z \in C^N \colon |z_j| \leqslant 1 \text{ for } j = 1, ..., N\} = \sigma_{\mathscr{A}_{\gamma}}(T).$$

(b)
$$\sigma_{(S)'}(S) = K \neq \overline{G} = \sigma(S, X)$$
.

Proof. (a) Obviously \mathcal{A}_1 and \mathcal{A}_2 are commutative subalgebras of L(X) with $T_1, \ldots, T_N \in \mathscr{A}_i \ (j=1,2)$. As $\mathscr{A}_2 = (S)'$ is the maximal subalgebra of L(X) containing S_1, \ldots, S_N in its center, it is a maximal commutative subalgebra of L(X).

Let now $A \in L(X)$ be an operator commuting with all $B \in \mathcal{A}_1$. By Proposition 5(a) there are functions $k, k_0, k_1, ..., k_N \in X_0$ and $h \in X_1$ such that

$$A = \Phi(h) + \Psi(k) + \sum_{j=0}^{N} \Psi(k_j) D_j.$$

As $D_0 = \Psi(1)D_0 \in \mathcal{A}_1$, we obtain

$$0 = (AD_0 - D_0 A)(0, 1) = (k, 0)$$

and therefore k=0. $\Phi(\overline{\pi_i}) \in \mathscr{A}_1$ implies

$$0 = (A \Phi(\overline{n_i}) - \Phi(\overline{n_i}) A)(0, 1) = (k_i, 0),$$

i.e. $k_i = 0 \ (j = 1, ..., N)$. Therefore, $A \in \mathcal{A}_1$ and we have shown that \mathcal{A}_1 . is a maximal commutative subalgebra of L(X).

As $\{\Phi(h): h \in X_1\} \subset \mathscr{A}_1$ we have $\sigma_{\mathscr{A}_1}(T) = \operatorname{supp}(\Phi) = \overline{G}$ by Theorem 6 in [3].

Let us now prove that $\sigma_{\mathcal{A}_2}(T) = K$. If $w \notin K$, i.e. $|w_p| > 1$ for some $p \in \{1, \ldots, N\}$, then we obtain with $u_p(z) := (w_p - z_p)^{-1}$ and $u_i = 0$ for $j\neq p,\,j=1,...,N,$

$$\sum_{j=1}^{N} (w_{j}I - T_{j}) \Phi(u_{j}) = \Phi(1) = I,$$

hence $z \notin \sigma_{\mathscr{A}_2}(T)$. If $w \notin \sigma_{\mathscr{A}_2}(T)$, then there are $U_1, \ldots, U_N \in \mathscr{A}_2$,

$$U_j = \Phi(u_j) + \sum_{p=0}^N \Psi(k_{p,j}) D_j$$

with $k_{n,i} \in X_0$, $u_i \in H(G) \cap X_1$ (j = 1, ..., N; p = 0, 1, ..., N), such that

$$\sum_{j=1}^{N} (w_j I - T_j) U_j = I.$$

If we apply this equation to $(1, 0) \in X$, we obtain

$$\left(\sum_{j=1}^{N} (w_{j} - \pi_{j}) u_{j}, 0\right) = (1, 0),$$

hence

(9)
$$\sum_{j=1}^{N} (w_j - z_j) u_j(z) = 1 \quad \text{ for all } z \in \overline{G}_2.$$

As $N \ge 2$, there are unique continuous functions $v_j \colon K \to C$ which are analytic in \mathring{K} and coincide with u_j on \bar{G}_2 $(j=1,\ldots,N)$ (cf. [7], Theorem I.C.5). By (9) we obtain

$$\sum_{j=1}^N (w_j-z_j)v_j(z) \,=\, 1 \quad \text{ for all } z\in K\,.$$

This is only possible if $w \notin K$. Thus $\sigma_{\mathscr{A}_2}(T) = K$.

(b) Let $\Delta(\mathscr{A}_2)$ be the space of all non trivial multiplicative linear functionals on $\mathscr{A}_2 = (S)'$. Then

$$\begin{split} \sigma_{(S)'}(S) &= \big\{ \big| \varphi(S_1), \, \ldots, \, \varphi(S_N) \big| \colon \, \varphi \in \varDelta \left(\mathscr{A}_2 \right) \big\} \\ &= \big\{ \big| \big| \varphi(T_1), \, \ldots, \, \varphi(T_N) \big| \colon \, \varphi \in \varDelta \left(\mathscr{A}_2 \right) \big\} \\ &= \sigma_{\mathscr{A}_2}(T) = K \end{split}$$

by (a) and because of $\varphi(D_j)=0$ for all $\varphi\in \Delta(\mathscr{A}_2)$ (as $D_j^2=0$) for $j=1,\ldots,N$. Together with Lemma 3 (b) this proves (b).

- 7. Remarks. (a) Part (b) in the preceeding theorem shows that for $N \geq 2$ the Taylor spectrum may be strictly smaller than the commutant spectrum (cf. Theorem 4.1 in [8] for $N \geq 5$). Moreover, in our example $H\left(\sigma_{(S')}(S)\right) = H(K) \subsetneq H(\overline{G}) = H\left(\sigma(S,X)\right)$. For example, the germ of the function h, which vanishes in a neighbourhood of \overline{G}_1 and is identical to 1 in a neighbourhood of \overline{G}_2 , is in $H(\overline{G})$ but not in H(K). The operator $\Phi(h)$ is in the algebra generated by Taylor's analytic functional calculus ([9]) but not in the algebra generated by the analytic functional calculus (in the sense of [4]) in any closed commutative subalgebra of L(X) containing I, S_1, \ldots, S_N . This shows that, in general, Taylor's analytic functional calculus is richer than the analytic functional calculus in closed commutative subalgebras.
- (b) There is no admissible algebra $\mathfrak A$ of functions (in the sense of [3]) such that there exists a homomorphism $\mathcal \Psi_0\colon \mathfrak A\to L(X)$ with $\mathcal \Psi_0(1)=I$ and $\mathcal \Psi_0(\pi_j)=S_j$ for $j=1,\ldots,N$. Otherwise, by Theorem 6 in [3] we would have $\sigma(S,X)=\sigma_{(S)'}(S)$ in contradiction to part (b) in the preceding theorem. In the case N=1, a corresponding example has been given in [1].

References

- E. Albrecht, An example of a & (C)-decomposable operator, which is not & (C)-spectral. Rev. Roumaine Math. Pures Appl. 19 (1974), pp. 131-139.
- [2] An example of a weakly decomposable operator, which is not decomposable, ibid. 20 (1975), pp. 855-861.
- [3] E. Albrecht and Şt. Frunză, Non-analytic functional calculi in several variables, Manuscripta Math. 18 (1976), pp. 327-336.
- [4] N. Bourbaki, Théories spectrales. Éléments de mathématique, Fasc. 32, Hermann et Cie., Paris 1967.
- [5] I. Colojoară and C. Foias, Theory of generalized spectral operators, Gordon and Breach, New York-London-Paris 1968.
- [6] Şt. Frunză, The Taylor spectrum and spectral decompositions, J. Functional Analysis 19 (1975), pp. 390-421.
- [7] R. C. Gunning and H. Rossi, Analytic functions of several complex variables, Prentice-Hall Inc., Englewood Cliffs, New York 1965.
- [8] J. L. Taylor, A joint spectrum for several commuting operators, J. Functional Analysis 6 (1970), pp. 172-191.
- [9] Analytic functional calculus for several commuting operators, Acta Math. 125 (1970), pp. 1-40.
- [10] F.-H. Vasilesc a, Funcții analitice şi forme diferențiale în spații Fréchet, St. Cerc. Mat. 26 (1974), pp. 1023-1049.

FACHBEREICH MATHEMATIK UNIVERSITÄT DES SAARLANDES SAARBRÜCKEN

> Received January 10, 1977 in revised version April 5, 1977 (1247)