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convergence. Thus, there exists M > 0 such that
Wle <1 implies  sup | [ (@, 9)f(y) dy|< 1L
zeK; ' x
For a fixed z € X,

( [1o(, Pay)” = sup
X

i o

[B, 0 8o R, f()]

= sup
Iirig2<t

| [ol@,9) 7y ay|< 1.
X
Therefore

[ lo(@, 9 dyde < 1/M2 meas (K,).
TXxX

5. Proof of Theorem 2. In order to simplify the notation, U will
be a fixed open set of the covering {U2} and ¢ will be the corresponding
function in the subordinate partition of unity. Let also oy = o,

It is. clear that oy satisfies the assumptions of Lemma 2, with ¢, =
=1l and d =0ifm=0o0r0<d8<lif m>0.

On the other hand, 1/, satisfies the assumptions of Lemms 3 with
e=1L,m =mand 6 =0fm =00r0<d<1if m>0. Thus, we can
obtain operators A and B, as in Lemmas 2 and 3, respectively. Therefore
A o B, has the properties of Theorem 3 and then its L*-inverse B is a
pseudo-differential operator.

Therefore the operators 4 and B, o B verify Theorem 2 with respect
to U.

Remark. When m = 0, both symbols o, and 1/o; satisfy the assump-
tions of Lemma 2.
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Extensions of a Fourier multiplier theorem of Paley, IT*
by
JOHN J. F. FOURNIER (Vancouver)

Abstract. Let 4 (TUN) be the algebra of functions that are analytic in the interior
of the unit polydisec UN and continuous on the closure of UN. Denote the positive
cone in the integer lattice ZV by Z{.‘r’ ; then, for cach function f in 4 (U¥), denote the

Taylor coefficients of f by { f(a)}aez ~+ Call a function p on fo a Paley multiplier if
+

> [p(a)f(a)] < oo for all fin A (UV). Call avegion W in Z% a proper cone if the ratios
'ad_}_ R '_ .
(min a,)/|al, remain bounded away from 0 as « runs through W. Every element of
n o
ZZ(ZJ_}_’) is a Paley multiplier; it is shown in this paper that, if p is a Paley multiplier,
then ' |{p(a)]®< oo for every proper cone W. This is a considerable improvement
eV
on previous results, but it remains unknown, when 1 < N < oo, whether every Paley
multiplier belong to I* @%).
The proof is based on a simple construction that also yields partial solutions

to some problems about.-homogenous expansions of functions in 4(U¥). Other appli-
cations of the constructions are also discussed.

1. Introduction. We use the notation and terminology of Rudin’s
book [29], except that we denote the Taylor coefficients of a function f
in A(TY) by f (e) rather than ¢(a). Such a function is completely deter-
mined by its restriction to the distinguished boundary T% of U¥, and
its Taylor coefficients are just the Fourier coefficients of its restriction
to TV, ‘

Paley’s theorem [26] iy that, when N = 1, every Paley multiplier
belongs fo I*(Z*). Helson [15] found a second proof of Paley’s theorem,
and generalized it to severdl variables in the following way. Choose &
half-space S in Z¥, and let 4 be the set of continuous functions on TV
whose Fourier coefficients vanish off §; then a function p, on the set g,

has the property that Z[p(a)f(a)[ < oo, for all f in 4, if and only if
aelS

» € P(8). Rudin ([28], p. 222) extended this result to the context of compact
abelian groups with totally-ordered dual groups.

* Research partially supported by National Research Council of Canada opera-
ting grant number A-4822. : |
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Now the restriction to TV of A(UY) is the set A(T™) of continuous
functions on TV whose Fourier coefficients vanish off Z¥. It Z¥ < 8§,
then A (T¥) is included in Helson’s space 4, but the two spaces never
coincide when XN > 1; thus Helson’s theorem does not characterize the
space of Paley multipliers on 4(UY) when N > 1. The best previous
result about Paley multipliers on this case appears in [11]. Induce a partial
order on Z¥ by declaring that o < § if and only if § —a & ZY; the every
Paley multiplier p has the property that ;EIp(a)]Z< oo, for all totally

ordered subsets & of ZY. The analogue of this statement for compact
abelian groups with partially-ordered dual groups also holds; when the
dual group is totally ordered, we recover the theorems of Paley, Helson
and Rudin.

In Section 2, below, we prove a generalization of the fact that the
restriction of any Paley multiplier to a totally ordered set must be square-
summable. We then use this generalization to show, in Section 3, that
the restriction. of any Paley multiplier to any proper cone must be square-
summable. As in the previous paper ([11], Sections 2 and 6), the methods
used here to analyse Paley multipliers also yields results about semila-
cunary Fourier series, and about dual interpolation problems. In Section 4
of the present paper, we present a partial solution to an interpolation
problem for homogeneous expansions of bounded analytic functions;
we also extend slightly Forelli’s F. and M. Riesz theorem for measures
that annihilate the polydise algebra [9]. In Seetion 5, we continue our
study of interpolation problems for homogeneous expansions of bounded
functions; the results are similar to those in Seetion 2, but the methods
are different. Finally, in Section 6, we discuss the connection between
the results in this paper and the work of other authors; we also outline
briefly an alternate proof that the restriction: of any Paley multiplier
to any proper cone must be square-summable.

2. Paley multipliers and order-convex sets. Denote the Fourier coef-
ficients of an integrable function f on T% by f(a). Given a subset I of
Z¥, 1et Oy be the space of all continuous functions f on 7% such that f
vanishes off I. Call a function p, on the set I, a Paley multiplier on O if

Dp@f@l<

ael

for 'all f in Of.

Denote the space of Paley multipliers on ¢y by P;.

Hpisa Paley multiplier, then, by the closed-graph theorem, the
map f s pf is a bounded operator from C; into '(I); denote the norm
of this operator by [pli;. Observe that this norm is monotone, in the sense
that if |p,(a)| < |pa(a)] for all «, then {p; < |[p.l;; in particular, modi-
fying the argument of a Paley multiplier does not change its morm.
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Denote by < the partial order on ZV induced by declarin
if and only if f— a e ZY. Call a subset I of Z¥ wder-czfm;ew if thi iﬁﬁiﬁnﬁ
ael,pel, and a< y < g imply that y e I. Call a subset B of 2V totally-
ordered if every pair (a, §), of elements of B, satisfies o< gor < a
Extend the parfial order < to pairs of subsets of Z¥ by declaring Eia{;
B, <B,if a< g dorall ¢ in B, and all § in H,; that is, B, < E, if the set
E,—E,, of all differences 8 —a, where g ¢ B, and « €.B,, is a subset of
Z%. Finally, call a sequence {E,}}., of subsets of 27, order-inereasing
it B, <E,<HB<...

The results of this section hold, with the same proofs, for order-convex
subsets of any partially-ordered, discrete, abelian group, but we shall
concentrate on the case of ZY, with the partial order defined above.
Tt is not known whether every Paley multiplier on 4 (T¥) belongs to I*(ZY).
Our first result shows, however, that this space of Paley multipliers ;e-
sembles *(Z%) in the sense that we nearly have orthogonal projections.

TeEoREM 1. Let I be an order-convex subset of Z¥, and let p be Paley
multiplier on Cr. Let {H,}X  be an order-inoreasing sequence of disjoint
subsets of 1. For each m, let 21z, be the norm of the restriction of the Sfunction
p to the set B, , as a Paley multiplier on Cg,,. Then

M

2, (Ipllg,,)* < elpl®.

m=1

(1)

] Proof. It suffices to consider the.case where M is finite. Moreover
it fo]%ows from the definition that I2lg,, < Ipll;, so that the sum on thé :
Joft side of inequality (1) is finite. Let us normalize p so that this sum i
equal to 1; we then have to show that |pj, > e 12,

Fix a positive eonstant K < 1, and, for each m, choose 2 trigonometric
polynomial g, in Og,, such that |ig,l, = lplig,, and

D 10(0)in(a)l > E(lpls,,).
acBy,

Modify tl}e argument of the function p, on each set &,,, so that p («)g,, («) > 0
for all ¢ in B,,; this does not affect the norms Ipliy or Ipllg, -

: Denote .the mth Rademacher function ([39], p. 1045nby 7. Then
deﬁ'ne tfunections f,, and h,,, on the product space T% x [0, 1], by the fol-
lowing inductive procedure. Let

Jale, 1) = r1(8)gi(2) hy(=,8) =1,
for all z in 77, and all % in [0,1]. Given f,, and h,,, let

Jr (2, 8) = £, (2, B+ Vi1 (8 G (2) Py (2, t);

and

and

Tn31(25 ) = Ry (2, 1) — ¥ 1 (F) Iint1(?) fm (2, 7).
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Finally, for each fixed ¢ in the interval [0, 1], let f; be the function on
T¥ given by letting f,(2) = fale, t) for all z in TV,

This construction is a modification of the well-known procedure
due to Shapirs ([34], p. 35) and Rudin [31]. It is clear that for each
value of the parameter ¢, the funetion f; is a trigonometric polynomial.
We now estimate |fll,. As in {10], an inductive argument, based on the
complex identity
(2)
shows that

la 4B +1b—Fal* = (L+of) (laf* +1BF),

(2 DF + 1o (2, OF = [ [ (L +1g:(2)0%)
i=1

for all values of m, 2, and {. Now
M

[]a+lgd)

( Z Iplfs,) = e.
i=1
Henee [Ifillo < €%, for all t.
We claim that f; € C;. It is clear from the construction that f, is a
sum of products of the form

(=1)" D O Gong gy () Py -+

Tml (t) gm1$
for various odd integers k and sequences of indices {m;}_, with m, < m,
< ...<C my; here, we take the complex conjugate of the factor Iomg, above
. Whenever i is even. It follows thatb, if y belongs to the support of f,, then
there exist an odd integer %, a strictly increasing sequence of indices
{m3% ., and elements y; of B 'mgy Such that

Y = Vmy — Vmy_y TV - +ym1'
Sinece ’she sequence of sets {E,}22 is order- mereasing, the differences
Vg Vmiy all belong to Z%; therefore y > Vg - Similarly, y < y,,, . Since I

is order-convex, and yy, and Y, ‘both belong to I, we also have that y e 1.
Hence f; e 7, as claimed.

Finally, we consider how }, depends on i. If « € B, for some m, then

file) = 1y (O)m(a) +4(t, a),
where ¢ is a sum of high-order terms each a product of at least three
d_lstmct Rademacher functions. If ¢ lies in none of the sets F,, then

f,(a) is @ sum of such high-order terms only. Define a Paley multlpher
Py on Oz, by letting p,(a) = r,(1)p(a) i a € By, and letting p,(a) = p(a)
if a lies in nome of the sets B,,. Then |ip,); = |Ipli;, beeause |p,| = ip]. Now

1 . M
D [n@f@a = 3 Y p(@)i, (@),
ael 0

m=1 aely,
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because the function tr—>p,( a) is orthogonal to all the high-order terms
in the expansion of ft(a) On the other hand,

f Dip)fi(@)d < f (12ellz 1 filoo @ < [1pllr 6.

0 ael

By the various normalizations made above,
®

<K 2 2 P (@) (@) < K1 e|pllz.

m=1 cely,

M
1= D (Iplls,) <

m=1
Letting K — 1, we conclude that {pll; >
the proof of the theorem.

COROLLARY 2 ([11], Theorem 4). Let I be an order-com;em set, let B
be @ totally-ordered subset of I, and let p be a Paley multiplier on Oy. Then

2 Ip (@) < ellpl}-

¢ 2, ag required. This comi)letes

Proof. Apply the theorem'wmh each set ,, taken to be a singleton
{a™), Tt is clear, in this ease, that (plg, = Ip(a(”'})

CorOoLLARY 3 ([11], Theorem 4).‘Let I be a totally-ordered, order-
conven set, and let p be a Paley multiplier on Cr. Then

D Ip(a)* < ellpl-
ael

As these’ corollaries show, we need good estimates for the norms
|pllz,, is order t0 apply Theorem 1 effectively. In some cages, such esti-
mates can bé obtained by reapplying Theorem 1 separately to each set B,,,
using a partial order different from the one induced by Zf. For instance,
leb {i,,}2_, be a sequence of positive integers, with i, > 24, for all m,
let B, be the set of all « in Z% such that |a| = ,, and, when m > 2, let

(3) = {aeZi:

Then the sequence of sets {E,}m., is order-increasing relative to the
partial order induced by Z7% . Bach set ¥, is in turn totally-ordered and
order convex relative to the partial order on Z* that arigses if we declare
that o < B if and only if ¢ —f; = f2—a, > 0. Thus, we can apply The-
orem 1 and Corollary 2 to conclude that

f 2 Ip(a)E <l

m=1 atEy,

la] = iy, Min(ay, ag) > Ipa}

fof all Pd{ley multipliers p on 4(U?).
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Z’_lthe norms_[[fp[[, and liplz,, do not depend on the partial order imposed
on Zy. For this reason, the order-theoretic Iiypotheses in Theorem 1

may seem unnecessary, and it is reasonable to ask if a version of in
eﬁq}ua)}éﬁy (1) holds for all sets I, provided merely that the subset;
}{1 0,,,}m=1‘ are 145!.15301111;. If P; = I*(I), then this is indeed the cage. In general

wever, further hypotheses on the sets T and {B, )2, are needed ’m;

ensure that an analogue of inequality (1) hol i
Subset of 7 v 1o q] y (1) holds. For instance, let I be the

(4) I={8"m=1,2,..}.
It is -well known ([42], p. 248) that

Z 17 (3™ <21fll.,

for all f in Cy. Tt follows easil
. foll y that P; = I®(I), and that el <2
foi' Ia]l Paley multipliers.p on C;. Relative to the usual ordg‘llo; ZI lpil;l;lo(;
set I is totally-ordered, but not order-convex. Leh B, be the singleton ~’{3"‘} H
s

then the sets , form an order-increasi
. -increasing sequence. ) =
all 4 in I; then |jp|, <2, bub g sequence. Let p(i) =1 for

2 lplg,)? = co.
Ma=]
Thus;slo ana,logu.e of inequality (1) can hold in this cage.
oom 17We nqentmned ea.rll.er, Theorem 1 and its corollaries hold for any
oo g:,:t i:.;azl;gn group G.wgh a partially-ordered dual group I, Of course
t er 15 required to commute with the grow i ¢
: . p operation; that
Ls,tag B l.f_amd only. if a+y<f+y for all y. Total orders with this ’prop-
1ty are discussed in [28], Section 8.1. A partial order that commutes

with the group operati i
iy t]g;t P op: on, exists whenever the group Ihas a subsemigroup

(B) if yed, and y # 0, then —y ¢8;
the partial order is defined by declaring that
(6) a<< B if and only if « =8, or f—ae8.

(J.;)gversely, fqr any partial order that commutes with addition, the po-
:[11 ;}w{re cone S is ; subsemigroup with property (5). Now the deﬁr,u‘tionIZG)

es sense and gives rise to a relation < that co i

; ] mmutes with additi
f;r:;a;;f ﬁhetlslubssmlgroup & does not have property (5); the only ;rébﬁleoli
; 10 the absence of property (5), there exists at 1 i

1a%, east on

of distinet elements of I"such that « < B < a. Theorem 1 and. itz ﬁgﬂ(:;igg

also hold for this weakened notion of partial order. In particular Corollary 3
I
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can be used to show, for all compact abelian groups ¢ with dual groups I,
that all Paley multipliers on O(G) are square summable. Just set § = I
then I'is order-convex and totally-ordered relative to the “order” induced
by 8. This result can also be proved by other methods ([8], Theorem 2.1;
[16], Theorem 36.15).

3. Paley multipliers on A(TY). In this section, we use the special
properties of ZY to obtain further conclusions about the space of Paley
multipliers on A4 (TV).

‘We begin with an extension problem for Paley multipliers on subsets
of ZV. Let T and K be subsets of Z¥, with I = K, and let p be a function
on I. By the trivial ewtension of p to K we mean the function, on K, that
coincides with p on I and vanishes off I; we also denote the extended func-
tion by p. Suppose that p € Pr; does it follow that p e P? In general, the
answer is no. For instance, let I be the set defined in formula (4), in Section
3, and let K = Z; then P; = 1°(I), but Px = *(Z), and most functions
in P, cannot be extended to functions in Pg.

We therefore consider a modification of the extension procedure.
Let g be an integrable function on T¥ such that § vanishes off I. Given
a funetion p on I, let I, (p) be the product §-p; regard L,(p) as a function
on the set K by extending it trivially to K. Suppose again that p € Py.
Then, in fact,

L,(p) e Pg 1y () < llglhIpliz -

Indeed, if f € Ox, then the convolution g«f belongs to Oy, and
Sz, p)a) f (@) = D)2 (@ (@) (@I <IplgllAl-
aeK

ael

and

Our plan is to use this procedure is situations where we can use The-
orem 1 to estimate 3L, (p)(a)* in terms of [Ly(p)lx- Such estimates will
ael

be useful if § is reasonably large on a large part of I, and |igll, is reasonably
small. We now specify the sets and funetions that we have in mind. Define
intervals Jy, in Z,, as follows. Let J, = {0}, and J, = [1,5]; given the
interval J,, conbaining m, integers, let Jy,, consist of the next 2m;-+3
integers. Then let I, = J,, and when &> 0, let I, be the umion of the
sets Jy_q, Jy, and Jy,,. The point of these definitions is that, for each
%, there is a function g, with llgilh =1, such that §, vanishes off T,
and §, > 1/2 on Jy; o obtain such a funcbion, simply multiply a Fejér
kernel of appropriate order by an appropriate power of &°. Next, given
any multiindex y in Z¥, let
Jy = dyy Xy X on Xy,
define I, similarly, and let

95(2) = Gy, (21) G5, (22) oo gyyl2y), for all zin ~.
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Tt is then clear that |lg,ll; = 1, that §, vanishes off I,, and that gy =27
on J,. Also, the sets J, form a disjoint cover of Z%.

Lemma 4 ([11], Section 4). Let y € Z%, and let p be a function on L,.
Then

D (@) < Velplf .

aed,,

Proof. Apply the procedure described above with I = L, 9=¢,
and K = Z%. The properties of g, guarantee that |p(a)| < 27 1§, (@) ()],
for all a in J,,, and that IJL,;?(P)IIZN < |iplly;. There are many ways to make
ZN a totally-ordered group ([28], p. 194); relative to any such order, the
group itself is order-convex. Therefore,

2 Ip(@)E <Y Mg, (a) p(a)f
ael

aed,,
¥ elL, (9)I,

< by Corollary 3,
< 4Velpl,.-

This completes the proof of the lemma. ‘
We now come to the main result of this section. Recall that a proper
cone is a subset W of Z¥ such that (min a,)/|a] remains bounded away
n

from 0 as ¢ runs through W:. We adopt the convention that 0/0 =1, 50
that proper cones are allowed to contain the origin.

TrmorEM 5. Let W be a proper cone in Z5. Then there is a constamt
K, depending ,om W, such that

aEW.
for all Paley multipliers p on A(UY).

Proof. Let ¥ be the multiindex (1,1,...,1). Given a multiindex B
on one of the faces of Z¥, that is Wit;h Bn=0 for some n, let ¥, be the
union of the sets J,,,; a8 & runs from 0 to oo. Then the  sets Vp form
a_ disjoint cover of ZY. The proof of the theorem consists in showing

that, for any proper ecne W, only finitely many of the sets V5 are required
to cover W, and that

® Y @ <84V (Il
. ) - +

agVg

for all Paley multipliers p on A(U¥), and all g.

We deal first with the covering property. Fix a proper cone W. Let 8

be a multiindex on one of the faces of 77, and choose integers 7 and j so
that g; = 0, and §; = max B =1, say. Now, if med, and m' edy.g,

e ©
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then m < 2''m’. We therefore have, for each « in V,, that

o
._ai<__’_<21—l‘
la] ~ o

On the other hand, (11;1‘11 a,)/|el is bounded away from 0 as « runs through

W. It follows that, if the intersection of W with ¥V, is nonempty, then
the number ! is bounded above by a constant Z depending on W. Now
there are only finitely many points 8 on the faces of Zﬂ‘r’ for which I < L.
So, the proper cone W intersects only finitely many of the sets Va.

Now let p be a Paley multiplier on A (T¥), and let § lie on one of
the faces of Zﬂ‘r’ - As m runs from 0 to oo, the sets Iy, form an order-
increasing sequence, relative to the partial order induced by Z% . We apply
Lemma 4, and Theorem 1, with I = Z%, to conclude that

oo N -
a)f < 4e P <4V e? 2,
gw gm ()l < ,,; (IPly 4" < 47 € (1Pl )

Finally, we apply the same argument to the order-increasing sequences
Lt emrnpim=o 04 {Lg, amia7tmeo, 20d conclude that inequality (8) holds.
This completes the proof of the theorem. .

In Section 6, below, we will discuss an alternate proof of Theorem 5.
The -proof above is more elementary than the alternate proof, and it
yields befter estimates for the constant K in inequality (7). )

‘Which sets ¥ have the property that there exists a consbant K such
that i

% 2 2

9 . 2{7 Ip (@) < E ()",
for all Paley multipliers p on 4 (TU¥)? By Corollary 3, every totally ordered
subsel of ZY has this property, with- E = e. In the proof of Theorem 5,
we showed that the sets V, also have this property, with I = 36247,
‘We now ‘describe a more general class of sets for which inequality (9)
also holds. Given multiindices § and y in ZY, with y # 0, let V,, be
the union of the sets J,,,, a5 k runs from 0 to oo; then the sebs V,,
considered above, become V,; in this notation. It follows by the method
used in [11], Theorem 5, that, if all but one of the coordinates of y are
equal to 0, then inequality (9) holds for each of the setsV,,,, with K = 4,
We now state a more general result that can be proved by combining
the methods used to prove Theorem 5 with those used in [11], Section 4;
we omit the details of the proof. Again, we will discuss an alternate proof
of a similar result in Section 6. ' ‘

TEEOREM 6. Let § and y be multiindices in Z%, with y = 0, and let
p be a Paley multiplier on A(TUN). Then ‘
S 1P (@)F <347 (Ipl )

ac¥ 3,


GUEST


42 J. J. F. Fournier

For any subset B of Z¥, let Vjz be the union of the sefs J, as ¢ runs
through X. In view of Theorem 8, it is natural to agk if, for every totally-
ordered set B, inequality (9) must hold for the set V5. We do not know
whether this is so, but we can show, much as in the proof of Theorem 5,
that, if a subset B of Z% is tot&lly-ordered relative to the partial order
induced by the semigroup 7 +Z7 , then inequality (9) holds for the set Vg,
with K = 362471 a set is totaﬂly -ordered relative to this partial order,
if it is totally-ordered relative to the usual partial order induced by zy,
and if no two of its elements agree in any of their coordinates.

Finally, we apply our results to the problem of determining whether
specific functions on Z% are Paley multipliers on A4 ( U). Let p(a) =1/(1+

+ |a]), for all a in Z%. ThlS function was considered in [11], p. 425, and it
was shown there that although p is not square summable on 27 , it satis-
fies all the restrictions.placed on Paley multipliers by results of [11].
Let W be the set of points « in Z% for which the ratio a/a, lies betiween
1/2 and 2. Then W is a proper cone, but  is not square-summable over W;
hence, by Theorem 5, the function p is not a Paley multiplier on A ( 3.

Next, for each integer & in Z_, let

B, = {83™: 1< m<k},

and let p; be the function on Z7%, that vanishes off the set I, X H; and is
equal to 1 on E, X B,. The principal results of this paper and [11] provide
lower bounds on sl ; ; these bounds all grow no faster than k'* as

+
% — oo, whereas the norm of Py in I*(Z%) is exactly k. This means that
it does not follow from the principal results of this paper and [11] that
the space of Paley multipliers on 4 (UY)is equal to #*(Z%), because, if the
two spaces do in fact coincide, then their norms must be equivalent.
Tronically, we can use the special properties of the functions p to show
that upkﬂz2+ > kje, after all. To do this, fix a constant K in the.interval

(0, 1), and use Paley’s theorem in one variable to obtain a function g
A(U) such that

k
2 1§(3™) = K (kfe)'";

m=1

then define a funetion f in A (U?) by setbing

f(2) = g(21) g(2a)
It follows that {|fll, =1, and that

AT (a)lﬂ(Zl.tJS’")

acZ‘ n=1

for all z in T2.

> K’kle,
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by the choice of g. Since K is any positive number less than 1, we havé
that llpkllzz > kle, as claimed.
+ .

4. Homogenous expansions and interpolation. The construction used
to prove Theorem 1 appeared in [10], where it yielded an explicit
solution to an interpolation problem for Fourier coefficients of functions
in A(U). There is an obvious way to generalize this result to several
variables; we shall state this generalization later in this section, as The-
orem 9. Our main goal, however, is to deal with a more subtle problem
in a way that was suggested by Walter Rudin.

‘We first recall what is meant by the homogeneous expansion of an
analytic in the open polydhc TV ([29], p. 7). Such a function fhas a power
series expansion

= > fla)e

an‘:\_,

valid for all z in U". For each multiindex « in Z¥ let |a| = a3+ ap+...
. +ay. Given a nonnegative integer s, let

D f(@e

lal=s#

Fy(2) =

Then F, is a homogeneous polynomial of degree s. The homogeneous
expansion of f is the series

1) = 2 7, (2),

8=0

" which converges for all z in TUY.

As usual, H®(U¥) denotes the space of bounded, analytic functions
in the open set UY. To every function f in H""( U¥) there corresponds
2 unique element f* of IZ®°(TY) such that f*(z) = hm f(rz), for almost

all z in T¥. We identify f with f*, and let H""(TN ) be the subspace of
LX(T™) consisting of all equivalence classes of functions that are radial
limits, almost everywhere, of functions in H®(UY); then fe H*(TY) if
and only if f e I™ and f vanishes off Z¥. Similarly, if 1< p < oo, we let
H?(T¥) be the subspace of all functions in L?(T¥) whose Fourier transform
vanish off Z%¥; these spaces are discussed in [29], Chapter 3.

Now the various functions F, appearing in the homogeneous expan-
sion of f are orthogonal elements of H?(TV). Thus

PX(FANES

§=0

(112" < (1flleo)?-
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In fact, it is also the case that

DF)E < (Iflle)?s
§=0

for all z in %, To see this, fix z in T, and define the slice funciion f,,
on U, by the rule that f,(w) = f(we) for all w in U. Then f, e H*( U),
and its power series expansion.is given by

= ZF,,.(z) w®

8=0
Inequality (10) follows from Bessel’s inequality, applied to the function f,.
We now present a partial converse to inequality (10). Recall that
a sequence {8,}%_, of nonnegative integers, is called a Hadamard set
([32], p. 203) if there exists a constant 1> 1 such that s,,,; > 1s,, for all m.
TaroreM 7. Let W be a proper cone in ZY, and let {s,,}r—; be o Hada-
mard set. Let {G)2_, be a sequence of trigonometric polynomials om TV
such that

(10)

(i) @, vanishes off W,
(i) G, is homogeneous, of degree s,
and
00
(iif) Sup M@ (A < o0.
2eTN m=1 .

Then there exists a function f in H™(UY) such that, for each m, the term
of degree s, in the homogeneous expansion of f is equal to G, .

Proof. Let B, be the set of elements o of the proper cone W such.
that |a] = s,,. We suppose initially that the sets F,, form an order-

increasing sequence relative to the partial order induced by Z¥, and
that s,,,; > 2s,, for all m.

Much as in the proof of Theorem 1, we define sequences {f,}m—; and
{hmie_y, of trigonometric polynomials, as follows. Let

file) =G@y(s) and hy(e) =1, for all zin TV. .
Then, given f, and h,, let
() = Ful2) () hn(2) and Ryg(e) = hm(z)_é'm+l(z)fm(z)
Now ’
n() +hale)* = [ (14164,

i=
for all m and z. Let '
(11) B =sup D162

7 m=1
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Then |lfpllo << € ¢?2, for all m. Hence the sequence {fmtom—; is bounded
in-L2(TV), and therefore has a weak-star limit point, f say, in Z®(T¥).

For each positive integer j, the function f; is a sum of products of
the form

(12) (=

for various odd integers % < j, and sequences of indices {m;}t;, with
My < My < ... < My; again, we take the complex conjugate of the factor
Gy, above whenever k is even. Hxactly as in the proof of Theorem 1,
we hayve that, if fj y) # 0, then y € Z¥; hence f; € H*(TY), for all j, and
feH™( ™y,

The product (12) is homogeneous of degree

{13) Sy —8mp_y T+ oo —Smy+ Sy -

The assumption that s,,; > 2s, for all m implies that each integer has
at most one representation as an alternating sum (13). In particular,
the only product of the form (12) that has degres s; is the single term G;.
This means that, for all { < j, the term of degree s; in the homogeneous
expansion of f; is G;. Now f is the weak-star limit, in Z®(TV), of a sub-,
sequence of {f;};2,. Therefore, for each m, the term of degree sm in the
homogeneous expansion of f is G,,.

Now we drop the assumptmn that s,,,; > 2s, for all m, and that
the sequence {H,}m., is order-increasing. Since {s,}5_, is & Hadamard
set, and W is a proper cone, it is true for all sufficient large integers g,
however, that s,,., > 28, for all m, and B, < B, for all m; moreover,
if ¢ is sufficiently large then s, ,> S, + 8,421, for all m. We fix. an
integer g with all these properties, split the sequence of indices m into g
arithmetie progressions, each with period g, and solve the resulting inter-
polation problem, in the above manner, for each of these subsequences.-
The fact that s,.4> Su+Smig—1 for all m implies, as in [10], p. 405,
that the H*®-functions that we obtain for distinet subsequences have
disjointly supported Fourier transforms. Therefore, we can simply add
these functions to obtain a function in H*(TY) whose homogenous ex-
pansion has the desired properties. This completes the proof of the theorem.

After constructing the polynomials f,, above, and showing that the
sequence {f,,}%_, is bounded in L(T¥), we used the weak-star compactness
of closed halls in Z®(T¥) o obtain a weak-star limit point f of the sequence
{fn}_,. In fact, this limit point is unique, because the sequence {fn}m—
converges in the weak-star topology on L®(T¥). Indeed, every nonzero
term in the homogeneous expansion of f,, has degree at most s,, while
the terms that ‘we add in passing from f,, to f,.; 21l have deg}*ee strietly
greater than s,. Thus, for each « in }Z7, the sequence {fn(a)}j-, is
unltimately constant; the fact that the trigonometric polynomials form

To—
LG, G, G .
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& dense subspace of ' (TV), and the boundness, in L(T¥ ), of the sequence

{fm}m=1 now imply that this sequence is weak-star convergent in Z®(T¥).
If we prefer, we can work entirely with I*-convergence rather than weak-
star convergence in L®(T¥). The analysis above shows that A

is ?rthogonal to.f; for all j < m. The partial sums f,, of the orthogonal
series

(14) fot Y Fn—Fmed)

form a bounded sequence in H*(T%¥); hence this gequence is bounded in
H*(IV), and the series (14) converges in H*(T%), o some function f-
Now f is equal, almost everywhere, to the limit of some subsequence
ofo {fi}iZ1- Therefore f e H™(T"), and |f|., <eé®*. The convergence, in
H*(TY), of { Ji}iZ1 to f implies that the homogeneous expansion of f has
the desired properties.

The basic construction ean be modified to yield a function f, with
the desired properties, such that, in addition,

il < g(eB)"2;

here ¢ is the integer used in the last paragraph of the proof, and B is
the number defined in formula (11). Remember that g depends only
on the set {s,,}7_, and the cone W. Suppose, for simplicity that g =1.
If B =1 also, then the basic construction yields an H*®-function f with
Iflle < 6®* = ¢"2; for general B, replace the sequence {Gn12_,, by
{Gn/B}m_1, and apply the basic construction to get an H™-funetion f
with ||f'll,, < €'*, such that, for all m, the term of degree m in the homoz
geneous expansion of f” is equal to &, /B; then let f = Bf'.

“When ¥ = 1, the set Z, is itself a proper cone, and Theorem 7 reduces
to the known statement [10], that, if {s,}2_; is a Hadamard set, then,
for every square-summable sequence of complex numbers {v,}m_,, there
exists a function f in H*(T) such that f(sm) = 1, for all m. In this case.
there is actually a function in A(U) with these properties ( [10], p. 405)t
‘When ¥ > 1, however, then the hypotheses of Theorem 7 do not imply
the existence of a function f in 4 (T™) such that, for all m, the term of
degree s,, in the homogeneous expansion of f is @,,. The reason for this is
that, if the cardinality of the sets , is unbounded as m — oo, then
there exists a sequence of trigonometric polynomials {Grlm=1 sati’sfying
conditions (i), (ii), and (iii) of Theorem 1, but such that

sip D' Gn() 0 as

M — oo
2 m=M

0w, the terms F, in the homogeneous expansion of any “function f in

e ®
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A(UY) have the property that

(15) sup 2 P> >0 -as 8§ — oo.

2 s=8 .
Indeed, assertion (15) clearly holds if f is a trigonometric polynomial,
and it follows from inequality (10) that this assertion also holds for umi-
form limits of trigonometric polynomials.
TEROREM 8. Let W be a proper cone in Z7, and let {s,}2_, be a Ha-
damard set. Let {@,,}_, be a sequence of trigonometrio polynomials on TV
such that )

(i) @, vanishes off W,
(i) G,, is homogeneous, of degree s,
and )

sup Z Ga2) =0 as M —> co.
2 m=M :
Then there exists a fumction f in A(UYN) such that, for each m, the term
of degree s,, in the homogeneous expansion of f is equal to G,,.
Proof. Let B be the number defined in formula (11), and let ¢ be
the integer introduced in the last paragraph of the proof of Theorem 7.
Fix a constant R in the interval (0, 1). Because of hypothesis (iii)” above,
we can select a strictly increasing sequence of positive integers {MM}7.,
such that
(16) sup D' Ign(a)* < B*B.
?  m>My
Let M, = 0. : ; .
For each positive integer k, construct a trigonometric polynomial g,
as follows. Adopt the temporary notation {G,}2_, for the sequence of
functions of 7% with the property ¢, =@, if M, ,<m <M, and
@,, = 0 otherwise. Apply the modification of the basie construction pro-
posed above to obtain an H™-function g, such that, for all m, the terms
of degree s,, in the homogeneous expansion of g, is equal to G,,, and such
that

({ii)’

1l < 4" rup (Gnl)".

7 Mp_1<m<M,
-1 k

Then |gllo < g(eB)Y*R*~!, Dby inequality (16). Since all but dfinitely
many of the function @, are trivial, the function g, produced by the
construction is actually a trigonometric polynomial.

(=]
Now the series J g, converges in A(U%) to a function f with
k=1 .

Wfllo < q(eB)* D B*™ = q(eB)"[(1—E).

fe=1
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It is elear that the homogeneous expansion of f has the desived properties.
This completes the proof of the theorem.

It is reasonable to ask if Theorem 7 and 8 remain valid with weaker
hypotheses concerning the sets W and {s,)%_,. We shall sec in the next
section that some lacunarity assumption on {s,,}2_, is necessary. We have
not been able to determine, however, whether these theorems remain
valid when the proper cone W is replaced by Z% . The assumption that W
is & proper cone is used only in the paragraph of the proof of Theorem 7,
‘where we observe that the sequence {&,}3_, has the property that, for
all sufficiently large values of ¢, the relation B, < B, +g holds for all m.
There exist sets W such that, if s,,,,/s,, - co a8 m — oo, then the associ-
ated sequence {H,}>_, has the above property, although W is not a proper
cone. :

Theorems 7 and 8 are generalizations, to the case of several variables,
of the main result of [10]. We now describe another generalization of
this result. Call a subset {a™}2_, of Z¥ a Hadamard set if there exists
a constant 1 > 1 such that for all m, the inequality a®™*? > 1a™ holds
for the partial order on RY induced by RY. This detinition implies. that
every Hadamard set in Z% is totally-ordered relative to the partial order
induced by Z7.

TeoREM 9. Let {a™}_, be a Hadamard set in ZY, and let {v,}=_,
be a square-summable sequence of complex numbers. Then there exists a
Sfunction fin A(UY) such that f(a™) = v, for all m.

This is actually a special case of [11], Theorem 12. We mention it
here, however, because the methods used to prove Theorems 7 and 8
provide an explicit procedure for obtaining such a function I

‘We now pause to extend some of our notational conventions, and
to define some useful spaces of vector-valued functions. For all multiindices
ain Z¥, we denote the sum @ +ag+ ... +ay by |al; thus |a| can be nega-
‘tive. We use the term measure to mean a complex, regular, Borel measure;
we denote the space of measures on TV by M (T¥). Tt is well known ([28],
P. 59) that o each integer s theve corresponds a probability measure
& on TV such that &(a) = 1if o] = s, and 4,(a) = 0 otherwise. i f e IHTY)

»
we let F, = ¢;+f, and we refer to the series § F; as the homogeneous
expansion of f. Similarly, if u is a measure oil8 =1_’§9 , we let Us == g% i, and
we refer to the series Sﬂs as the homogeneous expansion of u.
Let D ‘be the closediibgroup of all elements z of TN for which ]Y] 2
=1

=1; let z be the canonical projection of T% onto the quotient group
T¥|D. For each function f on T¥ /D, let #*(f) be the function on T for
which z™(f)(2) = f(=(2)} fov all z in T¥. Then a*(f) is homogeneous of

icm°
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degree 0, and every function on 7V that is homogeneous of degree 0 is the
image under the map = * of a unique function on 7'V /D. For each measure
on T¥/D, let z*(u) be the measure on TV for which

[F@yam @ = [ { [ flws)dw) ap(n2);
N ND 1

for all continuous functions f on 7%; here the Haar measure on T is normal-

ized so that T has mass one. If y is absolutely continuous with Radon—

Nikodym. derivative f, then z*(u) is absolutely continuous, with deri-

vative =*(f).

Now fix a subset § of Z, and denote the space of square-summable,
complex-valued functions on § by 7*(S). Then denote the standard Lebes-
gue spaces ([17], p. 68) of I*(S)-valued, measurable functions on T¥/D
by LP(T¥[D)(P(8)). Dencte the space of continuous, #*(8)-valued funec-
tions on T%/D by C(T¥/D)(P(8)), and denote the space of I*(8)-valued
measures on T%/D by M(T¥/D)(I*(5)). Regard any element of one of
these spaces as a vector-valued funection on §, with values in one of the
spaces LP(TN|D), C(TN|D), or M(TV[D).

For any such function » on 8, with values in M (TV/D), say, define
a function ¢(v), on 8§, with values in M (T¥), as follows. Let y, be the
character on T% for which y,(2) = #, for all #; then, for each integer s
in 8, let

o(v)(s) = yi-n*[v{s)].

The map o is injective, and if v(s) belongs to one of the spaces L?(TY /D),
or to C(T¥[D), then o(v)(s) belongs to the corresponding-space of funec-
tions on T¥. Let Xg be the image, under the map o, of the space L°(TY /|
/D) (1*(8)), and let X3 be the image of C(7¥/D)(I*(8)). Then X is a Banach
space relative to the norm ||y obtained by using the map o to fransfer

the norm on L®(T¥|D){1*(8)) to Xg; moreover, X% is a closed subspace

of X. Similarly, let ¥s and Y% be the images, under the map o, 6f the
spaces M (TV/D)(*(8)) and LNTV[D)(P(8)). Again, ¥y is a Banach
space relative to the appropriate transferred norm, and Y% is a closed
subspace of Yg.

Having defined these spaces using the map o, we now characterize
them intrinsically. Let v be a function on the set S, with values in the
space M(TV). Then v & Xg if and only if it satisfies the conditions

(i) v(s) e L*(T%), . for all s,

{ii) v(s)"(a)e=0 tmless o] =s, for all s,
and :
(iii) ess sup > [v(s)(2)* < oo.

2eTN €S

4 — studia Mathematica LXIV.1
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Moreover,
1f2
!’

lollx = ess sup (3 0(s) (2) )", for all o in Xg.
22TV se8

Such a function » belongs to Xg if and only if it satisfies condition (ii) and
the conditions

ay o(s) e O(TY), for all s,

and ’

(iif)" = for each £> 0, there exists a finite subset 8’ of § such that

sup Z B8} (2)f < e.

26TV seSmug”
The function v helongs to Yy if and only if it satisfies condition (ii), and
there exists 2 positive measure x on TV such that

D Io(8)(B)I* < u(B)

se8

for all Borel sets B in T¥ with the property that wB = B for all w in T.
Moreover, |ofly is the infimum of x(7') for measures x with this property.
Finally » belongs to Y% if and only if it satisfies condition (i) and the
conditions

~

" o(s) e LN(T¥), for all s,

and )

(i [(3 we @) e < .
TN se8

Moreover, |jv|ly is then equal to the integral above.
For each measure x on TV, let Lg(u) be the function on the set 8,
. with values in the space M (T%), such that, for all s, the measure Lg{z)(s)
is equal to the term g, in the homogeneous expansion of u. Inequality (10}
implies that, if f e H=(T"), then Lg(f) € Xg; inequality (15) implies that,
if fe A(UY), then Lg(f) € Xy. Given a subset W of Z%, let Xg, be
the closed subspace of all elements v of X such that, for all s, the transform
o(s)” vanishes off W; define X}, similarly, Theorem 7 states that,
if W is a proper cone, and § is a Hadamard set, then Xg 5 is a subset
of Lg(H™(T")), and Theorem 8 states that, under the same hypotheses,
Xiw is a subset of Lg{d(UY)). :

‘We now give an alternate proof of Theorem 8, using the method
of [32], p. 208. For each function % in L'(T%), and each function v in
Xg, let h+v be the element of X for which t]:ée functions (h+v)(s) and
h#[v(s)] coincide in LZ=(TY), for all s. Relative to product *, the space Xg
is a Banach module over the algebra, L*(T"), and the spaces X% and X%

are submodules of X. If {h};., is an approximate identity in M1y,
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then o —hy#vlx -0 as k& — oo if and only if v € X%. Now let W be a
proper cone, let § be a Hadamard set, and let » € Xy ;. By the Cohen
facborization theorem ([16], Theorem 32.33) there exist functions &,
in Z}(T%), and ', in X%, such that o = hsv’. By Theorem 7, there
exists & function f in H=(T%) such that Lg(f’) = v". Let f = hf’. Then
feA(T¥), and Ig(f) = v.

Next, we give yet another proof of Theorem 8, based on a suggestion
by P. Wojtaszezyk [private communication]; this proof reveals the basic
idea behind our first proof of Theorem 8. Let W be a proper cone, and
let § be a Hadamard set. Then let Ag > be the closed subspace of A4 (UY)
consisting of all functions f in A (T%) such that Lg(f) € X% . To prove
Theorem 8, we must show that the map Lg: Ag .y — X5 is surjective.
To do this, it suffices, since Ay y is a Banach space, to show, for the unib
ball B in Ag y, that Lg(B) has a subset that is dense in some nonempty
open ball in X§ 5. To this end, observe, as in our first proof of Theorem
8, that, if v € X3 5, and if 2(s) = 0 except for finitely many values of s,
then there exists a trigonometrie polynomial f in A (U¥) such that Lg(f)
=, and |fll. < ¢e"*|lv|lx. Thus Lg(B) contains every such function »
in X§ 5 for which [l < 1/(gé?). Now these functions » form a dense
subset of the open ball of radius 1/(ge"®) in X% 5

The next theorem follows from Theorem 7 and 8 by dualiby arguments.
‘We omit the proof, because we plan to outline similar arguments in the
proof of Theorem 13 in Section 5. '

TueoREM 10. Let W be a proper cone, and let S be a Hadamard set.
Let u be a measure on TV with the property that fi () = 0 for afl a in ZY
Sor which |a| ¢ 8. Then there ewist measures v and 7 on TV such that

(a} p =2+,

(b) #(a) = 0 unless |a] €8,
(e) Lg(v) e Y,
(d)  vanishes om W.

If u is absolutely continuous, then n and v can be chosen to be absolutely
continuous also, and such that Lg(v) € Y.

The statement of this theorem can be greatly simplified if ¥ = 1.
It is easy to see that, in this case, Theorem 10 is equivalent to the assertion
that, if § is a Hadamard set, and z is measure on T with the property
that 4 vanishes on the set Z, ~ §, then ‘

D a8 < oo
seS

This assertion is known ([11], Theorem 10) and can be proved by fhe
method used by Rudin in [32]; p. 226, to show, for a larger class’ of thin
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sets 8, that every measure x for which z vanishes on the complement of
8 in Z, is absolutely continuous. Further results of this kind appear in
[23] and [4].

We now use Theorem 10 to obtain a slight extension of Forelli’s F.
and M. Riesz theorem for measures that annihilate A (TY). Let @: RY
- T% be the usual covering mapping. For sets V, of unit vectors in R ,
define the notion of V-width zero as in [29], p. 140.

TeaEoREM 11. Let S be a Hadamard set. Let u be a measure on TV
“with the property that p(a) = 0 for all a in Z% for which |a| ¢ 8. Let V be
& compact set of wnit vectors in the interior of RY, and let B be o Borel set,
in BY, of V-widih 0. Then |u|(p(B)) = 0. -

Proof. Asin [32], p. 226, the idea is o split the measure u into two
pieces for which the conclusion of the theorem can be shown to hold.
Fix sets ¥ and B as above. Choose a compact set ¥, in the interior of
EY so that V lies in the interior of ¥,. Let W' be the union of the sets
iV, as t runs through R, , and let W = W' nZ¥; then W is a proper cone.

Apply Theorem 10 to obtain measures » and 7 satisfying conditions
(a) to (d) of that theorem. Condition (b) implies that 7 («) = 0 whenever
la] < 0. Let o' = y,-»; then »* has the property that »'( —a) = 0 whenever
a € ZY; that is, »' annihilates the algebra A (TY), in the sense of [29],
Pp. 140. Therefore .

. WleB) = 'l [p(B) =0,

by Forelli’s theorem ([29], p. 140).

On the other hand, 7 (a) = 0 for all « in W. Thus, the measure 7
annihilates the algebra A of all continuous functions on 7% whose Fourier
transforms vanish off W. Now, it is easy to see, by repeating the proof of
Forelli’s theorem, or by a change of variable, that, if V is a compact set
of unit veetors in the interior of the cone W', and if B is a Borel set of
V-width 0, then |y'|(p(B)) = 0 for all measures #' that annihilate the
algebra Ap-. In the present case then,

Il {p(B)) =l (p(B)) = 0.
Hence [,uls(gv(B)) =0, and the proof of the theorem is complete.

5. Homogeneous expansions and A(2) sets. Tn this section, we present
some results that resemble those in Section 4, but whose proofs require
different methods. We, shall compare the methods and results of the two
sections at the end of this section. -

Recall that & stbset § of Z is called a A(2) set ([32], p. 205) if there
exists a constant K such that the inequality [Iflla < Effll, holds for all
trigonometric polynomials f on T with the property that f vanishes off S.
Every Hadamard set is a 4(2) set, but the converse is false ([32], p. 222;
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[20], Chapter B). If I and S are subsets of Z, let T ~ 8§ be the part of 1
that does not lie in 8. For any subset I of Z let @; be the operator that
associates with each trigonomefric polynomial f the polynomial @,f such
that (Q,f)" coincides with f on the set §; and (Q;f)" vanishes elsewhere.
Call & subset of Z an inferval if it has one of the forms [a, b], (— o0, b],
6, ), or (—o0, o0). 4

We now state a slight generalization of a known results ([11], Theo-
rem 10). The method of proof goes back to [32], p. 226.

LevMA 12. Let 8 be a A(2) set in Z, and let I be an interval. Then there
exists a constant K, depending only on 8, such that

( 3 1)) < Kishs,

seInS

for all functions f in LI(TJ,V ) with the property that f vanishes on the set I ~ S.

Proof. It is easy to see that, if I = (— oo, oo), then the desired
gonclusion holds, with K equal to the constant in the definition of 4(2)
set. It is shown in [11], Theorem 10, that the conclusion also holds, for
a larger value of K, if I has the form (— oo, 0], or [a, oo);.the key fact
in the proof is that, for such intervals I, the projection @ is a bounded
operator from I'(T) to ILY*(T), with a norm that is independent of I.
The same proof will work for all finite intervals I, provided that the norm
of Q;, as an operator from ILHTY) to IM*(TV), is bounded by a constant
that is independent of I. In fact, snch a constant exists, because Qs
= Q(eoo,t) —@(~o0,0—1)- This completes the proof Qf the lemma.

The main result of this section is an extension of Lemma 12 to the
context of homogeneous expansions of funetions of several variables.

TarorEM 13. Let S be o A(2) set in Z, and let I be an interval. Then
there ewists a constant K, depending ‘only on 8, such that the following
statements holds.

(A) If f is a function in INT®Y with the property that the terms Fy,
in the homogeneous expansion of f, vanish for all ‘s in I~ 8, then L g(f)
e Y%z, and )

I Lrns (e < Eliflly -

(B) If uis a measure on TV with the property that u, vanishes for all
sin I ~8, then )

Lins(p) € Xrng  and | Lzas (@)lly < Kl

(C) For each function v in Xy g there ewists o fundtion” f in LTy
such that |flle, < K|olx, the terms By vanish for all s in Z ~ I, and Lys(f)

=, -


GUEST


icm°

54 : J. J. F. Fournier

(D) For each function v in X3.g, and each s > 0, there emists a conti-
nuous fundtion f on TV sueh that |fll,; < (1+¢) Kol the terms Fg vanish
Jor all s in Z ~ 8, and L; s(f) = ». '

Proof. We begin with assertion (A). Let Lj g be the closed subspace
of all functions f in I'(TV) with the property that F, vanishes for all s
in I ~ 8. Let f be a trigonometric polynomial in ILis Fixzin ¥, and
let f, be the slice function on T given by the rule tliat fo(w) = f('w;) for

all win T. Then f,(s) = F,(2) for all s; hence f, vanishes on the set I ~ 4.
By Lemma 12,

( 2 P < K [ 1f (102 do.
T

selns
Hence,

J{ 3 1B @) as < xifl.

N seInS

By the characterization of the space Y}.¢ given in the previous section,

Lins(f) € Yooy and - |\ Lpns(Hlie < Elfl,.

Since the trigonometric polynomials in IL;s form a dense subspace of
I}, the same conclusion holds for all b in Lig. '

Next we show that assertion (A) implies assertion (C). In doing this
we suppose, for simplicity that I = (—co, oo). Now it is known ([17]
D. 95) that L*(T¥ /D) (P*(8)) can be identified with dual space of L' (TV }
(D) (B*(8)) via the pairing

w,0) = X' [ w(s)((@(=™) v(s) (n(2) dn (2).

88 TNID

I1:'- follows easily that Xg can be identified with the dual space of ¥
via the pairing °

(0, 0) > <, 0y = D7 [ w(s) () v(s) (2) de.
: 88 pN
Fix a function v in X,. By assertion (A), the map g <T v i
2 bounded linear functional, 6f norm at most K ilzlz)u i , oé tisag);pa?o;l elf}lfles
By the Hahn-Banach theorem, this functional has an extension toZ:]i
of I(T¥), with the same norm. Thus there exists & funchion fin (TN
with [[flle < Elp|x, such that ’

Is(g o> = [g(z™) f(2) de,
N

fo‘r all functions g in I ¢. To see that LS( f) = v, use the relation above
with g replaced by various characters in I} s.
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Any of the argunments used to derive Theorem 8 from Theorem 7
can be used to show that assertion (C) implies assertion (D). We omit
the details. '

Tinally, we show that assertion (D) implies assertion (B). Again
we suppose, for simplicity, that 7 = (—o0, co0). An easy argument using
slice functions shows that, if fe C(TY), then Lg(f) e X%, and |Lg(f)lix
< |Iflle- Liet Cg be the null space of the bounded operator Lg: C(TV)
— X%. Then Lg induces an injection

Lg: O(T™)[Cge > X§.

Assertion (D) states that ﬂs is surjective, and that its inverse has norm
at most K. It follows that the dual map

_ LE: (XY* — [O(T)[CsT"
also has these properties. Now [O(TV)/0x]" is just the anmihilator in
O{T¥)*, of Cg. Of course, C(TV)* can be identified with M(TV) via
the pairing
(fm [fedu@);
TN

the annihilator of Cg is then the subspace M (TY)g consisting of all
measures x4 with the property that u, vanishes for all sin Z ~ 8. Now
(X%)* can be identified with Yy via the pairing

(w,0) 1> D) [w(s) (e d0(s) (2);
se8 pN

this follows from the fact ([3], p. 380) that M (T¥[D)({1*(8)) is the dual
space of O(TV/D)(1*(8)) relative to a similar pairing. With these con-
ventions concerning duality, the map (L%~ becomes a bounded operator
from M (T¥)g to ¥g, with norm at most K. Finally, it tuns out. that
(L%~ is just the restriction to M (T™)g of Lg. This completes the proof
of the theorem.

Exocept for the setting, the arguments used to derive the remaining
parts of Theorem 13 from part (A) are standard [1]; it is easy to complete
the circle of implications above by showing that assertion (B) implies
assertion (A). Furthermore, if 2 set § has the property that these assertions
hold for all intervals I, then S must be a /(2) set. Indeed, let f be
a polynomial on T for which f vanishes off §. Let f'(2) = f(vy(2)) for
all z in T%; then f is & trigonometric polynomial on T%, and F, = f (s)%
for all s. In particular, F, vanishes for all s in Z ~ 8. By assertion (A),
with I = Z, ‘

(317 @F)" = 1Zs(Pllr < EIfh = Eilffh-

seS

Hence 8 is a 4(2) set as claimed.
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Finally, we compare the results and methods of this section with:
those of Section 4. In the present section, we deal with a larger clags
of thin sets, and we have no hypotheses involving proper cones. On the
other hand, in parts (C) and (D) of Theorem 13, we obtain functions f
that belong to the spaces Z™(T%) and O(T¥) rather than to the smaller
spaces H>(IV) and A(UY). Thus, in the interpolation results of the
Present section, both the hypotheses and the conelusions are weaker
than in the corresponding theorems of the previous section. When they
work, the methods of Section 4 have the advantage that they yield the
desired function f explicitly. If § is a Hadamard set, then we can use
these methods to obtain functions f with the properties prescribed in
assertion (C), and with two further properties. These are that

(a) the support of f is included in the union of the supports of the

functions »(s),
and .
(b) F, vanishes unless s can be expressed as an alternating sum of
the form (13). -
If 8 is merely a 4(2) set, then these methods fail, but we can sharpen
the methods of the present section to show that there always exist funec-
tions f with the properties prescribed in assertions (0) and (D), and with
property (a). We do not know, however, whether, in this case, there al-
ways exist functions f that have the desived inferpolation properties,
and also have property (b).

6. Related multiplier problems. In this section, we mention briefly
some other applications of the basie construction; most of the results
here are already known. We also discuss work by other authors on problems
closely related to the Paley multiplicr problem, and we outline an alternate
proof of Theorem 5. :

Paley’s paper [26] appeared at the same time as two other papers,
by Bidon [35], and Orlicz [24], that contained similar results; these three
authors arrived at these eonclusions independently.  Sidon showed that
the space Py, of Paley multipliers from G(T) to ', coincides with 22 ().
Orlicz proved the corresponding statement with the trigonometric system
replaced by any orthonormal system {Pmlm—1 in I*[0, 1] with the property
that sup flg,ll. < co. Recently, Mahmudov [21] showed that this charac-

m

terization of Paley multipliers from ¢ [0,1] to 7* holds if and only if
inf flp,,ll, > 0. Tt is easy to use the methods of Section 2 fo give new proofs
m

of these results. In fact, these methods, or those of [21] show that if

Dlp(m)fim)< oo for all fin €[0, 1],
m=1 ’

icm
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then
Dipm)] gl < oo.

m==1
This leads to & new proof of the fact ([18], p. 236) that if the ortho-
normal system {g,}~_  is complete, then there exish functions, on the
positive integers, that tend to 0 at co, but are not Paley multipliers from.
C[0, 1] to 7. Indeed, by 2 theorem of Orlicz ([24], p. 101), every comp-
lete orthonormal system {p,}%_,, in L*[0, 1] has the property - that

0

Z(I I‘Pm(m)[da?)z =r00,

m=1 B

for all setsT® of positive measure. In particular, Zlﬂ(pmlﬁ = oo for any

m=

such system {p,}_,, and there exist functions p, on the positive integers,
such that p(m) >0 as m - co, and. 3 (ip (m)] llp,l)* = oo.
m=1

We now give an alternate proof of the theorem of Orlicz cited in

the previous paragraph. Suppose that 2 ([1pp(@)dn)? < oo for some

m=1E
set B of positive measure; denote the measure of # by |H|. By splitting

the set B into two pieces of measure |B|/2, and splitting each of these -
pieces, efe. ([8], p. 180), we can imitate the usual construction of the
Rademacher system, and obtain an orthornormal system {w,}s, such
that, for all %, the function y, vanishes off 7, and |ly,/l. = |E|""2. Denote
the inner product in L*[0, 1] by {-,->. For each fixed value of k, the
sequence {(g,, Yy>}tm=; 18 dominated by the square-summable sequence
{IB|72 [Ip,}e_,; moreover, for each fixed value of m, the sequence

o}

P> Prv}ie: tends to 0 as k tends to oo, Therefore

m 3 [(p,,, pdl* = 0.

Erco oy

In particular, for all sufficiently large values of k,

2 Ko i< 1 = Il
Mm=1

and the system {@,}~_, cannot be complete.

Let ¢ be an index in the interval (0, co], let I be a subset of Z, and
let M (Cy, 1) be the space of Paley multipliers from 0 to 12, 'bhé::’ﬁ is the
space of all functions p on the set I such that the product p-f belongs
to 1(I) whenever f e C;. It is trivial that if g > 2, then M (Cy, 19) =1=(I). .
If g< 2, let » = 2¢/(2 —q); an easy application of Holder’s inequality
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shows that 1" = M (Cr, 19). BEdwards ([5], p. 468) has shown that, if 1
< ¢< 2, then M(0z,1%) =1"; his argument uses Sidon’s theorem [35].
Stechkin ([37], Theorem 1) used Paley’s theorem to show that, if 0 < ¢ < 2,
then there is a positive constant, ¢, such that, for all intervals I, and
all functions p in I7(I), the norm of p in M (C7, 19 is at least C,lipl,; in
particular, M (4(T),19) =71, for all such ¢. It is easy to modify the
basic construction of Section 2 to give simple, direct proofs of these results.
Similarly, we can show that, if W is a proper cone in Z¥, and if 0 < ¢ < 2,
then the restriction to W of every element of M (4 (T¥), 19 belongs to
. U(W). Finally, if in fact M(A(T™), T = P(ZY), then, by Stechkin’s
methods, M (4(TY),19) =T (ZY), for all ¢ in the interval (0, 2); indeed,
the methods of [37] show that if the equality M (AT, =1(ZY)
holds for one value of ¢ in the interval (0, 2), then this equality holds
for all ¢ in the interval (0, 2).

The following generalization of Paley’s theorem was suggested by
A, Pelezyhski (private communication). Let {@,}m-, be an orthonormal
system in H?(T) with the property that inf |jp,,|; > 0; then every function p

m

on 7, with the pi‘opeﬂ:y that
ZIP('M)U, Pl < 0o for all fin A(T)
m=1

must be square-summable. This assertion can be proved by Paley’s original
method [26], or by the methods of [15] and [28], p. 222, but not by the
methods of the present paper or those of [11].

For each function w on Zfl , let @, be the operator, on the space
of trigonometric polynomials, such that Q,(f) (a) = w(a) f(«) for all f
and all a. The key fact in the proofs of Paley’s theorem in [15] and [28],
P. 222, is that, if w is the characteristic function of Z_ , then the associated
operator @, is of weak type (1,1), and hence is bounded from I'(T)
to ZYT) when ¢< 1. If N> 1, and w is the characteristic function of
Zf , then there is no positive index g for which the operator @, is bounded
from L' (T%) to ZYT"). Indeed, if such an index q existed, then by a theorem
of Bawyer ([33]; [12], p. 7), the operator Q,, would be of weak type (1, 1);
it is easy ([38], p. 158) however, to verify directly that @, is not weak
type (1,1).

‘We now outline an alternate proof of Theorem 5 using the methods
of [15] or [28], p. 222. These methods will work provided that we can
associate with each proper cone W in Zﬂl’ a function w on Z¥ such that

17 w vanishes off 7%,
(18) lw|>1 on W,
T (19) Q. is of weak type (1,1).

icm

Batensions of a Fourter mulliplier theorem of Paley, IT 59

In fact, it is easy to specify sueh a function. First observe that each point

a in Z¥ Dbelongs to at most 3V of the sets I, defined in Section 3; thus,

for each a, the series 3 g,(a) has at most 3Y nonzero terms. Given a proper
vez®

cone W, and a point « in ZY, let

w(a) = o¥ Gy(a).
Wr\Jy;éZ

It is easy o verify that the function w has properties (17) and (18). To prove
that the operator @, is of weak type (1, 1), use the Calderon—Zygmund
theorem as in [39], p. 106, or [61, Section 6.2. A similar argument yields
a proof of Theorem 6, with a larger constant in place of 3624V, It does
not seem possible to obtain the results of Section 2 by the methods we
have just outlined.

Various Soviet authors ([14]; [41], Theorem 3.17 ) have shown that,
in Paley’s theorem, the space .4 (U) can be replaced by a class of functions
analytic on & much larger domain that the open unit dise. For instance,

S. A. Vinogradov has shown that, if Y |p(m)® = co, then there exists
m=0
a meromorphic function f on the Riemann sphere such that
(i) the only singularity of f oceurs at z =1, '
(if) Iim f(z) exists,
st

(i) %p(m)f(m)t ~ .

The methods of the present paper do not seem to apply in this setting.
It is well known that spaces of multipliers can usually be represented

- as dual spaces ([7], [27]). We now describe the predual of M (A4 (T¥), ).

Let Vy be the space of all functions v on Z% for which there exists a

sequence {fy}3, of trigonometric polynomials in 4 (™) such that 3 ||fille
k=
< oo, and '

o0

p@i< Y Ful@l,

=1

(20) for all a;

for each function v in V, let

lolly = inf | 3 Ifulle: relation (20) holds).

k=1

Tt follows easily from these definitions that V. is a Banach space rela-
tive to the norm ||, and that, if » € Vyy, and p e M(4(TY), 1), then
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S'o(m) p(m)| < co. It turns out that the pairing
m=1

(v, ) > D) v(m) p(m)
m=1

represents M (A (UY), T} isometrically as the dual space of Vy; we omit
the proof of this faet since it is similar to that of [2] Theorem 3.6. Now
Va < B(ZY) in any case, and, when N = 1, the spaces M(A(T™), 1) and
?(Z%) coineide, so that V, = *(Z,); this equality is also stated in [19].
In general, M{A(U™), ") =7 (2%) it and only if Vy = B(Z%Y) but we
have been unable to determine whether either of these equalities hold
when N > 1. We can use the duality between M(A(T™),1) and Vy,
however, to restate Theorem 5 in the dual form asserting that, if v & s (Zf )s
and v vanishes outside a proper cone, then v € Vy.

The fact that V, =T%(Z,) suggests an obvious conjecture. Is if
true that for each function » in 1*(Z,) there exists a funetion fin A(T)
such that |o(m)| < | fim)i for all m? This question is also mentioned in
[2], Section 5. The corresponding question with Z in place of Z,, and
C(T) in place of "A(U) was posed by Sidon ([36,] p. 479), and it is still
unanswered. i

Further conjectures concerning the space A(U) and its dual are
suggested by various proofs of Sidon’s theorem. The simplest proof [35]
depends on the fact that M(T), the dual space of C(T), has the property
that every unconditionally convergent series in M (T') is absolutely square-
summable; does the dual space of A (U) also have this properfy? Other
proofs [13] can be based on factorizations of bounded operators from
C(T) to I'. For instance, every such operator e can be factored

wom>erin,

where @ is-a diagonal operator [22]; is a similar factoriza;tion always
possible if C(T) is replaced by A(U)? Also, every such operator a can
be factored

a: O(T) % IX(T, o) 5 1,

where ¢ is bounded, regular, Borel measure on T, and i is the canonical
- injection; is such a factorization always possible if O(T) is replaced by
A(T)?

The basic construetion .of Section 2 works in any O*-algebra with
jdentity. Indeed, suppose that {4,}~, is a sequence of operators on
a Hilbert space H. Define sequences {B,,}2L, and {C,}2%,, of operators
on H, as follows. Let B; = 4,, and C; =I; given B, and C,, let

— L *
By =Byt 4y O and  Opyy =0y — 45, B,
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Tt is easy to verify for each element h of H that

1B 1P 10, hIE < IBIE [ [ (L+1447),
=1

for all . Thus,

[Bal? < [ [ (L4144,

for all m.

We- mention two applications of this construction in this setting.
First, we formulate a generalization of a key lemma in [11]. Given a se-
quence {4,,}3% | of bounded operators on a Hilbert space, and a set S consis-

ting of an odd number of integers from the interval [1, M], define an

- operator Ag as follows. Enumerate the elements of § in increasing order

as {m}r,, and let
Ag = A, A,

Mg "

AL A

my? .
here, as in Section 2, we insert the adjoint operator A;f%. whenever -
is even. o

Ly 14. Let H be a Hilbert space, let g and h be elements of H,
and let {4, M be a sequence of bounded operators on H, all of morm at
most 1. Suppose that {g, Aghy = 0 whenever 8 is a subset of {1,2,..., M 1
of odd cardinality greater than 1. Then

M
D'KKg, AnhdI < ellgll 117
m=1

‘We omit the proof. The special case of this result when the operatiors
A, are all unitary, and the constant e is replaced by 4, is essentially the
same as Lemma 1 of [11]. ,

We can also nse the above construction to improve slightly on some
results due to Nicole Tomezak-Jaegermann [40]. A Banach space X
is said to be of cotype 2 if there exists a constant € such that, for all finite
sequences {@,}i, in X,

M 1 M
(Y] < 0[] Xonratt]

Tomezak-Jaegermann showed that, if X is a subspace of the dual space
of a (*-algebra with identity, then X is of cotype 2, with C'< 2625 she
also showed that, if 1 < p < 2, then the Schatten class 8, is of cotype 2,
again with ¢ < 262, In the proof of these facts, she used a generalization
of 2 Riesz-product construetion due to Salem and Zygmund; by using
the above construction instead, we can show that these conclusions
hold with € < . ‘
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