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Abstract. One of the main results of this paper is ‘a lifting theorem for operators
from Ly, 0 < p < 1, into a quotient space L, /N. (The theorem is developed separately
for Ly and for Ly, 0 < p < 1; the hypotheses on N are different in the two cases.)
A corollary is that if ¥ is a non-trivial finite dimensional subspace of Ly, 0<p< 1,
then Ly,/N is not isomorphic to L. Several similar results are obtained; at the end
of the paper, the idea of a K-space (K,-space) is introduced and studied in connection
with the lifting theorems.

1. Introduction. Let L, = I, [0, 1] be the space of all real (or comp-
lex) measurable functions on [0, 1] with the topology of convergence in’
measure. A. Pelezyfiski has asked whether the quotient of L, by a non-
trivial finite-dimensional subspace is isomorphic to L,. In this paper
we prove a lifting theorem for operators on L,; using this theorem, we
can show that if B is a non-trivial closed subspace of L, which is either
locally bounded or which admibts a continuous linear functional, then
Ly/B Z L,. Parallel results are developed for the spaces L, (0<p << 1),
‘where again we have that the quotient of I, by a non-trivial finite-dimen-
sional subspace cannot be isomorphic to I, (contrasting of course with
the case p = 1). ‘

In Bection 2, we show from certain general considerations that for
0<p<1, L,/V = L,/W whenever dim V = dim W < co. This enables
us to define (IL,/n) to be the (unique) space obtainéd by forming the
quotient of L, by a subspace of dimension n. In Section 3 we prove our
main liffing theorems and in Section 4 we apply them to show that (L, /n)
2(L,[m) if and only if m= n. We conclude Section 4 by giving an example
of two isomorphic locally bounded subspaces of L,, B, and B,, such that
Ly/B.Z Ly/B,. :

In Section 5 we develop the idea of a K-space; this is an F-space X
such that every short exact sequence of F-spaces O +R Y - X -0
splits. Using this notion we show that Ly/N ~ L, implies that ¥ has no
non-zero continuous linear functionals. Similar ideas for p-Banach spaces
are also developed.
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Throughout this paper an F-space will mean a complete metric
topological vector space. An F-norm & — [z on & space X is a mapping
from X to R, such that

@) lz+yl < lol+yl if @,y e X,

() o] < lell i A< and if e X,

(e) WAz -0, as 4 -0 for each v e X,

(d) Jz| = 0 if and only if = 0.

For 0< p<1, a p-Banach space is an F-space with an F-norm
I Il such that

(e) {Az] = |A|%|lz]} for all 4 and » e X.

If X and Y are p-Banach spaces and if §: X - Yisa contmuous linear
operator, we -define

I8l = sup ({18]: ol < 1)-

We denote by £ (X) the space of all linear operators on X If Xisa p—Ba-
nach space, then so is #(X); if X is an F-space, then .# (X) has, in general,
no convenient F-norm topology. Unless otherwise stated, “linear map”
and “linear operator” always refer to comfinuous maps.

‘We would like to thank Leonard Dor for several valuable conver-
“sations.

2. Transitive F-spaces. In this section we show that if V and W
are two subspaces of L, (0 < p < 1) of the same finite dimension, then
L,/V == L,/W. We approach this result through some general results
on transitive F-spaces. An F-space X is said to be tramsitive if given
@,y e X with @ # 0, there exists T e #(X) with Tw,= y."We shall say
that X is strictly transitive, if for any k e N; #,, ..., 0, € X and y,, ...,y e X
such that {z,...a,} is linearly independent, there exists- T e.%(X)
with Tw; =y;. : :

‘We do not know whether a transitive F-space is strictly transitive;
however, it is possible to generalize standard arguments in Banach algebra,
theory (cf. Rickart [6], pp. 60-62) to yield the following:

ProposITION 2.1, Let X be a tramsitive F-spaoe, suppose that

(a) X is separable,

(b) The cenire of £ (X) consisis only of scalar. muluples of the identity
operator. .

Then X is strictly tm'rmtwe

. If X is a p-Bamach space, condition (a) may be omitted; if X isa complew
p-Banach space, then conditions (a) and (b) may be ommed

Proof. By [6], Lemma 2.4.3, it is enough to show that given.two
linearly independent elements v,w e X, there existy T r—:-.Z’(X) such that
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Tv = 0 and Tw s 0. If not, we may define a (not necessarily continuous)
operator D on X by Dz = Tw when To =2 (cf. [6], Theorem 2.4.6).
Then D ecommutes with each T .2 (X).

It is neecessary to show that D e#(X); ab this point we require
condition (a) in general. Consider £(X) with the topology of pointwise
convergence. Then £ (X) is a Souslin space and by the Open Mapping
Theorem, the map e,: £(X) - X defined by &,(T) = Tv is open. Since
D o &y = 8, it folloys that D e#(X). If X is a p-Banach space, then
50 is .Z(X) with its usual topology and the Open Mapping Theorem may
be applied to this topology.

Now by eondition (b}, D is & multiple of 7 and we have a contradiction.
If X is a complex p-Banach space, then it may be shown that the éentre
of #(X) is a field and by Zelazko’s extension of the Gelfand-Mazur
theorem. [11], condition (b) must hold.

It is easy o check that each of the spaces L, (p > 0) satisties condi-
tions (a) and (b) of the proposition and is mansmwe (use an argument
similar to [7], pp. 253-254; see also [5]), and hence is strictly transitive.

ProposrrioN 2.2. Suppose X is a sirictly tramsitive F-space and
X = X X; then of {x,...3,} and {yy...y,} are two linearly independens
sets in X, there exists an invertible T' € £ (X) such thot T, = y;, 1 < i< 0.

Proof. First we prove that there exists a projection P € #(X) such
that P(X)z X, (I — P)[X)== X and {Pw, ... Pg,} is linearly independent.
Let F' be the linear span of {z, ... 2,}; then we may choose a projection P
so that P(X) = X, (I—-P)(X)=2X and dim P(F) is maximal. Since
(I—P)(X) = X = XPX, there exists a projection @ € £ (X) such that
PQ=QP =0 and Q(X) = (I—-P—@)(X) = X. Then since (P-+@)(X
=(I—P—Q)(X)~ X, we have dim (P +@Q)(F)= dim P(F). Hence P is one-
one on (P+Q)(F) and so if we have > a; Pz; = 0, then also ) a(P+ Q)
m =0. Similamly we have D a{I—@)m; = 0; combining, > a, ;=0
and @y = ay = ... =a, =0, i.e. {Pr, ...,Pwn} is linearly independent.

Now pick projections P, and P, e Z(X) so that Py(X) = (I —P;)(X)
= Py( X))oy (T—Pp)(X)= X and {Py 2, ... Py a0}, {Poyy... Pyy,} are line-
arly independent. Then there exists an invertible T e #(X) such that
TPy= (I —P,)T. Since X is strictly transitive, there exists §: (I —P,)(X)
> Py (X)) such that S(I—P,)Tw; = Py(y;— Tu;), for 1 << n. Similarly,
there exigts R: Py(X) — (I—P,)(X) so that B Pyy; = (I —Py)(y,—T,).
Then (I+RoP,) and (I--8o (I—P,)) are invertible, since (R o Py)*
= (8o (I—Py)) =0 and (I+RoPy)(I+80(I—Py)) Tn; =y; (L<i<n).

‘We now have:

THEOREM 2.3. If 0 < p < Land V and W are two subspaces of L, with
Adim V = dim W < oo, then Ly,|V == L,[W.
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Proof. This is immediate, since there is an invertible operator T
‘on L, such that T(V) =

Let us denote now by (
subspace; of course (IL,/0)
is well defined.

TEEOREM 2.4. For 0<p<1, (Lyj(m+mn)) =
m, n> 0.

Proof. Let V be a subspace of L,[0, 4] of dimension m (embedded
in L, in the obvious way) and W a subspace of L,[4, 1] of dimension n.
Then

L,/n) the quotient of L, by an n-dimensional
= L,. Theorem 2.3 guarantees that (L,/n)

(Lpm) ®(Ly[n) when

Ly j(m+m) = L, [0, 1](V +W)

o (L, [0, 31/V) @ (Ly [3, 11/ W) 2= (Ly /) (L ).

3. Lifting theorems. Let X be a p-Banach space (0 <p<1) and N
a closed subspace of X. It is easy to see that any linear operator §: I,
— X|N may be litted to a linear operator §: I, -~ X, so that #§ = §
where z: X — X /N is the quotient map. In the case p = 1, a similar
lifting property holds if 7, is replaced by any #,-space and ¥ is isomorphic
to a complemented subspace of a dual space (this:is effectively proved
by Lindenstrauss [4]). Not surprisingly there is a corresponding result
for the case p < 1. We say that a p-Banach space Y is an Z,-space
(0 < p < 1), if there is an increasing neb {¥,: « € 4} of finite-dimensional
subspaces of Y such that | J(¥,: a e A) is dense in ¥ and there exist
linear maps S, Y, ——>Z:(a”a) and T.: lg‘u) — Y, (where n, =dim Y,),
such that sup I8.] [Tl < oo and 7,8, = I on ¥,. Clearly L, is an Z,-
space.

‘We shall also call a p-Banach space Z pseudo-dual if there is a Haus-
dortf vector topology ¢ on Z such that the unit ball is relatively compact
for g. The space I, is not pseudo-dual (see.[1]), but the spaces I, and H,,
(0 < p< 1) are pseudo-dual.

THEOREM 3.1. Let ¥ be an Zp-space (0 <p<1) and X a p- B(ma,oh
space. Let N be a closed subspace of X and suppose N is isomorphic to a
complemented subspace of a pseudo-dual p-Banach space Z. Then any oper-
ator 8: ¥ X |N may be lified to an operator §: ¥ — X.

If ¥ = L,, then the lifting is wnique.

Proof. We observe that the unit ball of Z may be supposed to be
g-compact (by [1], Lemma 1): Then the argument iz a straightforward
imitation of the Lemma of [4]. We omit the details.

In the case ¥ = L, suppose 7T is any other lifting. Then 7 — § maps
L, into N and there is a non-zero operator from I, into Z. The induced
map into (Z, g) is compact, contradiecting the results of [2].
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We now give another result of a similar fype for the space I,.

TarorReEM 3.2. Let X be a p-Banach space (p < 1) and let N be a closed
subspace of X which is isomorphic to a g-Banach space, where p << ¢ < 1.
Then any linear operator 8: L, — X |N may be Zzﬂed umqwl y to a linear
operator 8: L, - X.

Proof. ForneN, let ¥, be the linear span of the functions y}
(1< k< 2", where y7 is the characteristic function of ((k—1)27", k27").
Bach ¥, is isometric to Y. Let 8,: ¥, - X be a lift of §: ¥, - X/N¥
with |8, < 2{18]. We shall show that for y e (J ¥, lim 8,y = »§y exists.

n—oQ
Then clearly 181 < 28] and 8 may be extended to L, by continuity
and is then a lift of 8.
Since N is isomorphic to a ¢g-Banach space, there exists a constant ¢
such that the g-convex hull of the unit ball of ¥ is bounded in norm by C.

Hence, if @4, ...,%, are in N, then

|3 (z .
Now suppose § < m < %, and 1< %< 2'; then
18 h— Sazl = || (S ~&zf§};ﬂﬁﬂ
<03 U8 2

gmi—i
< 40|8| ( Z ”%2""‘fk+1 ”Mp}m
— 408 2 m/q+m(l—17/‘-'l))

and so {8, z; m > j} is a Cauchy sequence. Hence we may find the lift §.
As in Theorem 3.1, § must be unique, since there are no non-zero operators
from I, into N (see Théoréme 3.4:5 of [10] or Proposition 2 of [9], or
use the argument above).

We now examine the case p = 0, which is rather different. Suppose
X is an F-space with F-norm || |. For # € X we define o: X R U {o0},
by

o(x) = sup [lfz]l.
ieR

In the case of L, with the F-norm

()|

T du(t),
) o #0

el =

we have that o(w) = u(supp#).


GUEST


0 'N. J. Kalton and N. T. Peck
In general, note that o(az) = o(») if ¢ £ 0 and that o(z+y)
<o(@)+o(y). I L is a linear subspace of X, we define o(L) = sup(o(z):
€T GL). . '
‘We shall say that X admits Lo-structure, if for any e > 0 there exist
n = n(e) and subspaces X,,..., X, of X, such that X =X, ®... ® X,
and o(X;)<s ¢ =1,2,...,n In addifion to the obvious example of
L, itself, any space of the type L,(Z) (all measurable functions from
" [0,1] into an F-space Z) admits L,-structure.

The following proposition is trivial. .

PROPOSITION 3.3. Suppose X admits Ly-structure and B is a locally
bounded space. If T: X — B is continuous, then T = 0.

‘We next prove two lemmas before giving the main lifting theorem.

Lemva 3.4. Suppose X is an F-space and B is a closed locally bounded
subspace of X; let mw: X — X [B be the quotient map. Let § be chosen so that
the set {b € B: [b]| < 6} is bounded.

Then if £e X|B and o(£) < 6/3, there is o unigue »e X such that
wr = & and o(x) < 6/3. For this », o(x) = o(£).

Proof. We can find a sequence {r,} € X such that =z, = & and

1 .
fhvie, || < (l + ,—7,) &, neN.

Let w, = &,~x; (n eN); then w, eB and if m>n> 32,
)l = 1 (3, — )|

< || + IInw,,)

e (2, —

1 1
<@+—me+@+f)wm

n m
<@+5+ipwsa

Y ¥il3

By choice of 4, this implies that {u,} is a Cauchy sequence and hence
s0 is {z,}. If # = lim x,; then o(z) = o(£) < 6/3. If ¥ is any other point
satisfying =y = & and o(y) < 6/3, then 2—yeB and o(z—y)< % 6;
this implies & —y = 0.

LemyaA 3.5. Under the assumptions of Lemma 3.4, let ¥ be a linear
subspace of X [B with o(Y) < % 8. Then there is a linear operator h: ¥ — X
such that mo h(&) = & for £ X. .

Proof. For £ ¥, define h(&) to be the unique = e X such that
ap = £ and o(®) = o(£). If a,f R and &7 e ¥, then

o (ah(£) +Bh(n)) < o(&)+a(n) < 8/3.

icm
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‘ Thus

h(aé+pn) = ah(&)+ph(n),
and b is linear. .
Now suppose &, —0 in ¥; choose @, € X such that #x, = &, and

|]mﬂ||<2_ é,ll. Then &, —h(g,)eB. It #,—h(&,) + 0, we may assume,
by passing to a subsequence, that for some « > 0 we have

[lafm, — B (&) > 8

(since the set {b e B: |b] < 8} is bounded).
Then
lawy)| = 6 —lIh(ag,)l| > 6—% 6 = $5.

This is a contradiction sinece |iw,| — 0. Hence we have T, —h(E&,) >0
and so h(&,) - 0.

THEOREM 3.6. Suppose X admits Ly-structure, ¥ is am F-space,

- and B is & closed locally boundad' subspace of Y. Then if 8: X - ¥ B is

@ Uinear operator, there is o unique linear operator §: X — Y such that

508 =8 where w: ¥ — Y /B s the quotient map.

Proof. Choose d> 0 so that {b e B: b < 0} is bounded, and then
s> 0, so that if |lz|<s (#eX), then ||Sw||< 6/6. Let Xy ..oy X, be
closed subspaces of X such that X = X,@... ®X, and o(X)<e.
Then of (8)X;) < §/6, and so there exist linear operators h;: S(X;) - Y,
such that why(£) = & & e §(X;). If we define §: X - ¥ by

S(ay+ ... +m,) :Zhi;S'mi, r, e X;,

i=1

then § is the required lifting of .§.
If T'is any other lifting, then § — 7 maps X into B and hence §
=T by Proposition 3.3.

4. Quotient spaces of I, (0 <p <1). In this section we treat the
case p == 0 first and in more detail than the case p > 0; the arguments
are analogous. ‘

TemorEM 4.1, Suppose X, and X, are two F-spaces with Ly-structure.
Suppose B, and B, are closed locally bounded subspaces of X, and X,,
respectively. Then X, /By o X,|B, if and only if there is an isomorphism
V: X, > X, mapping X, onto X; and such that V(B,) = B,.

Proof. The “if” part is clear. For the “only if” part, let §: X,/B;
—X,/B; be an isomorphism, and let m,, =, be the q_uotient maps. Then
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by Theorem 3.6, there exist lifts V, U of Smy: Xy — X,/B, and 8 'z,:
X, > X,/B,.

X, = a X,
”1\ {"2
X,/By S X,/B,

Then UV:X, - X, is a lift of =,: X; - X,/B,. By the uniqueness,
UV = Ig ; similarly VU = Ix,, so V is an isomorphism of X, onto X,.
Clearly V ) © By and U(B,) = V"1(By) = B,; hence V(B;) = B,.
COROLLARY 4.2. If X admils Lgstructure ond B < X is a locally
bounded subspace, then X [B admits Ly-structure if and only if B = {0}.
Theorem 2.3 and Theorem 4.1 give
COROLLARY 4.3. If B, and B, are locally bounded subspaoes of Ly,
then Ly[B, o< L,[B, if and only if there is an invertible operator T: Ly — L,
such that T(B,) = B,.
In particular, (Lo jm) = (Lo[n) if and only if m =n, and (Ly[1) Z L,
This solves the problem of Pelezynhski (see Imtroduction). Also in
this seetion we shall illustrate this corollary by showing that B, == B,
does not imply L,/By == Ly(B,. First however, we state the corresponding
theorems for p > 0; the proofs are similar.
TEHEOREM 4.4. Suppose B, and B, are iwo closed subspaces of L.
. each of which is either isomorphic fo o complemenied subspace of a pseudo-
dual p-Banach space or to a g-Banach space where p < q¢ < 1.
Then Ly, By o< Ly, [B,if and only if there is invertible operator T': L, — L,
such that T(B,) = B,.
" In particular, (Ly[m) == (Ly,[n) if and only if m = n, and (L, /1) % Ly.
THEOREM 4.5. If B < L, is isomorphic to a complemented subspace
of o pseudo-dual p-chaah space and B # {0}, then L,/B is not an
& ,-space.
Proof. If L,/B is an Z,-space, then the identity map I: L,/B
— L, |B may be hfbed to a map J L,/B - L,. Then on L,, I — Jx maps
- L, into B. Hence, by applying the results of [2} asg in Theorem 3L, I =J=n
and so B = {0}.
BExamerLi. Let B; = I, be the closed linear span of the Rademacher
functions », on [0, 1]

(7 () = sgn (sin 2%x1)),

and let B, be the closed linear span of a sequence of independent random
variables normally distributed with mean zero and variance one. Then
B, = B, o= Ly; we ghall show, however, that Ly/B; ¥ Ly/B,.
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For suppose L,y/B; = Ly/B,; then there is an invertible linear operator
T: L, ~ Ly such that T(B,) = B,. By Kwapien’s Representation Theorem
[3], T takes the form

%(t) = 5: @; (1) (D;1) a.e.

where
) ppely,n>1,

(i) m{t: @,(t) # O for infinitely many #} = 0,

(i) @, maps [0, 1] into [0,1]; if A is measurable, then @;'(4) i
measurable; if m(4) = 0, then m (P, (4)NSupp ¢,) = 0.

Thus for almost every #e [0, 1], the sequence {T'7,(#)} assumes only
finitely many values. Hence for some j, &, with §j # %k, we must have
m{t: Try(t) = Try(6)} > 0. However Tr;—Tr, is normally distributed and
hence I'r; = T'r,,. Thus T is not injective, and we have a contradiction.

Remarks. For p > 0, let # € L, be non-zero and let ¥V be the linear
span of z. Let £ (L;) and £ (L, V) be the p-Banach algebras of all bounded
linear operators on L, and L,[V, respectively. If § e:i”(L 1V), let 8:
L, —~L, be the unique lift of § o #. Then the map § 8 is an algebra
homorplnsm, and in fact an embedding of £ (L,/V) inte & (L,). Thus
Z(L,[V) is isomorphic to the closed subalgebra of % (L,) consisting of

all T e#(L,) such that To V. We may define a multiplicative linear
functional ¢ on Z(L,[V) by

() = 8.

5. K-spaces. In this section, we abstract a particular property of
the spaces L, and consider it in more generality. We restrict to the real
case, but the complex case is identical.

If X is an F-space, we shall say that X is a K—spaoe if every short
exact sequence 0 - R — ¥ — X — 0, with ¥ an F-space, splits. Alterna-
tively, if §: Y - X is onto and dim 8-1(0) = 1, then there exists an
operator T: X - ¥ such that ST = Ix.

I X is a p-Banach space (0 < p < 1), we shall say that X is a K-
space if every short exact sequence 0 R > Y -+ X —» 0, with ¥ a
p-Banach space, splits.

TEEOREM 5.1. An F-space [p-Banach space]l X is a K-space [K,-
space] if and only if whenever ¥ and Z are F-spaces [p-Banach spaces]
and 8:Y —Z is a surjective operator with dim 871 (0) =1, then each .
linear operator T: X —Z may be lifted to an operator T: X — Y such that
ST = 1.

Proof. We prove the statement for K-spaces. Suppose X is a K-
space. Let V « X®Y be the subspace of all (z, y) such that Tz = Sy,
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and define P: V-—>X by P(#,y) =« Then P:V —X is surjective,
and dim P7*(0) = 1. Hence there exists & linear operator R: X - 7
such that PR = Iyx. Then R = (s, Ta); clearly 8T = T.

For the converse take Z = X and T to be the identity.

‘We remark now that if X admits L,-structure, then X is a K-space
{Theorem 3.6), and that an Z,-space is a K -space.

THEOREM. 5.2. If X is an F-space [p-Banach space] and N is a closed
subspace of X such that X |N is & K-space [K,-space], then N has the Hahn—
Banach Extension Property in X.

Proof. Again we restrict to the K-space case. Suppose ¢ € N is
non-zero; let M = ¢~1(0) = N. Consider the natural quotient map =:
. X|M —~ X|N; then there is a map 8: X/N — X/M such that =8 =1
on X/N. Then S(X/N) is a closed subspace of co-dimension one in X /M
and so there exists y e (X/M) such that. p =0 and yo 8§ =0. I q: X
— X /M is the natural quotient map, then ypge X. If x € N, then vq(w)
= 0 if and only if ¢(2) € S(X[N); then ¢(2) = S=g(s)= 0. Thus (pg)~(0)
N N = M and so a suitable multiple of pg extends ¢.

There is also a converse to Theorem 5.2.

TurOREM 5.3. If X is a K-space [K,-space] and N < X is a closed
. subspace with HBEP, then X/N is a K-space [K,-space].
Proof. Suppose we have a short exact sequence

0>-R—>Z3XIN -0,

and let m: X — X /N be the quotient map. Then there is a lifting of
%, 8: X — Z, so that o8 = = (by Theorem 5.1). Suppose first § is not
surjective; then S(X) has co-dimension one in Z and o|S(X) is one-one.
Define B: X|N —Z.by R = 2z where ze8(X) and gz = & I £, =0
in X /N, then there exists a sequence {#,} i X such that @, -0 and 2,
= £&,. Since S8z, — 0 and Sz, = RE,, RE, — 0, ie. R is continuous.

Now suppose 8 is surjective; then §7!(0) has co-dimension one in N.
Let p € N' be a non-zero linear funetional with kernel .$~1(0). Then ¢
may be extended to y ¢ X'. Now define §: X > Z by Sz = 8 (v—y(2)u)
where % & IV is chosen so that p(u) = ¢(u) = 1. Then ¢ S = {1z — (@) u)
= aw; and oSz = 0 implies © e N. Hence §o = §(z— —@(@)u) = 0. Thus o
is one-one on §(X) and §(X) has co- dunensmn one in Z; we can apply
the previous part of the proof.

COROLLARY 5.4. X is a K, -space if and only if X =1,(I)/N where
I is some index set and N <1 (I) has the HBEP.

We remark that if 1,/N =~ L,, then ¥ has HBEP and the extension
is unique, “since I, = {0}
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COoROLLARY B.5. (i) If N is o closed subspace of L, then L,/N is &

. K-space if and only if N' = {0}. In particular, if Lo/N has Ly-structure,

then N' = {0}. )

(ii) If NV is a closed subspace of Ly, then L,|N is a K,-space if and
only if N' = {0}. In particular, if T,/N is an Z,-space, then N' = {0}.

Note here that if we take for N the closed linear span of a sequence
of functions with disjoint supports in I,, then N =2 o, and hence L,/N
% L,. However Ly/N =2 o(Lyfl) (the countable product of copies
of Ly/1); hence (/1) Z L

ProBLEM. Is L, or I, a K,space for any 7 < p, or even a K-space?
In particular, is 7, (or any Banach space) a K,-space for any p < 1% This
latter question is essentially the same as a problem of Stiles [8]:if I,/N
is locally convex, must N have the HBEP?
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