

Quotients of $L_p(0,1)$ for $0 \leq p < 1$

bν

N. J. KALTON (Swansea) and N. T. PECK (Urbana, Ill.)

Abstract. One of the main results of this paper is a lifting theorem for operators from L_p , $0 , into a quotient space <math>L_p/N$. (The theorem is developed separately for L_0 and for L_p , 0 ; the hypotheses on <math>N are different in the two cases.) A corollary is that if N is a non-trivial finite dimensional subspace of L_p , $0 , then <math>L_p/N$ is not isomorphic to L_p . Several similar results are obtained; at the end of the paper, the idea of a K-space (K_p -space) is introduced and studied in connection with the lifting theorems.

1. Introduction. Let $L_0 = L_0$ [0, 1] be the space of all real (or complex) measurable functions on [0, 1] with the topology of convergence in measure. A. Pełczyński has asked whether the quotient of L_0 by a nontrivial finite-dimensional subspace is isomorphic to L_0 . In this paper we prove a lifting theorem for operators on L_0 ; using this theorem, we can show that if B is a non-trivial closed subspace of L_0 which is either locally bounded or which admits a continuous linear functional, then $L_0/B \cong L_0$. Parallel results are developed for the spaces L_p (0 < p < 1), where again we have that the quotient of L_p by a non-trivial finite-dimensional subspace cannot be isomorphic to L_p (contrasting of course with the case p = 1).

In Section 2, we show from certain general considerations that for $0 \le p < 1$, $L_p/V \cong L_p/W$ whenever dim $V = \dim W < \infty$. This enables us to define (L_p/n) to be the (unique) space obtained by forming the quotient of L_p by a subspace of dimension n. In Section 3 we prove our main lifting theorems and in Section 4 we apply them to show that $(L_p/n) \cong (L_p/m)$ if and only if m = n. We conclude Section 4 by giving an example of two isomorphic locally bounded subspaces of L_0 , B_1 and B_2 , such that $L_0/B_1 \cong L_0/B_2$.

In Section 5 we develop the idea of a K-space; this is an F-space X such that every short exact sequence of F-spaces $O \to R \to Y \to X \to 0$ splits. Using this notion we show that $L_0/N \cong L_0$ implies that N has no non-zero continuous linear functionals. Similar ideas for p-Banach spaces are also developed.

67

Throughout this paper an F-space will mean a complete metric topological vector space. An F-norm $x \to ||x||$ on a space X is a mapping from X to R_+ such that

- (a) $||x+y|| \le ||x|| + ||y||$ if $x, y \in X$,
- (b) $\|\lambda x\| \leq \|x\|$ if $|\lambda| \leq 1$ and if $x \in X$,
- (c) $\|\lambda x\| \to 0$, as $\lambda \to 0$ for each $x \in X$,
- (d) ||x|| = 0 if and only if x = 0.

For 0 , a <math>p-Banach space is an F-space with an F-norm $\| \ \|$ such that

(e) $\|\lambda x\| = |\lambda|^p \|x\|$ for all λ and $x \in X$.

If X and Y are p-Banach spaces and if $S: X \to Y$ is a continuous linear operator, we define

$$||S|| = \sup (||Sx||: ||x|| \le 1).$$

We denote by $\mathscr{L}(X)$ the space of all linear operators on X. If X is a p-Banach space, then so is $\mathscr{L}(X)$; if X is an F-space, then $\mathscr{L}(X)$ has, in general, no convenient F-norm topology. Unless otherwise stated, "linear map" and "linear operator" always refer to *continuous* maps.

We would like to thank Leonard Dor for several valuable conversations.

2. Transitive F-spaces. In this section we show that if V and W are two subspaces of L_p $(0 \le p < 1)$ of the same finite dimension, then $L_p/V \cong L_p/W$. We approach this result through some general results on transitive F-spaces. An F-space X is said to be transitive if given $x, y \in X$ with $x \ne 0$, there exists $T \in \mathcal{L}(X)$ with $Tx_1 = y$. We shall say that X is strictly transitive, if for any $k \in N$, $x_1, \ldots, x_k \in X$ and $y_1, \ldots, y_k \in X$ such that $\{x_1 \ldots x_k\}$ is linearly independent, there exists $T \in \mathcal{L}(X)$ with $Tx_1 = y_1$.

We do not know whether a transitive F-space is strictly transitive; however, it is possible to generalize standard arguments in Banach algebra theory (cf. Rickart [6], pp. 60-62) to yield the following:

Proposition 2.1. Let X be a transitive F-space; suppose that

- (a) X is separable,
- (b) The centre of $\mathscr{L}(X)$ consists only of scalar multiples of the identity operator.

Then X is strictly transitive.

If X is a p-Banach space, condition (a) may be omitted; if X is a complex p-Banach space, then conditions (a) and (b) may be omitted.

Proof. By [6], Lemma 2.4.3, it is enough to show that given two linearly independent elements $v, w \in X$, there exists $T \in \mathcal{L}(X)$ such that

Tv=0 and $Tw\neq 0$. If not, we may define a (not necessarily continuous) operator D on X by Dx=Tw when Tv=x (cf. [6], Theorem 2.4.6). Then D commutes with each $T\in \mathcal{L}(X)$.

It is necessary to show that $D \in \mathcal{L}(X)$; at this point we require condition (a) in general. Consider $\mathcal{L}(X)$ with the topology of pointwise convergence. Then $\mathcal{L}(X)$ is a Souslin space and by the Open Mapping Theorem, the map $\varepsilon_v \colon \mathcal{L}(X) \to X$ defined by $\varepsilon_v(T) = Tv$ is open. Since $D \circ \varepsilon_v = \varepsilon_w$, it follows that $D \in \mathcal{L}(X)$. If X is a p-Banach space, then so is $\mathcal{L}(X)$ with its usual topology and the Open Mapping Theorem may be applied to this topology.

Now by condition (b), D is a multiple of I and we have a contradiction. If X is a complex p-Banach space, then it may be shown that the centre of $\mathscr{L}(X)$ is a field and by Zelazko's extension of the Gelfand-Mazur theorem [11], condition (b) must hold.

It is easy to check that each of the spaces L_p $(p \ge 0)$ satisfies conditions (a) and (b) of the proposition and is transitive (use an argument similar to [7], pp. 253–254; see also [5]), and hence is strictly transitive.

PROPOSITION 2.2. Suppose X is a strictly transitive F-space and $X \cong X \oplus X$; then if $\{x_1 \dots x_n\}$ and $\{y_1 \dots y_n\}$ are two linearly independent sets in X, there exists an invertible $T \in \mathcal{L}(X)$ such that $Tx_i = y_i$, $1 \leq i \leq n$.

Proof. First we prove that there exists a projection $P \in \mathcal{L}(X)$ such that $P(X) \cong X$, $(I-P)\{X\} \cong X$ and $\{Px_1 \dots Px_n\}$ is linearly independent. Let F be the linear span of $\{x_1 \dots x_n\}$; then we may choose a projection P so that $P(X) \cong X$, $(I-P)(X) \cong X$ and dim P(F) is maximal. Since $(I-P)(X) \cong X \cong X \oplus X$, there exists a projection $Q \in \mathcal{L}(X)$ such that PQ = QP = 0 and $Q(X) \cong (I-P-Q)(X) \cong X$. Then since $(P+Q)(X) \cong (I-P-Q)(X) \cong X$, we have dim $(P+Q)(F) = \dim P(F)$. Hence P is one-one on (P+Q)(F) and so if we have $\sum a_i Px_i = 0$, then also $\sum a_i (P+Q) x_i = 0$. Similarly we have $\sum a_i (I-Q)x_i = 0$; combining, $\sum a_i x_i^* = 0$ and $a_1 = a_2 = \ldots = a_n = 0$, i.e. $\{Px_1, \ldots, Px_n\}$ is linearly independent.

Now pick projections P_1 and $P_2\in \mathscr{L}(X)$ so that $P_1(X)\cong (I-P_1)(X)\cong P_2(X)\cong (I-P_2)(X)\cong X$ and $\{P_1\,x_1\dots P_1\,x_n\},\ \{P_2\,y_1\dots P_2\,y_n\}$ are linearly independent. Then there exists an invertible $T\in \mathscr{L}(X)$ such that $TP_1=(I-P_2)T$. Since X is strictly transitive, there exists $S\colon (I-P_2)(X)\to P_2(X)$ such that $S(I-P_2)Tx_i=P_2(y_i-Tx_i),$ for $1\leqslant i\leqslant n$. Similarly, there exists $R\colon P_2(X)\to (I-P_2)(X)$ so that $R\colon P_2\,y_i=(I-P_2)(y_i-Tx_i).$ Then $(I+R\circ P_2)$ and $(I+S\circ (I-P_2))$ are invertible, since $(R\circ P_2)^2=\{S\circ (I-P_2)\}^2=0$ and $(I+R\circ P_2)(I+S\circ (I-P_2))$ $Tx_i=y_i\ (1\leqslant i\leqslant n).$ We now have:

THEOREM 2.3. If $0 \le p < 1$ and V and W are two subspaces of L_p with dim $V = \dim W < \infty$, then $L_p/V \cong L_p/W$.

Proof. This is immediate, since there is an invertible operator T on L_n such that T(V) = W.

Let us denote now by (L_p/n) the quotient of L_p by an *n*-dimensional subspace; of course $(L_p/0) = L_p$. Theorem 2.3 guarantees that (L_p/n) is well defined.

Theorem 2.4. For $0\leqslant p<1,$ $\left(L_p/(m+n)\right)\cong (L_p/m)\oplus (L_p/n)$ when m, n>0.

Proof. Let V be a subspace of $L_p[0,\frac{1}{2}]$ of dimension m (embedded in L_p in the obvious way) and W a subspace of $L_p[\frac{1}{2},1]$ of dimension n. Then

$$\begin{split} L_p/(m+n) & \cong L_p[0,1]/(V+W) \\ & \cong (L_p[0,\frac{1}{2}]/V) \oplus (L_p[\frac{1}{2},1]/W) \cong (L_p/n) \oplus (L_p/n). \end{split}$$

3. Lifting theorems. Let X be a p-Banach space (0 and <math>N a closed subspace of X. It is easy to see that any linear operator $S\colon l_p\to X/N$ may be lifted to a linear operator $\tilde S\colon l_p\to X$, so that $\pi \tilde S=S$ where $\pi\colon X\to X/N$ is the quotient map. In the case p=1, a similar lifting property holds if l_p is replaced by any $\mathcal L_1$ -space and N is isomorphic to a complemented subspace of a dual space (this is effectively proved by Lindenstrauss [4]). Not surprisingly there is a corresponding result for the case p<1. We say that a p-Banach space Y is an $\mathcal L_p$ -space $(0 , if there is an increasing net <math>\{Y_a\colon a\in A\}$ of finite-dimensional subspaces of Y such that $\bigcup (Y_a\colon a\in A)$ is dense in Y and there exist linear maps $S_a\colon Y_a\to l_p^{(n_a)}$ and $T_a\colon l_p^{(n_a)}\to Y_a$ (where $n_a=\dim Y_a$), such that $\sup \|S_a\| \, \|T_a\| < \infty$ and $T_aS_a=I$ on Y_a . Clearly L_p is an $\mathcal L_p$ -space.

We shall also call a p-Banach space Z pseudo-dual if there is a Hausdorff vector topology ϱ on Z such that the unit ball is relatively compact for ϱ . The space L_p is not pseudo-dual (see [1]), but the spaces l_p and H_p (0) are pseudo-dual.

THEOREM 3.1. Let Y be an \mathcal{L}_p -space (0 < $p \leqslant 1$) and X a p-Banach space. Let N be a closed subspace of X and suppose N is isomorphic to a complemented subspace of a pseudo-dual p-Banach space Z. Then any operator $S\colon Y\to X/N$ may be lifted to an operator $\tilde{S}\colon Y\to X$.

If $Y = L_p$, then the lifting is unique.

Proof. We observe that the unit ball of Z may be supposed to be ϱ -compact (by [1], Lemma 1). Then the argument is a straightforward imitation of the Lemma of [4]. We omit the details.

In the case $Y = L_p$, suppose T is any other lifting. Then $T - \tilde{S}$ maps L_p into N and there is a non-zero operator from L_p into Z. The induced map into (Z, ϱ) is compact, contradicting the results of [2].

We now give another result of a similar type for the space L_p .

THEOREM 3.2. Let X be a p-Banach space (p < 1) and let N be a closed subspace of X which is isomorphic to a q-Banach space, where $p < q \leqslant 1$. Then any linear operator S: $L_p \to X/N$ may be lifted uniquely to a linear operator $\tilde{S}\colon L_p \to X$.

Proof. For $n \in \mathcal{N}$, let Y_n be the linear span of the functions χ_k^n ($1 \leq k \leq 2^n$), where χ_k^n is the characteristic function of $((k-1)2^{-n}, k2^{-n})$. Each Y_n is isometric to $l_p^{(2^n)}$. Let $S_n \colon Y_n \to X$ be a lift of $S \colon Y_n \to X/N$ with $||S_n|| \leq 2 ||S||$. We shall show that for $y \in \bigcup Y_n$, $\lim_{n \to \infty} S_n y = \tilde{S}y$ exists. Then clearly $||\tilde{S}|| \leq 2 ||S||$ and \tilde{S} may be extended to L_p by continuity and is then a lift of S.

Since N is isomorphic to a q-Banach space, there exists a constant C such that the q-convex hull of the unit ball of N is bounded in norm by C. Hence, if x_1, \ldots, x_n are in N, then

$$\left\| \sum_{i=1}^{n} x_{i} \right\| \leqslant C \left(\sum_{i=1}^{n} \|x_{i}\|^{q/p} \right)^{p/q}.$$

Now suppose $j \leqslant m \leqslant n$, and $1 \leqslant k \leqslant 2^j$; then

$$\begin{split} \|S_{m}\chi_{k}^{j} - S_{n}\chi_{k}^{j}\| &= \Big\| \left(S_{m} - S_{n}\right) \Big(\sum_{i=1}^{2^{m-j}} \chi_{2^{m-j}k+i}^{m} \Big) \Big\| \\ &\leqslant C \left(\sum_{i=1}^{2^{m-j}} \|(S_{m} - S_{n}) \, \chi_{2^{m-j}k+i}^{m} \|^{q/p} \right)^{p/q} \\ &\leqslant 4C \, \|S\| \, \Big(\sum_{i=1}^{2^{m-j}} \|\chi_{2^{m-j}k+i}^{m} \|^{q/p} \Big)^{p/q} \\ &= 4C \, \|S\| \, 2^{-(jp/q+m(1-p/q))} \end{split}$$

and so $\{S_m\chi_k^i; m \ge j\}$ is a Cauchy sequence. Hence we may find the lift \tilde{S} . As in Theorem 3.1, \tilde{S} must be unique, since there are no non-zero operators from L_p into N (see Théorème 3.4.5 of [10] or Proposition 2 of [9], or use the argument above).

We now examine the case p=0, which is rather different. Suppose X is an F-space with F-norm $\|\ \|$. For $x\in X$ we define $\sigma\colon X\to R\cup\{\infty\}$, by

$$\sigma(x) = \sup_{t \in \mathbf{R}} \|tx\|.$$

In the case of L_0 with the F-norm

$$||x|| = \int_{0}^{1} \frac{|x(t)|}{1+|x(t)|} d\mu(t),$$

we have that $\sigma(x) = \mu(\text{supp } x)$.

In general, note that $\sigma(ax) = \sigma(x)$ if $\alpha \neq 0$ and that $\sigma(x+y) \leq \sigma(x) + \sigma(y)$. If L is a linear subspace of X, we define $\sigma(L) = \sup (\sigma(x): x \in L)$.

We shall say that X admits L_0 -structure, if for any $\varepsilon>0$ there exist $n=n(\varepsilon)$ and subspaces X_1,\ldots,X_n of X, such that $X=X_1\oplus\ldots\oplus X_n$ and $\sigma(X_i)\leqslant \varepsilon,\ i=1,2,\ldots,n.$ In addition to the obvious example of L_0 itself, any space of the type $L_0(Z)$ (all measurable functions from [0,1] into an F-space Z) admits L_0 -structure.

The following proposition is trivial.

Proposition 3.3. Suppose X admits L_0 -structure and B is a locally bounded space. If $T\colon\thinspace X\to B$ is continuous, then T=0.

We next prove two lemmas before giving the main lifting theorem.

LEMMA 3.4. Suppose X is an F-space and B is a closed locally bounded subspace of X; let $\pi\colon X\to X/B$ be the quotient map. Let δ be chosen so that the set $\{b\in B\colon \|b\|\leqslant \delta\}$ is bounded.

Then if $\xi \in X/B$ and $\sigma(\xi) \leqslant \delta/3$, there is a unique $x \in X$ such that $\pi x = \xi$ and $\sigma(x) \leqslant \delta/3$. For this x, $\sigma(x) = \sigma(\xi)$.

Proof. We can find a sequence $\{x_n\} \in X$ such that $\pi x_n = \xi$ and

$$||nx_n|| \leqslant \left(1 + \frac{1}{n}\right)||n\xi||, \quad n \in N.$$

Let $u_n = x_n - x_1$ $(n \in \mathbb{N})$; then $u_n \in B$ and if $m \ge n \ge 2$,

$$\begin{split} \|n(u_n-u_m)\| &= \|n(x_n-x_m)\| \\ &\leqslant \|nx_n\| + \|nx_m\| \\ &\leqslant \left(1+\frac{1}{n}\right)\|n\xi\| + \left(1+\frac{1}{m}\right)\|\,m\xi\| \\ &\leqslant \left(2+\frac{1}{n}+\frac{1}{m}\right)\delta/3 \leqslant \delta. \end{split}$$

By choice of δ , this implies that $\{u_n\}$ is a Cauchy sequence and hence so is $\{x_n\}$. If $x=\lim x_n$, then $\sigma(x)=\sigma(\xi)\leqslant \delta/3$. If y is any other point satisfying $\pi y=\xi$ and $\sigma(y)\leqslant \delta/3$, then $x-y\in B$ and $\sigma(x-y)\leqslant \frac{2}{3}\,\delta$; this implies x-y=0.

LEMMA 3.5. Under the assumptions of Lemma 3.4, let Y be a linear subspace of X/B with $\sigma(Y) \leqslant \frac{1}{6} \delta$. Then there is a linear operator $h\colon Y\to X$ such that $\pi\circ h(\xi)=\xi$ for $\xi\in Y$.

Proof. For $\xi \in Y$, define $h(\xi)$ to be the unique $x \in X$ such that $\pi x = \xi$ and $\sigma(x) = \sigma(\xi)$. If $\alpha, \beta \in \mathbf{R}$ and $\xi, \eta \in Y$, then

$$\sigma(ah(\xi) + \beta h(\eta)) \le \sigma(\xi) + \sigma(\eta) \le \delta/3.$$

Thus

$$h(a\xi+\beta\eta)=ah(\xi)+\beta h(\eta),$$

and h is linear.

Now suppose $\xi_n \to 0$ in Y; choose $x_n \in X$ such that $\pi x_n = \xi_n$ and $\|x_n\| \le 2 \|\xi_n\|$. Then $x_n - h(\xi_n) \in B$. If $x_n - h(\xi_n) \to 0$, we may assume, by passing to a subsequence, that for some a > 0 we have

$$\|a(x_n - h(\xi_n))\| \geqslant \delta$$

(since the set $\{b \in B \colon ||b|| \leqslant \delta\}$ is bounded). Then

$$||ax_n|| \geqslant \delta - ||h(a\xi_n)|| \geqslant \delta - \frac{1}{6} \delta = \frac{5}{7} \delta.$$

This is a contradiction since $||x_n|| \to 0$. Hence we have $x_n - h(\xi_n) \to 0$ and so $h(\xi_n) \to 0$.

THEOREM 3.6. Suppose X admits L_0 -structure, Y is an F-space, and B is a closed locally bounded subspace of Y. Then if $S: X \to Y/B$ is a linear operator, there is a unique linear operator $\tilde{S}: X \to Y$ such that $\pi \circ \tilde{S} = S$ where $\pi: Y \to Y/B$ is the quotient map.

Proof. Choose $\delta > 0$ so that $\{b \in B \colon \|b\| \leqslant \delta\}$ is bounded, and then $\varepsilon > 0$, so that if $\|x\| \leqslant \varepsilon$ $(x \in X)$, then $\|Sx\| \leqslant \delta/6$. Let X_1, \ldots, X_n be closed subspaces of X such that $X = X_1 \oplus \ldots \oplus X_n$ and $\sigma(X_i) \leqslant \varepsilon$. Then $\sigma((S)X_i) \leqslant \delta/6$, and so there exist linear operators $h_i \colon S(X_i) \to Y$, such that $\pi h_i(\xi) = \xi, \xi \in S(X_i)$. If we define $\tilde{S} \colon X \to Y$ by

$$\tilde{S}(x_1+\ldots+x_n)=\sum_{i=1}^n h_i Sx_i, \quad x_i\in X_i,$$

then \tilde{S} is the required lifting of S.

If T is any other lifting, then $\tilde{S}-T$ maps X into B and hence $\tilde{S}=T$ by Proposition 3.3.

4. Quotient spaces of L_p ($0 \le p < 1$). In this section we treat the case p = 0 first and in more detail than the case p > 0; the arguments are analogous.

THEOREM 4.1. Suppose X_1 and X_2 are two F-spaces with L_0 -structure. Suppose B_1 and B_2 are closed locally bounded subspaces of X_1 and X_2 , respectively. Then $X_1/B_1 \cong X_2/B_2$ if and only if there is an isomorphism $V \colon X_1 \to X_2$ mapping X_1 onto X_2 and such that $V(B_1) = B_2$.

Proof. The "if" part is clear. For the "only if" part, let $S\colon X_1/B_1\to X_2/B_2$ be an isomorphism, and let $\pi_1,\ \pi_2$ be the quotient maps. Then

by Theorem 3.6, there exist lifts V, U of $S\pi_1$: $X_1 \to X_2/B_2$ and $S^{-1}\pi_2$: $X_2 \to X_1/B_1$.

$$\begin{array}{c|c} X_1 \xrightarrow{V} & X_2 \\ \hline \pi_1 & & & \\ \downarrow & & & \\ X_1/B_1 \xrightarrow{S} & X_2/B_1 \end{array}$$

Then $UV: X_1 \to X_1$ is a lift of $\pi_1: X_1 \to X_1/B_1$. By the uniqueness, $UV = I_{X_1}$; similarly $VU = I_{X_2}$, so V is an isomorphism of X_1 onto X_2 . Clearly $V(B_1) \subset B_2$ and $U(B_2) = V^{-1}(B_2) \subset B_1$; hence $V(B_1) = B_2$.

COROLLARY 4.2. If X admits L_0 -structure and $B \subset X$ is a locally bounded subspace, then X/B admits L_0 -structure if and only if $B = \{0\}$.

Theorem 2.3 and Theorem 4.1 give

COROLLARY 4.3. If B_1 and B_2 are locally bounded subspaces of L_0 , then $L_0/B_1 \cong L_0/B_2$ if and only if there is an invertible operator $T: L_0 \to L_0$ such that $T(B_1) = B_2$.

In particular, $(L_0/n) \cong (L_0/n)$ if and only if m = n, and $(L_0/1) \cong L_0$. This solves the problem of Pełczyński (see Introduction). Also in

this solves the problem of Perczynski (see Introduction). Also in this section we shall illustrate this corollary by showing that $B_1 \cong B_2$ does not imply $L_0/B_1 \cong L_0/B_2$. First however, we state the corresponding theorems for p > 0; the proofs are similar.

THEOREM 4.4. Suppose B_1 and B_2 are two closed subspaces of L_p , each of which is either isomorphic to a complemented subspace of a pseudodual p-Banach space or to a q-Banach space where $p < q \leqslant 1$.

Then $L_p/B_1 \cong L_p/B_2$ if and only if there is invertible operator $T\colon L_p \to L_p$ such that $T(B_1) = B_2$.

In particular, $(L_p/m) \cong (L_p/n)$ if and only if m = n, and $(L_p/1) \cong L_p$.

THEOREM 4.5. If $B\subset L_p$ is isomorphic to a complemented subspace of a pseudo-dual p-Banach space and $B\neq\{0\}$, then L_p/B is not an \mathscr{L}_p -space.

Proof. If L_p/B is an \mathscr{L}_p -space, then the identity map $I\colon L_p/B\to L_p/B$ may be lifted to a map $J\colon L_p/B\to L_p$. Then on L_p , $I=J\pi$ maps L_p into B. Hence, by applying the results of [2] as in Theorem 3.1, $I=J\pi$ and so $B=\{0\}$.

Example. Let $B_1 \subset L_0$ be the closed linear span of the Rademacher functions r_k on [0,1]

$$(r_k(t) = \operatorname{sgn} (\sin 2^k \pi t)),$$

and let B_2 be the closed linear span of a sequence of independent random variables normally distributed with mean zero and variance one. Then $B_1 \cong B_2 \cong L_2$; we shall show, however, that $L_0/B_1 \cong L_0/B_2$.

For suppose $L_0/B_1 \cong L_0/B_2$; then there is an invertible linear operator $T \colon L_0 \to L_0$ such that $T(B_1) = B_2$. By Kwapień's Representation Theorem [3], T takes the form

$$Tx(t) = \sum_{i=1}^{\infty} \varphi_i(t) x(\Phi_i t)$$
 a.e.

where

- (i) $\varphi_n \in L_0, n \geqslant 1$,
- (ii) $m\{t: \varphi_n(t) \neq 0 \text{ for infinitely many } n\} = 0$.
- (iii) Φ_n maps [0,1] into [0,1]; if A is measurable, then $\Phi_n^{-1}(A)$ is measurable; if m(A) = 0, then $m(\Phi_n^{-1}(A) \cap \operatorname{Supp} \varphi_n) = 0$.

Thus for almost every $t \in [0, 1]$, the sequence $\{Tr_k(t)\}$ assumes only finitely many values. Hence for some j, k, with $j \neq k$, we must have $m\{t: Tr_j(t) = Tr_k(t)\} > 0$. However $Tr_j - Tr_k$ is normally distributed and hence $Tr_j = Tr_k$. Thus T is not injective, and we have a contradiction.

Remarks. For p>0, let $x\in L_p$ be non-zero and let V be the linear span of x. Let $\mathscr{L}(L_p)$ and $\mathscr{L}(L_p/V)$ be the p-Banach algebras of all bounded linear operators on L_p and L_p/V , respectively. If $S\in \mathscr{L}(L_p/V)$, let \hat{S} : $L_p\to L_p$ be the unique lift of $S\circ\pi$. Then the map $S\to \hat{S}$ is an algebra homorphism, and in fact an embedding of $\mathscr{L}(L_p/V)$ into $\mathscr{L}(L_p)$. Thus $\mathscr{L}(L_p/V)$ is isomorphic to the closed subalgebra of $\mathscr{L}(L_p)$ consisting of all $T\in \mathscr{L}(L_p)$ such that $Tx\in V$. We may define a multiplicative linear functional φ on $\mathscr{L}(L_p/V)$ by

$$\varphi(S)x = \hat{S}x.$$

5. K-spaces. In this section, we abstract a particular property of the spaces L_p and consider it in more generality. We restrict to the real case, but the complex case is identical.

If X is an F-space, we shall say that X is a K-space if every short exact sequence $0 \to R \to Y \to X \to 0$, with Y an F-space, splits. Alternatively, if $S\colon Y\to X$ is onto and dim $S^{-1}(0)=1$, then there exists an operator $T\colon X\to Y$ such that $ST=I_X$.

If X is a p-Banach space $(0 , we shall say that X is a <math>K_p$ -space if every short exact sequence $0 \to R \to Y \to X \to 0$, with Y a p-Banach space, splits.

THEOREM 5.1. An F-space [p-Banach space] X is a K-space [K_p -space] if and only if whenever Y and Z are F-spaces [p-Banach spaces] and $S\colon Y\to Z$ is a surjective operator with dim $S^{-1}(0)=1$, then each linear operator $T\colon X\to Z$ may be lifted to an operator $\tilde{T}\colon X\to Y$ such that $S\tilde{T}=T$.

Proof. We prove the statement for K-spaces. Suppose X is a K-space. Let $V \subset X \oplus Y$ be the subspace of all (x, y) such that Tx = Sy,

and define $P: V \to X$ by P(x, y) = x. Then $P: V \to X$ is surjective, and dim $P^{-1}(0) = 1$. Hence there exists a linear operator $R: X \to V$ such that $PR = I_X$. Then $RX = (x, \tilde{T}X)$; clearly $S\tilde{T} = T$.

For the converse take Z = X and T to be the identity.

We remark now that if X admits L_0 -structure, then X is a K-space (Theorem 3.6), and that an \mathcal{L}_p -space is a K_p -space.

THEOREM 5.2. If X is an F-space [p-Banach space] and N is a closed subspace of X such that X/N is a K-space $[K_p$ -space], then N has the Hahn-Banach Extension Property in X.

Proof. Again we restrict to the K-space case. Suppose $\varphi \in N'$ is non-zero; let $M = \varphi^{-1}(0) \subset N$. Consider the natural quotient map $\pi \colon X/M \to X/N$; then there is a map $S \colon X/N \to X/M$ such that $\pi S = I$ on X/N. Then S(X/N) is a closed subspace of co-dimension one in X/M and so there exists $\psi \in (X/M)'$ such that $\psi \neq 0$ and $\psi \circ S = 0$. If $g \colon X \to X/M$ is the natural quotient map, then $\psi q \in X'$. If $x \in N$, then $\psi q(x) = 0$ if and only if $q(x) \in S(X/N)$; then $q(x) = S\pi q(x) = 0$. Thus $(\psi q)^{-1}(0) \cap N = M$ and so a suitable multiple of ψq extends φ .

There is also a converse to Theorem 5.2.

THEOREM 5.3. If X is a K-space $[K_p$ -space] and $N \subset X$ is a closed subspace with HBEP, then X/N is a K-space $[K_p$ -space].

Proof. Suppose we have a short exact sequence

$$0 \to \mathbf{R} \to Z \stackrel{\varrho}{\to} X/N \to 0$$

and let $\pi\colon X\to X/N$ be the quotient map. Then there is a lifting of π , $S\colon X\to Z$, so that $\varrho S=\pi$ (by Theorem 5.1). Suppose first S is not surjective; then S(X) has co-dimension one in Z and $\varrho|S(X)$ is one-one. Define $R\colon X/N\to Z$ by $R\xi=z$ where $z\in S(X)$ and $\varrho z=\xi$. If $\xi_n\to 0$ in X/N, then there exists a sequence $\{x_n\}$ in X such that $x_n\to 0$ and $\pi x_n=\xi_n$. Since $Sx_n\to 0$ and $Sx_n=R\xi_n$, $R\xi_n\to 0$, i.e. R is continuous.

Now suppose S is surjective; then $S^{-1}(0)$ has co-dimension one in N. Let $\varphi \in N'$ be a non-zero linear functional with kernel $S^{-1}(0)$. Then φ may be extended to $\psi \in X'$. Now define $\tilde{S} \colon X \to Z$ by $\tilde{S}x = S\left(x - \psi(x)u\right)$ where $u \in N$ is chosen so that $\psi(u) = \varphi(u) = 1$. Then $\varrho \ \tilde{S}x = \pi \left(x - \psi(x)u\right) = \pi x$; and $\varrho \ \tilde{S}x = 0$ implies $x \in N$. Hence $\ \tilde{S}x = S\left(x - \varphi(x)u\right) = 0$. Thus ϱ is one-one on $\ \tilde{S}(X)$ and $\ \tilde{S}(X)$ has co-dimension one in Z; we can apply the previous part of the proof.

COROLLARY 5.4. X is a K_p -space if and only if $X \cong l_p(I)/N$ where I is some index set and $N \subset l_p(I)$ has the HBEP.

We remark that if $l_p/N \cong L_p$, then N has HBEP and the extension is unique, since $L'_n = \{0\}$.

COROLLARY 5.5. (i) If N is a closed subspace of L_0 , then L_0/N is a K-space if and only if $N' = \{0\}$. In particular, if L_0/N has L_0 -structure, then $N' = \{0\}$.

(ii) If N is a closed subspace of L_p , then $L_p|N$ is a K_p -space if and only if $N' = \{0\}$. In particular, if $L_p|N$ is an \mathcal{L}_p -space, then $N' = \{0\}$.

Note here that if we take for N the closed linear span of a sequence of functions with disjoint supports in L_0 , then $N \cong \omega$, and hence $L_0/N \cong L_0$. However $L_0/N \cong \omega(L_0/1)$ (the countable product of copies of $L_0/1$); hence $\omega(L_0/1) \cong L_0$.

PROBLEM. Is L_p or l_p a K_r -space for any r < p, or even a K-space? In particular, is l_1 (or any Banach space) a K_p -space for any p < 1? This latter question is essentially the same as a problem of Stiles [8]: if l_p/N is locally convex, must N have the HBEP?

References

[1] N. J. Kalton, A note on the spaces L_p (0 < p < 1), Proc. Amer. Math. Soc., to appear.

[2] - Compact and strictly singular operators on Orlicz spaces, Israel J. Math. 26 (1977), pp. 126-136.

[3] S. Kwapień, On the form of a linear operator in the space of all measurable functions, Bull. Acad. Polon. Sci. 21 (1973), pp. 951-954.

[4] J. Lindenstrauss, On a certain subspace of l_p, Bull. Acad. Polon. Sci. 12 (1964), pp. 539-542.

[5] D. Pallaschke, The compact endomorphisms on the metric linear space L_{φ} , Studia Math. 47 (1973), pp. 123-133.

[6] C. E. Rickart, Banach algebras, Van Nostrand, Princeton 1960.

[7] S. Rolewicz, Metric linear spaces, PWN, Warszawa 1972.

[8] W. J. Stiles, Some properties of l_p , 0 , Studia Math. 42 (1972), pp. 109-119.

[9] P. Turpin, Opérateurs linéaires entre espaces d'Orlicz non localement convexes, Studia Math. 46 (1973), pp. 153-165.

[10] — Convexités dans les espaces vectoriels topologiques généraux, Diss. Math. 131 (1976).

[11] W. Żelazko, On the locally bounded and m-convex topological algebras, Studia Math. 19 (1960), pp. 333-356.

UNIVERSITY COLLEGE OF SWANSEA SINGLETON PARK, SWANSEA UNIVERSITY OF ILLINOIS URBANA, ILLINOIS

Received October 10, 1976