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On the problem of convergence of a bounded-below sequence of symmetric
forms for the Schridinger operator

by
YU. A. SEMENOV (Kiev)

Abstract. In the paper the problem of smooth approximation of a Hamiltonian
with singular positive potentials for whiech — roughly speaking — Friedrich’s exten-
sion does not have to éxist has been solved. An application to the theory of potential
seattering is also given. .

1. Introduction. Tn Robinson’s paper [6] the approximation pro-
cedure for a self-adjoint two-particle system Hamilbonian with strongly
singular potentials was presented in the case where two well-known
definitions of a Hamiltonian, i.e. Friedrichs’ extension and the form-sum,
coincide. )

This allowed him. to extend Lavine’s results on the theory of potential
scatbering with positive decreasing H,-bounded potentials to positive
decreasing potentials with arbitrary singularity at point zero.

The intention of the present paper is to establish some approximabion
theorems for singular potentials under much wider conditions than those
given by Robinson and to present their application to the theory of poten-
tial scattering. The main results are included in Theorems 2 and 4.

2. Formulation of the problem and results. Let us consider the
(eomplex) Hilbert space # = I*(R, @), 1> 2. Leb us define self-adjoint
operators H, and V acting in 5 by:

(Tew) (@) = — du(o), D(To) = CP(RY, Hy=15;
(V) (@) = v(o)u (),

@

(V) = {wel Vul, = [B@u@)ido< o,
Rl .
1
where 4 = Y/(8%/0x3) and v(#) i8 & real-valued measurable function such

B=1
that .
0 < o(@) e Dho(RINS), 8 = {8, oy, ey ke T
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Leb {V,},=, be & sequence of self-adjoint operators associated with
such bounded functions that

LSy <. <@ <. <o),
2. a.e-lim v, () = v(w).

The following truncation of operator V will by denoted by Vi s
s (Viw)(z) = Vi (@) ()
v(z) for

0 for

v(z) < m,
P () = v(2) > n.
Any positive self-adjoint operatof A defines the following form:
Sy, 0] = {AMu, APy, D(F,) = D(AV?) x Z(4AV?).
Now, let us consider the sequence of forms .#,:
0< S <A<

LI < Py,

‘where
I =Ig,+Ip,;

Ig =Ig,+Iy,

2(5,) = 9(n);
P(F) = D(Fg)n D(5).

Let H, = H,+V,, with 2(H,) = 2(H,) and let H = H,+ V (form-
sum). .
Then ([5], p. 569) there exists such a self-adjoint operator H, > 0
that
jn[“7”]_>‘f£{w['usﬁ}> U, v E'@('me)
and
(Hp, 2" > (Ho+4™Y, Reli>0.

It is well known that Sy < .£5. Moreover, if V, (= Vi) 18 @
truncation of operator V, then Za, =g (2], [3]). Generally, it is
not clear whether S = JFp. ’

It we assume that 0 < »(#) e Ij,, (R'\S), then Friedrich’s extengion
Hy of the operator H,+V on Z(H,+ V) = D(Hy)n2(V) is well defined.
Since 2(£g ) > Q(JHF) , the equalily H = Hyp implies the equality
H =Hp =H,. .

Robinson achieved the following result:

THEOREM R. Let o = L*(R!, &@x) with | # 2. Let us assume that

0 < v(5) € Lp,(RIN{0}),
whgare .

2 when 1=1o0rl>4,

= 1=3.

oo when

Then H, = H.
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We shall now prove the theorem as follows:
TEEOREM 1. Let o = L*(R', d'x), 1> 3. Let us assume that

0 < v(®) & i (RNH),

Then Hp = H.

Remark. Since Hy--V is essentially self-adjoint on CF (R'\S) where
1> 4 (see, for instance, [7]), then useful statements of Theorem R and
Theorem. 1 are suitable only for cases where

(0,1 ={2,1), (e,3), (2,3)}.
If | = 2, then the following theorem holds true:
THEOREM 1'. Let o = I*(R*, @*x). Let us assume thai
1. v(@) € Lio(RN\S), 8 = {m, a;, ..., 0.},
2. (@)= alr—al™? ;>0,i=0,1,...,0.
Then we have Hy = H.
- Now, let us consider the case where

8 ={ay, a,...,0,}.

0 < o(w) e I, (RNS), g<2.

Clearly, Hy does mot mow have to exist. Neyertheless, the following
theorems are frue:

TeEOREM 2. Let # = I*(R', @x) with 1> 3. Let us assume that
0 <v(2) € Liy, (RNS).

Then H,, = H. ‘
THEOREM 2'. Let o = I*(R*, @*x). Let us asswme that
L. v(2) € L, (R*\8). {
2. 0@ > alr—al™ ¢>0,1=0,1,..., v

Then H,, = H.

3. Proof of Theorem 1. The idea of the proof is the'same as in Robin-
son’s work [6], but here the information about the core of the form Sy
is taken into consideration. So, let all the assumption of Theorem 1 be
satistied. Liet 25 be a certain core of the form 5. To prove the theorem
it is sufficient to construct such a sequence {¥y} for any ¥ e Py that:

1. Yy e D(H)n2(V),

2. [Py — Pl 0,

3. Fg[Py—¥]—0.

Let us take 9y = exp (—H)&, where & = (1) L*. Then 95 is a core

. 1sp<w )
of H and hence a core of S5 Moreover, 2y = & ([2], [3])-
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Let ¥ePy. We shall define ¥, assuming that ¥, , = Y, 0
= (Pw,)* g, where g is a smooth approximation of the identity and
‘where

:
w, = [Jufd, wcOFENad), 0<wf)<1,
i=1

] 1 when 1in<llz—al<mn,
wf) (o) =
0 when |m—a;<1/mor lz—a)>2n,
9 dlw—a;~* when |z—al<l/m,
VR (o)l < when |z—a]>n
3 .

Lmvms 1. The sequence {¥,, .} with any fived n satisfies the following
conditions :

(a) ¥, € O (RNS),

(0) 1¥— Pulla 0,

(C) 'fHO [‘Iln,k - ’g:fﬂ] nd 07

(d) fV[Tn,k”‘ ¥1 0.

Proof. Obviously, only point (d) needs proving. ‘We have

1= [0(@) %) —Pul@)dn
Rl

< Wi — Polleo P — alle [ 0*(@)d'o,
2

where K’ = K+s¢,, Ve, >0, K = supp (w,). N
By the inequality ¥zl < [Palle < Pllo<< 00 and by condition

(b) we eventually obtain:
I < Pl 20l 1¥nse— Palle >0,

LeymA 2. Let ¥, = Pw,, ¥ € Pg. Then

(8) % — Pl 0,

(b) Fp[¥,—¥] 0,

(¢) Fg, [¥,—¥]1 0. )

Proof. Points (a) and (b) are obvious. To prove point (¢) we mentionf
that .
Ve PE<@ [ |P@)s—al e+ [ werde = 10+19,

lz—ajl<lin lx—~ail>n

when % — oo,

I >0 as n—> oo.

Since 1> 3, we have

10 = @12, f =3ds — 0,

1t<i/n

when 12— co.
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Hence, |
L, [Fo— ] = IV(0,—1) PI} = I Va,,) P — (L —m,,) VP2
< 2(I( Vo) Pl + (L — w,,) VEIE) < 2((1—w,) VE[E+2 2 (IP+ 19,
i=1

ie. Sy [P, —¥1~0 as n — co.

Thus the required sequence has been constructed. This completes
our proof.

Remarks. 1. Applying condition 2 of Theorem 1’ we have

% [ r—alTPe) P
|z~ajl<ifn
< f Y(zw(z) P(x) >0, when
le~a;l<i/n
since ¥(2) v(w) P(x) e L'(RY.
2. Provinzg point (d), one may proceed as follows: Choose {V,}x_,
such that Vmﬂg)» V and V,, e L. Then

W —> o0,

I [ o) =0 (@) ¥, — Pl
Rl :

Iy = Pl W= Bl [ o <20 1 S0
| 2

Thus a stronger result than Theorem 1 has been proved here (see [1]).

TEEOREM 0. Let 0 < v (%) € L (R'\S), 8§ = {&g, ayy...,a,}. Then
the form Jg[f, g1l O (R'N\S) is dlosable.

COROLLARY. Let v = v, —v_, let v, satisfy the conditions of Theorem 0,
and let |V_|'? be HY-bounded with a<1, ie 2D(V_[2) > 9(HP),
NV_1"2fl < al HEP fla+blfllay @ €[0,1), B> 0, f e D(H).

Then Fglf, gl = <Hof, 8> +<Vf, g> is closable on OF(RN\S), §
= {to; Gy, ..., @,}. '

4. Proof of Theorem 2. First of all let us mention that the statement,
of Theorem 2 under the restrictive agsumptions 0 < v (%) € L&, (R'\S)
with a certain ¢ > 1 is an easy consequence of [5], Proposition 2.5 and
Proposition 3.4.

Now, let ¢ = 1. Let

)y
0 when

when 2| <1,
[} > 1.

Let us define an operator ¥Y: o — # by (Y¥) (@) = Y () ¥ (). Then
Hy+Y with 9(H,+Y) = @(H,) possesses a strongly negative eigen-
value —p? and a strongly positive eigenvector ¥, with [¥,[l; = 1.

Y(») =

6 — Studia Mathematica LXIV.1
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Tet # = I*(R!, dy), dy(z) = Pi(») d’m Let us define the mapping
W: #' — # by the equality (Wu)(z) = ) u(x).

Tet A =Ho+Y+pu2 and 4’ = W"1 AW Then (L*(R, dy) = %)
llexp (—t4") flla, < Ifllg, (see, for instance, [1]).

Livwma 3. Let F —H, or H. Then lexp (—tF")flg, < Mlflg,,
fed'.

Proof. Using the Trotter formula, we obtain

llexp ( —tF) flla, < llexp ( (—tHy) fla,s

where By, = W F, W, (F, = Hy+V, or Hy+ V).

Now,

lexp (—tH;) flla, = llexp (—t[4'— ¥ —p2) flg,
< loxp (—4LT+pTD fla, < Hfla;-

Hence

IleIcp(—tF')fllyl<E lexp (—t7,) fllg, < M'Ifla, -

Defining exp (—iFl) to be the unique bounded extension of the map-
ping exp (—1F") [ 810 #' on %#,, one may see that exp (—tF) is a O4-semi-
group of quasicontractions on #; and —TF, is its infinitesimal operator.

Tevma 4. For any ¢ eD(H, ) D (Vi)' the following equality
holds true:

exp (—tF) (Hyy + Vi)p = F} exp (—tF))g
where —Hgy, and —V, are infinitesimal operators of the sengroups
(exp (—tHg) 1By ') and (exp (—tV) 1 Bun 2£)", respeciwely
Proof. For any ¢ € #"
| exp (—tF")p —Fy exp (—tFy)pls
< |F exp (—tF)p—F, exp (—tF,)¢l, >0, a3
llexp (—tF;) (Ho,u + Vi) o — Frexp (—tF,)pl;
<ef2+ M-t”V;‘p_ Wl <e,

n —> 00,

Vo e2(H)nD(Vy).
Here w, = V, or V. .

Let us notice that W 0P (R'N\S) < 2(H,,)n2(Vy) o#'. Hence,
as a consequence of Lemma 4 and of the fact that ¥, is closed we obtain
W 0P (RINS) = 2(F))

and

Fip =Hy,0+Vig, ¢e W0 (RNS).
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Thus; operators H,,, and H, are both restrictions of the operator
Ny, where

Ny = [Ho,+ Vi W CR (RINS).

LevMMa 5. R(N,+1) is dense in %, = L* (R, dy).

In fact, the proof of this lemma is given in [7], Proposition 3.4 and
will not be presented here.

It follows from Lemmas 4 and 5 that H;,,l and H, coincide. So the
semigroups exp (—tH, ;) and exp (—tH,), and hence the semigroup
exp (—tH,) and exp (—iH), are equal. Thus H, = H.

Theorem 2 is now proven.

Remark. The following theorem. strictly follows from the consider-
ations given above (compare [7], Theorem 1.3).

THEOREM 3. Let # = IL*(R', d'z), 1> 3. We assume that 0 < v(w)

& L}, (RINS), 8 = {ay, ay, ..., a,}. Then for any t> 0
S — &) (2#) — lim (exp (—H,in) exp (—Vi/n)]* = exp (—iH).

5. Application in potential scattering. Let # = I* (R®). Let ¢ : R® —
— g(x) € R be a meagurable function. We assume that
1. g(z) = v(2)+w(w), » e R,
2. 0 < 0(®) € Lip, (RP\S), 8 = {a, 81, -+, &},
3. w(x) e B (R is the Rollnic class; see [8]).
LevyA 6. For any N =1 and 2> 0 the operators
A = |WP(H+ V)77,
B = WP (Hy+ V42~ W*,
0 = (Hot V427 HW| (Ho 4 V44"
are the Hilbert—Schmidt operators.
The following estimations hold true:
4o < 1ol
(%) 1Bl < |1Bollse.s. s
Il < Collsp.s0.
where, for instance; A, = |W|M (H,+4)~7.
Proof. Let K be a positive cone in L2(R?). Then for any fe K and

>0
(Hy+ ) Vf—(Ho+ V-+2)"Vfe K.

This inclusion is a consequence of Theorem 3 and of the representation
of a resolvent by its semigroup. '
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Since |W|'* is the Kato-perturbation of the operator H}*, the ope-
ratiors 4, and A are bounded mappings in L*(R®) and obviously 4,f—Af
e K Vfe K. In particular |4,f]|< 4], VfeK.

Now, let us take an increasing sequence of finite-dimensional sub-
spaces {,},.; from I*(R®) such that:

1. basis vectors for H,—{®,)7_, belong to K, -

2. Pg: I? - B, strongly converges to 1, where Py, is an orthogonal
projection on E,.

Then

n

Pe,dollps.= D 4. BF = 3 4D, = Py Al
k=1 k=1

Hence we have the required inequality

.. < 1A olle.se. - -

The remaining two inequalities may be proved the same way (see
also [67).

TEEOREM 4. Let # = L*(R?). Let g = v+w. We assume that

1. 0< v(2) e TR\ {0}),

2. v(dz) <w(z), Viz 1, 2R,

3. Iim [z]Pv(2) =0,

le}->o0

4. w(z) e I'nR.
Let us define H = Hy4Q = Hy 1V 1 W.

Then the wave operators Q. (H,, H), 2, (H, H,) do ewist as unitary
transformations between # and #ZL,.

Proof. By Theorem 2 and the appropriate results of Robinson [6]
it follows that the wave operators 2, (H,, Hy+ V) exist and are complete.

Now, using Lemma 6 and repeating the proof of Simon’s Theorem IV,
1.1, [8], one may see that the wave operators @, (H,1V, Hy,1Q) exist
and are complete. Hence, according to the transitive property of wave
operators, we infer that Q, (H,, H,4 @) exist and ave complete.

Remark. To prove inequality (%) Robinson [1] employed the
following estimation, restrictive in this case, for the potential V ‘
(#%) (Ho+V+2P° > H; (in the sense of forms).

Estimation (++) means that H,+V is self-adjoint on GHYND(TV).

The proof presented here shows that the inclusion exp ( —t[Hy+ THE
< K (ie. lemma Davis—Faris [4]) is essential for our considerations.
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