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T » is & normal Radon probability measure concentrated on G, then we
have

S [y =T > = DIyl = 1T = 181,

which concludes the proof of the proposition.
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Smooth and R-amalytic negligibility
of subsets and extension of homeomorphisms
in Banach spaces

by
T. DOBROWOLSKI (Warszawa)

Abstract. It is proved that, if 4 is a compact set in the space B = F’ x I, (A),
where B’ is an infinite-dimensional, separable Banach space, then E\ A and F are
R-analytically isomorphic. It is also established that, if 4 is a closed subspace of
infinite codimension in a separable Banach space or in an arbitrary Hilbert space H,
then BN\ A and F are R-analytically isomorphic. In the smooth category analogous
facts hold true if F is any infinite-dimensional weakly compactly generated (WCG-)
Banach space. It is shown that any embedding of a compact subset A of a Banach
space B admits an extension to an autchomeomorphism of ¥ which is R-analytie
off 4 provided that either A is finite-dimensional and B = B’ x I, (4) for a separable
infinite-dimensional Banach space B’ or E = B’ X I, (4), where B has an uneonditional
Schauder basis. Other results of this type are proved.

. Introduction. Lt us say that a closed subset 4 of a manifold M is
smoothly or R-analytically negligible in M if M\ A and M are smoothly
or R-analytically isomorphic. Negligibility of subsets was investi-
gated by Renz [17], Moulis [14], West [21], Burghelea and XKuiper [5],
Szigeti [18]. The most general theorem known in this field so far was
established by Renz; it stated (in its weaker form) that compact sets are
smoothly negligible in smooth Banach spaces with unconditional Schauder
bases. The main result of the first part of this paper is the theorem stating
that compact subsets are R-analytically negligible in any infinite-dimen-
sional separable Banach space. This is a strengthening of the result
of Renz concerning smooth negligibility. (The only fact concerning R-
analytic negligibility known earlier was obtained by Burghelea and Kuiper
[5]; it stated that I,\{0} and I, are R-analytically isomorphic.) We observe
also that our theorem does not extend to all infinite-dimensional Banach
spaces; e.g. one-point sets are not R-analytically negligible in the space
¢ (4) with uncountable A.

In the second part of this paper we deal with questions concerning
the extension of embeddings of compact subsets K of a Banach space B
into the space H. Let us recall that Renz proved in [17] that if B =1,
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or 0y, then any such embedding can be extended to an autohomeomorphism
of F which is of clags €% off K. Here we extend this result to the R-
analytic category by proving that, under the assumption that ¥ is a Banach
space with an unconditional Schauder basis, any embedding of K has an
extension to an autohomeomorphism of E which iy R-analytic off K.
We also show that an analogous theorem is true if 2 < dim ¥ < o and K
is countable and compact. On the other hand, we observe that facts of
this type are false it B = ¢,(4) with uncountable 4.

The methods we employ are based on non-complete norm tech-
niques of Bessaga and Klee [2] and Bessaga [1] and on Klee’s [12] ex-
tending homeomoiphisms by “pughing graphs around”. However, to obtain
R-analytic “neglecting isomorphisms” we have to construct certain auxil-
iary R-analytic paths and real functions in Banach spaces. This is achie-
ved by using Whitney’s ajpproximation technique [22]. One of the main
lemmas that we prove in this way states that if X is any compact subset
of the Banach space 1,(4), then there is a lipschitzian function which van-
ishes precisely on K and is R-analytic off K (we call such functions “Whitney
functions”).

The results of this paper were announced without proofs in [8].

Acknowledgment. The anthor wishes to express his profound
gratitude to C. Bessaga and H. Toruticzyk for discussions and suggestions
during the preparation of this paper.

Preliminaries. The following letters denote sets: N = positive in-
tegers; B = reals; C = complex numbers. We put N = Nu{cc} and R*
= [0, o).

I M, and M, are CF manifolds and p e N, then C°(M,, M,) denotes
the seb of p-times continuously differentiable maps from My to M,. If My
and M, are R-analytic manifolds, then by C°(M,, M,) we denote the
subset of R-analytic maps of the set O%°(M,, M,) = () OP(My, My).

N
D® ¢ denotes the pth derivative of a O map a; we ]?ut DWg = Da.
Whenever a is & continuous map we put D g = ¢. Isomorphisms in the
O" category for r ¢ NU{w} are called ¢ isomorphisms.

Let E = (&, |]) be a normed linear space and let w be a pseudo-
norm on H. If f: X > Fis a map and Z < X, we putb

w(f)z = suplw(f(2)): 2z eZ}.
For every A = Hwe denote by dist,,(z, 4) the distance between x and A4
in the psendometric induced by w. We. put
B4, = {»eB: dist,(z,4) <s}.
Tf w = |- ||, we also shall usethe corresponding symbols: [|fllz, disty ., (z, 4)
*

z.a.nd _B".H(A, ). A sequence {2} of the elements of the dual space B
is said to be fotal if the functionals o}, separate the points of B. Whenever
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(H, {+ +>) is a Hilbert space, we denote by |-| the norm induced by the
scalar product (-, -)>. For the spaces R* and I,(4) the symbols (-, >
(and |-]) denote the standard sealar products <+, -> (and the norm defined
by it). .
A psendonorm w on E is called of class C" for r e Nu{e} if it is of

class OF on the set B\w*({0}). The space & is said fo be O? smooth for

p e N if it admits a non-trivial funetion ¢ e 0?(B, [0,1]) whose support

suppe = {&: p(x) > 0} is bounded. ‘We say that B admits G? partitions of

unity (p e N) if for any open ecover % of B there exists a family {@.}

< O?(E,[0,1]) such that Y g.(@) =1 for every & e E and {suppe.} is

a locally finite cover of B subordinate to %.

We use the usaal symbols for the topological operations: el = closure
and int = interior. . .

1. Whitney functions. The constructions in the smooth case. Suppose
that (X, ||-]) is a normed linear space and w: X - RT is a confinuous
pseudonorm. Let A = X be 2 w-closed set and lét U be a w-neighbourhood
of A. A continuous funetion p: X - R* will be called 2 O Whitney func-
tion for (A, Usw), r € NU{0, o}, if it satisfies the following conditions:

@) gD = 4,
(2) @: (XNA,|I-[)—~ R is of class o,
(3) lp (1) — @ (Ba)] < w(my—@z) for all #y, @5 € X,
(4) @(z) =const for ¢ U.
If w = |||, we shall call a 0" Whitney function for (4, U;w)a 0"

Whitney fundtion for (4, U). _

Tet A,B = X be disjoint eclosed sets. A (? fonction (p e N) p:
X [0, 1] will be called a €7 Urysohn function for (4, B) if pi({0}) =4
and v~ ({1}) = B.

1.1, Livua. Suppose that w: (X, II*I) = R+ is a norm of class OF with
pE N. If A = Xis a compact set and U is a w-neighbourhood of A, then there
exists @ OP Whitney function for (4, Us w). If X is w-separable and 4 <= X
is an arbitrary w-closed set, then there exists a CP Whitney function for
(4, X; w).

Proof. A is compact. We fix n e N. For any « A there exists
a w-lipschitzian (7 function g,: X — [0, 1] such that

9| XNB,(4,1/n) =1 ‘@1, =0,

where U, is some w-neighbourhood of . Leb {Uzi}{-;l be a cover of A.
The OP function ¢, = @z "« " Pa, satisfies ¢, 14 =0,

'Pn]X \Bw(A’ 1/”’) =1 {(pn(“’) —‘pn(y)l < ﬂ’fn‘w(-’”“?l):
for some 1< M, < oo and any z,Y e X.

and

and
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. Pick n, such that B,(4, 1/n,) =U. Then the function P =
3 27" Y(M,) g, is the required O Whitney function for (4, U; w).

n=n,

o .
(X ,.'w) i separaib_le. I P,Q c X are disjoint w-closed sets, then
there exists a 07 partition of wunity {a,}s., subordinated to {X\@, X\P}

with
[an(wl) - an(wz)[ < an (ml "'_'7"2)

for some 1< M, < oo and any @, 2, € X (see [19], p. 44). Then, letting

Y = 2_1‘_1(-Mn)-lam
sUppa, CX\P
we have
peC?(X,[0,1), 9|P =0, u|@>0
and  [p(@1) — ()| < w(wy —s)

for all @, z4 e X.
8o, for any n e N, we can construct P functions 0 < ¢, << 1 such that
g1lclyBy(4,1/3) =0, @ |X\B,(4,1/2)> 0,
onlelyB, (4, 1/(n+2)) UX\B,(4,1/(n—1)) =0,

Palel,By(d, 1m)\B, (4, 1/(n+1)) >0 for n>=2
and ’

lon(®) — @ (#2)] < w(wy —x,)  for all #,,2, € X and ne N.

Finally, the function ¢ = >' 27 "¢, is the required 0? Whitney function -
n=1

for (4, X;w).
The next lemma coneerns Urysohn functions.
1.2. LEMMA..FOT every pair (K, L) of disjoint compact sets of a Hilbert
space H there ewists o |-|-lipschitzian O%-Urysohn function.
Proof.J_l. Assume that L = @. Denote H, = clspan K. We have
H = 15((‘,(9151‘l , where Hi is the orthogonal complement of the separable
subspace H,. Let @, € Hy, ¢, > 0 for n e N, be such that () By (2,, 20,)
- 3 i neN
= H\XK. For ea;ch n there is a funection y,, e 0°(R, [0, 1]) with ,|[0, o,]
=1 and y,|[40}, o) = 0. Then the (™ function ¢, given by ¢,(x)
=yulle—a,]*) for weH satisfies ¢,|B (2, 0,) =1 and "(p |
. o n £
H\B, (2, 2 0,) = 0. It is evident that the G°°if1mction Py = Zo'c 27"(c,) g
E n ni
1

where ¢, = sup{IDWqllp : 0k < n}, is || itzian —~
: I oallgy: O <k <}, is [+]-lipschitzian and 7 1({0
= K. Take @ |-|-lipschitzian function y ¢ 0°(R, [0, 1]) with y"l({(‘)p]?) (={ 3))

e ©
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The function v(z, ) = pe(®) +y{ly1*) for (z,y) e Hy x Hi has the required
property.

9. The general case. Let p, and v, be (* Urysohn functions for the
pairs (K,©@) and (L, 0), respectively. We define g: H — R? by g(=)
= {p. (@), p,{@)) for @ e H. There i8 a |- |-lipschitzian ¢ Urysohn function
A: R [0, 1] for (g(X), ¢(L)). We see that log is the required function.

1.3. Remark. For every pair (K, L) of disjoint compact sets of a sep-
arable normed linear space (X, |-|)) there exists a |l |-lipschitzian C%
TUrysohn function. (This follows from the fact that X admits a comtinu-
ous linear injection into I,.) For every pair (4, B) of disjoint closed
subsets of the space I, there exists a ¢ Urysohn function. (The proof is
analogous to that of 1.2.)

2. Auxiliary comstructions in the R-analytic case. The construetion
of R-analytic Whitney functions is not so straighforward as it is in the
smooth case. We shall perform this construction basing ourselves on
Whitney’s' finite-dimensional technigue of approximating smooth fune-
tions by R-analytic ones. Our argument starts with a technically eompli-
cated lemma (Lemma 2.1), whose proof includes an adaptation of Whit-
ney’s technique. This lemma will be proved in such generality in order
o allow us to construct ¢ Whitney funetions (Lemma 2.2), a certain
R-analytic approximation of smooth homotopies (Lemma 2.3) and R-
analytic paths (Lemma 2.7).

To begin with, assuming that X is o Banach space, we introduce
the following mnotation:

02 (R", X) = {a € C*(R", X): span o(R") is finite-dimensional}.

9.1. TECHNIOAT TEMMA. Suppose that H is a Hilbert space, X and B
are Banach spaces, {w: n € N} is a tolal set in H* such that Ikl < 27" for
n>1 and {m,: neN} c N an increasing sequence. Write P, = (&,
ey @ )i B> R and et n(z) = 2222 +1) for #e CN{—1,i}. Let Qn:
ExHxBR->R™xRxR be defined by

Qn(@, by 1) = (Pu(@), n(1R1), 1)
Moreover, let K be a. compact subset of B and consider the sequence of closed
neighbourhoods of K -
A, = Q;l(clBl.l(Pn(K), 1/n) [42'", 27" x[—27", :2‘“]) cExHXR
for n=1,
4, =ExHXR,
which is nested in K. Write

B, = An\An—H for n= 0.
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Then there exist real numbers 0 << ky<< by < ky ... such that for every con-
tinuous pseudonorm ||-|| on X, for every sequence {F,J,BD of maps such that
F, =const: EXxHxR-+X, F, =F,0Q,eC0(ExHxR,X) (n>1),
and for arbitrary positive numbers 8, (n>=0), there exisls a map

g: BXHXR\K x{0}x {0} > X

of class 0 satisfying for n > 0 the following conditions:
(1) ”g _"Fn”,,Bn < ”F'n,-i—l _Fn”;?n + 5%?
(il) |Dg—DT,|p, < |D¥,,—DEF 'z, + (1P — T, n]lﬁ;,;l- 6p) =+ 6,

o o _ | _|o a_ I ,
EQ—WF "BIFn-l—l_'B';Fn - +2n+3(”Fn+1—Fn“Bn+
n

(i) | n
| Bn.
+8,)+ 6,

Proof. Fix positive numbers 5, (n > 0) with

1) D'5,<8,2 and D 8,< oo

i=n >0

<

Write K, =clB,(P,(K),1/n) and observe that

@) K,,, c mtK,x R™+1"™ for neN
and

(B) Ex{0x{0}c...c @K, x[—2" 2 "]x[—~27",27"])

< A, < 4,,

cd, ...

M4, =Kx {0} x {0}.

neN

Using (2) we can find for each » € N a function $, e C°(R™», [0,1]) such
that

(4) supp @, is compact,

5) @,(uw) =1 it  u belongs to some neighbourhood of K,
(6) Fplu) =0 i ow ¢ K, X R™ ™-1 for n>2.

Moreover, for each n € N let the function 1, e C*(R, [0, 1]) be such that
(Y A,) =1 if ¢ belongs to some neighbourhood of [ —27", 27"],
(8) @) =0 if
() ‘ IDAln < 4-27,
Next, for (u,s,t)e R™ xRxXR, we put

Itl > 2—n+)’

Pulty 8, 1) = Pulu) 4,(8) - 2, (2).

a © , .
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Define v, = $,0Q,: BxHxR—[0,1], ie.
Pa(@, By 1) = Pu(Pal@) A (1 (1B1%) - 2, (1)
for (z, b, 1) € B X H X R. Conditions (5)~(8) imply the following:

10)  ul=, hyt) =1
it (x,h, 1) belongs to some neighbourhood of 4,
(1) ¥ul2y h,1) =0 if (=, h, 1) éAn—l
for n e N. ‘
From the fact that [P,<1 and |D,{| 1)z <1 we conclude that

(12) “DQﬂHExHxR <1 for nelN.
Using (4), (8), (9) and (12), we infer that
13) ]15’—1,;,. <42 for meN

I at ExXHXRB

and that there exist 0 < k< &y < ... such thab
(14) WDy, iillexaxe <k, for n=0.

We shall inductively construct 7, e Cy(R™ xRXR,X) for n=> 0.
We put §, = F,. Assume that we have already constructed the maps
Toy -y Guy Tor m > 1. We consider, for a> 0, the map
go: RMv X RXBR— X
given by
a nf2
W awen=(2) [ memnrax
T/ mMnxmxr
X [Fn(”y T1y "'z)“(go(’”a 1y 7} FG1 (V1 v o5 Omyps Ty PV S
oo FGn1{Vry cors Oy _ys T1s )] %
X exp [ —a(|u— ]2+ (s —r)?+ (t—710)") |d0dredrs,
where v = (91, .-; V) e R™ and 7, 7, € R. One can choose a, so large
that

nj2 .
(16) (“—" ) P (Fa— Got < +Fn2)|gmn P (=) <277

ki
and
(17) HD(i)ga,,_D(i) [1])11, (Fn—(§0+ wee ‘!‘—1‘1-—1))]H,R'm'"'xlib<1£< 6"

for i = 0,1 and w e N; see [22] and [15], Theorem 1.6.7. (We identify k
the function g, defined on R™ x Rx R with the function defined on
R™ % R x R, which ¢, induces by composition with obvious projection.)

We put §, = §“n'

3 — Studia Mathematica LXV, 2
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Let
In = G20Qn: EXHXR—>X.
Combining (17) with (12), we get the following basic estimates:

(18) D99, — DO, (Fp— (g0t - . +n-)l[|lmxmxn < 5,
for 4 = 0,1 and » € N. By (18), (10), and (11},

(19) D9 g, — DO (B, — (go+ -+ +8n))|ls, < O

(20) “D(i)gn”ExHxR\An_l < 6;:.

for 1 = 0,1 and » e N. Without loss of generality we can assume that
I’ < |I*ll. Thus, it follows from (20), (1) and (3) that the formula

9= D g|BXH x R\E x {0} x {0}
n=0
gives a O map.
Now, we shall show that g satisfies condition (11) Taking into con-
gideration conditions (18)—~(20), (14) and (4), we can estimate ag follows:

|Dg —DF 5, < 1D (go+ -+« +9) — DFyllz, + 1 Dgnslls, + D I1Dgillz,

isnte
< o+ ”-Dgn+1 —-D [“Pn+1 (Fn-H —(go+ ... + gn))]“;?,, -+
+ HD ["Pn+1 (Fn_ (go+ ... —I—g,,))]llﬁgn +
-+ ”D (Vg1 T — n))ll.’Bn+ ‘ 2 5
i=nt2
SOt duptlgot o g n“}?n 1D yysillm, +
+¥nilp, ID(go+ ... +9n —DF,,L)[[};”-[—

Follz, 1D ¥usalls, + nsalz, IDF sy —DE, s + D' 6

i=nt+2
< ”'D'Fn+l _-D-Fn.“.’En -+ kn “-Fn+1 _Fn”;?“ + kn 51; -+ 611'

Using (18)—(20), (13) and (4) and estimating in the same way as above,
we check (i) and (ii). It remains to establish that g is an R-analytic map.
To this end, together with each Banach space (¥, {|-]|) we shall con-
sider its complexification ¥, i:e. a eomplex Banach space (X, 1~
which contains Y as a real linear subspace such that Y@iY¥ = ¥.(%)
Let I, be the complex Hilbert space of square summable sequences. If
P=gtiye? = Y®iY, where #,¥e ¥, we put & = z—iye Y.
Consider the continnous linear operator P: B —1, glven by

P(z) = (o (w)) for wek,

(1) For instance, one can take ¥ = ¥x Y with the norm |||z, )|]] =
sup {fwcosa —ysinagl: 0<a<2n} and multiplication (a+ 4b)(x, 3) = (aw— by, bx+ ay).

-+ I[F1';+1_
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and its natural extension P: & — I, given by
P(a+iy) =P(a)+iPly) for
Fix a sequence of positive numbers {g,},-; so that
22) (o)< min 27", (1/2)disty (R™+1\K,, X RPa+1~"n K, ).
For each n e N put
W, = {(zj) ely: 4 = a;+iby,

w,yckH.

W Lo

inf Re ((.21—41'1)2 +M -z —, )’Z) <o g
(‘ﬁ""’“mn“)‘xn-x-l M1 Mp 41 n 3 jznl' 5

and .
V,={a+ibe C: inf
—p—n—legcg—n—1
For ((2), L1y Ls) el X CXCONW, X V,x V,, and for ((4;),$,3) el,XRXR
WIth (s eeey Uy, gy 8, 0) €Ky X [—27", 27" [—2"",27"] we have
(23) Re[(2, o HE— W H (G — 8 (L—11> enf2
for k>m,,, and ne N.
Note that the map &,;: (™ x Cx C— X given by

eal4}

Re(a+1ib—8)' <27, B* < g,/4}.

—uy)* -

K2
(24) Grle, 0y 86) = (—") f Pplte, 715 73) [Fk('“' 71y T) —

- S’ﬂPD\‘k

- (go('“a 1y Pa)+ ooe FPpoy{Uyy ooy Uy, 13 71y Tn))] X
X exp [— a, ((zl_‘ul)z‘}" . +(ka'— )2+(Cl'—7'1)2‘1‘(;2_7&)2)]&“‘171‘1":
where 2 = (21, ...y %) € C™% % = (U, ..y Upy,) ¢ R™, ry, v, € R, is holo-
morphie. Mcreover, observe that the map gy is the restriction of the holo-
morphiec map &
G Bx{hed: n(h, b)) # —1}xC—> X
given by . L o
G4, by 8) = G (Pe(@), n(<hy had), )

for (&, h, &) e Ex A x C. Let

U, =@}, 0) e BxHxC: (P(&), n(<h, k), D) W, x Vo x V).
Then, according fo (22) we have ExXH X RNA4, = U, for any n e N.
Moreover, using (24), (23), and (16), we can write for k>#n, n>1,
—(got+ +o+ + G- ExEmxROXD (— 05,05/2)

28) mkau,,( ) [l (7

<(%) " imim-

(go+... + gk-—ﬂ)”ExHx reXD(—a) <27%.
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Henee > @, is uniformly convergent on the set U,. From the Weierstrass

k=1

Theorem ([10], Theorem 4.6.2) the map

0

¢=Ya:v-U T.ox

k=1 n=1

is holomorphic and therefore

g =G| Un(ExHx R\NK x {0} x {0})

is R-analytic.
Let us derive from 2.1 the following fact about 0 Whitney functions.

2.2. LemmA. Suppose that B, is a separable Banach space, Hy, is any
Hilbert space and K < By x H, is a compact set. There exists a C° Whiiney
function for (K, E,xH,).

Proof. We may assume that &, is infinite-dimensional. Let H" < H,
be a closed separable linear subspace such that K < B,x H' < H, x H,.
Denote by H the orthogonal complement of H' in H,, write B = H,x H'
and identify K with the projection K onto F. Since E is separable, there
is a total sequence {wy},ov = B with |lz}] < 27"

Let 0 <<k, <<k <<... be the sequence of Lemma 2.2 applied for the
given E, H, {#}}, m, =n and X = R. Now, let us specify

1
d F, =—
an. W=

n

S, = for >0 and || =[-|.
on s II-1l -1

Continuing the use of 2.1, we determine an R-analytic function

! g: EXHXR\E x {0} x {0} >R .

-~

such that

1
< —

for n>0
B, kn '

1
1Dgllz, <3 and lg—-%—

(for the definition of B, see 2.1). :

The function p: B x H - R given by y(z, k) = (1/3)g(z, h, 0) for
(@, h) ¢ K and y(x,h) = 0 for (x,h) e K is the required C° Whitney
function.

2.3. LisMwmA. Suppose that H is a Hilbert space, B is a separable Banach
space, K = F is a compact set and f: K — X is a continuous map from K
mo o Banch space X. Then there exists a continuous map

F:ExHxR—+X
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such that
(i) F(z, 0,0) =f(2) for v e K,
(il) F|B x H x R\K x {0} x {0} is of class 07

iF(aa, hyt) ||z (2, R, 1) g K X {0}><{0}}< 0.

ot
The proof of 2.3 is preceded by the following
2.4. SupLEMMA (cf. Renz [17]). Suppose that F is a Banach space
and assume that o sequence {Tntnw = B separates the points of K. Then
there ewists an increasing sequence my << My << ... of positive numbers and
@ sequence {y,}ney With v, € OF (R™, X) such that, if we wrile P, = (o, -
@)t B> R™ and f, = y,0P,: B~ X, the following. conditions are
satisfied:

(iii) sup {

(2)y, “f*_}jf,,%KQ 274 for mnelN,
=1
(b)a flg<2™2  for n>=2.

Proof of 2.4. We endow K with the metric

D

Q(my ?j) = min (2—1‘, im:(w)”‘a’:(y)l)'

i

[]
hA

Since K is compact and the embedding (K, ||-|) = (K, ¢) is continnous,
the metric induces the topology of K.

1. Tet # = 1. Tt follows from the uniform continuity of f that there
exists a &> 0 such that o,7 e K, o(s,%)<< 6, implies [If(@)—fWI< &
=9 Fix m, e N 5o that 2-™ < 6, and write P; = (a], vy W)
TUsing the compactness of K, one can construct a finite open cover {0}
of the set P,(K) « R™ such that diam, (EnPyY(T,)< & for all e
Let {p,}U{p} be a 0> partition of unity of the space R™ with the prop-
erty supp ¢ = R™\P,(K) and suppg, = U, for all e For each a we
take p, e PTHU,)NK and we put y; = D @.f(p ). Then for any 2 e K we

have

If(@) —Fu@) =] f@)— 3 pe(Pa(@)f(22)
=| Y euPr@)f@) — 3 pulBr@)f (2D |

< N ga(Pa@) If @ —F (@I < & = 27774

‘We observe, moreover, that [|fillz < i1z
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2. Assume that we already know my<...<m,_; and fy,...,f,_;
for n>2, sg_?hat (@)y—y and (b),_, are satisfied. Then employing in 1

the map f —kZ; [y instead of f, the number g, = 27**"* instead of &, and the

operator P, = (a7, ..., @, ) instead of P, one can construct f, (and sim-.
ultaneously m,) satisfying (a),. Moreover, then

Wl < [ £~ j f,cﬂxgn_l g2
k=1

] Proof of 2.3. We may assume that ¥ is infinite-dimensional. Since B
is separable, there exists a total sequence {#}},.v = H* with |lo¥|| < 2™
Take the sequinces {Mtnen a0 {,} o of Sublemma 2.4 applie.«iL for the
date H, X, {#,}. Now, specify sequences {F,},,, F,: R XRXR—>X
by F, =0 and i

Fo(tgy ooy Unnyys S 1) = p1(¥, ..., uml)'{' Z}*k(t)Yk(uly sery umk)
. k=2

for (tyy .vey Uy , 8,1) € R™ X R X R, wh i

) g S 3 , where the functions 4, € C°(R, [0, 1
satisfy f}ondltmns_ﬁ )~(9) of the proof of 2.1. Let @, be kthe map; E)f, 2]1)
and write F,, = F,00,. We see that

2—‘2n—2

I, — Follexaxr < for neN

and

< 4-2m272 = 2" for

nz=0.
ExHXR =0

(‘)F .0
ot n+1“'5t‘Fn

Applying 2.1, to the sequence {F,},, and 8, =27 % for %> 0 and |-||'
= |||, we conclude that there exists an R-analytic map :

9: X HXRNE x{0} x{0} X
such that

lg—Fylp, <27"*4-27"% for n3z1

and for n> 0
a a

ETAA

—n n+3, 5—2n— —n— ——
| Bn<2 +2 9 n2+2n+3.2n2+2n2<6

(use (i) and (iii) of 2.1; for the definition of B,’s see 2.1).

It follows from (a), and (b), of 2.4 that th F i i
2. e sequence {F, iy uni-
formly convergent and that 1',11(: map F: BExHXxR—>X éivfg:;lo)y

E(w,h,t):{"”“”h’”’ (@, b, 1) ¢ K X {0} x {0},
1) veK,h=0,1t=0
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<1, we get
ExHXR

1
0
&
9.5. Remark. The assertions of 2.1 and consequently of 2.2 and 2.3
bold true if H is replaced by the space I,(A4) with p e [1, o). (This i
a consequence of the fact that every such 1,(A)-space admits a linear
continnous injection into a certain ,, (4) and the 2nth power of the standard
norm of I,,(4) is a polynomial.)
9.6. COROLIARY. Let B be a separable Bamach space and let K < B
be a weakly compact set. Then there exists a C° Whiiney function for (K x {0},
B x1,(4). o
Proof. There exists a total sequence of linear functionals {5} new < B*
with o] < 27""Y, |oflx < 27" We define an operator §: B 1, by 8(x)
= (a:fL(a;)) for z e B. Then 8 is an injection, S(X) <, is compact and
18§ < 1. By 2.2 and 2.5 there exists a C® Whitney funetion vp: Iy % 1,(4)
—R* for (S(K) % {0}, 1, x1,(4)). Hence ¢ = o (8 X idy () is a 0°

]
iz continuous. Since “TﬁF"

< 8.
|Ex Hx B\EK X{0}x{0}

_ Whitney function for (K x {0}, B X 1,(4)).

For the arguments of the next chapter the following “reduced form?
of Lemma 2.1 is sufficient.

2.7. LEMMA. Lt X be a Banach space and let]- | bea continuous pseudo-
norm on X. Then, for every sequences {F,},, € O (R, X) and {8, > 0}y
there ewists a map g € 0 (R\{0}, X) such that, writing B, = {§ e R: li| > 1}
and B, = {te R: 27" 1< 1| < 27"} for ne N, we have

Q) g —Folls, < 1Fnys—Folls, + b0 !

(ﬁ) an —'-DFn“.an < u‘DFn+1_DFnH,Bﬂ+ 2"+3(I¥Fn+1 - ”“-an+ 6») + 61;
for n=0.

The proof of 2.7 is analogous to the proof of 2.1.

3. The negligibility scheme. We are going to extend Bessaga's negfi-
gibility seheme (see [3], Chapter IIT, § 5) to the smooth and the R-analytic
categories. .

Ve shall empoly the following notation and terminology. Given
a continuous pseudonorm w: X — R* on a normed linear space X. We
consider X, = X /w~1({0}), the normed linear space equipped with the
norm w (induced by the psendonorm 4 on X) and we put the coset map
$ps X - X, A subset 4 c X is said to be w-complete if i,(4) = X,
is complete. The pseudonorm w is said to be non-complete if the whole
gpace X is not w-complete. We denote the completion X, by f[w. A subset
7 = X will be called cylindrical if iz 0i,(Z) = Z.
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The following proposition summarizes the arguments of [3], Chapter
III, Proposition 5.1, with the distance functions replaced by Whitney
funetions. .

3.1. PROPOSITION. Let B be o Banach space and let w:E — R* be a con-
tinuous non-complete pseudonorm. Further, let A= B be a w-complete set
and let U < B be a neighbourhood of A such that there exists a O7 Whitney
Function for (4, U;w), where r € NU{w}. Then there exists a C™ isomorphism
H: ENA —— B such that H(z) =2 for x ¢ U.

onto’
In the proof of 3.1 we shall need the following
3.2. SUBLEMMA. Given £>0 and re{co, w}, there is & path gqe
07((0, c0), B) satisfying the following conditions:

@ wlgt)—q(s)) <elt—s| for t,5>0,
@) lims, (¢(t) € B, \E,,.
-0
In the case where r = co we can require that
(3) qt) =0 iff ix=1.

Proof of 3.2. Thecaser = oo (cf. Renz [17]). There exists a linearly
. o0

independent sequence {y}2, in B, such that Y 2"*%w(y, ,—y)<e,
k=1

(where y; = 0) and limy, eﬁw\Ew. Take: z, € B with #; = 0 and 4,(z,)
=y, and a function y e 0®(R, [0,1]) with p] (—o0,1/2] =1, y~}({0})
= [1, o) and [|[Dyllg < 4. Define the required 0 path by

qt) =2+ D y@ ) (@pp—m) for 1>0.
k=1
The fact that q(¢) = 0 if £ > 1 is a consequence of the linear independence
of the vectors 4, ¥, ... and the property y~1({0}) = [1, oo).
The case r = w. We shall use Lemma 2.7. We specify {F,}mo.
< OF (R, I) by letting #, = 0 and for n >1

n
F(f) = o+ 2y(2k_1t)(mk+1—mk) for teR,
k=1

where v and {z,} are those of the previous case. Applying 2.7 to the space
X = F, the pseudonorm ||-|' = w, the sequence {F,},, and 5, = 27" ¢
for 5 > 0, we infer that there exists an R-analytic funetion g: R\{0} - X
such’ that, writing By = {{e B: |{|> 1}, B, ={teR: 27" ' < || <27}
for »>1, we have

(1) w(g—Fp, Sw0Fp—F)+2 " Ce <2 0542765 — 2775,
(i) w (Dg _-DFn)Bn <w (DFh+1 - DF%) +2" 5 (Fn-{-l -—‘Fn)Bn +
‘ +2n+32—-n—~58+2-n—68 < (2—-5+2n+82—n—6 _|_2—3 +2—n-6)8 < 8/2
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. for n > 0. We define

g = g1(0, o).
Since w (DF,)p < 2 %, we get by (ii)

w{Dg@i)}<e for ¢>0,

which is equivalent to (1). Finally, (2) is & consequence of (i) and the

fact that limlimi, (F,(#)) = imy, e B,\B,.
>0 n
Proof of 3.1. Let ¢ be 2 ¢" Whitney function for (4, U; w). Since ¢
is w-lipschitzian, there exists a w-lipschitzian function @@ B,—>RB¥
such that ¢ = @04%,. The function @, has 2 w-lipschitzian extension
@o: By~ R. We may assume that

4) 1Py —Po(y2)| < M -w(ys—ys)
for a certain M < oo and every Y., ¥s; € By,
() pl@) =1 for z¢U.

By 3.2 there exists a " path g: (0, co) - B satisfying (1) and (2) for
¢ = M /2. Using these conditions and (4), one can show that the formula

(6) Hr) =2—q-p(®) for xeBENA

defines a 1-1 transformation BN\ A onto ¥ (cf. [3], Chapter LI, Theorem 5.1).
Note that H e C"(ENA, E). For each # € B\ 4 we can write DH (z) = I —
— v, Dy(x), where w (1) < 1/2. Sinee sup{w (Do (x)(v)): w(v) < 1/2} <12,
the operator DH(x) is invertible. Thus, applying the Inverse Function
Theorem (cf. [7], 10.2.5 and [23]), we infer that H* e O"(H, BNA).

Now we deduce the following fact, which was conjectured by Bessaga
(see [3], p. 109).

3.3. TEEoREM. Let B be a Bamach space and let w: B— R¥ be a non-
complete CF pseudonorm with p € N.IfA c B is a cylindrical sel such that
ip(A) is compact and U < E is o cylindrical neighbourhood of A, then there
exists a OF isomorphism H: ENA > B with H(x) =z for © ¢ U. I,
(B, w) is separable and A < H is an arbitrary w-complete, cylindrical setf
then ENA and B are C? isomorphic. .

Proof. Using the trivial fact that w: F—-R is & w-lipschitzian
funetion, one can construet, as in 1.1, & ¢ Whitney function @y B,— R*
for (in(A), i,(U); w) [resp. for (i,(A), By w)] such that p = @Oty
is of class OP on EN\A. Now, the assertion of 3.3 follows from 3.1.

4. R-analytical negligibility. We shall need the following fact con-
cerning the existence of non-complete 0% norms.

4.1. PrOPOSITION. If o Banach space B is infinite-dimensional and
admits a total sequence of continuous functionals and K = B is a weakly
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compact set [resp. If B = X*, where Y is an infinite-dimensional and
separable Banach space and K < H is a weakly-star compact set], then there
ewists o non-complete 0° norm w on B such that B is w-separable and K is
W-COMPACE.

Proof. Suppose that {z: n e N} < E* is a otal seb; one can ad-
ditionally assume that |lp*}] < 27" and ||z < 27" We define the operator
8: B> (L, 1) by 8(2) = () (x)) €l for » e B. It 8(E) = 1, is not closed,
then we put w = |8(-)|. Otherwise, S(H) is a subspace of I, spanned by
an orthonormal system (e;). We let w(z) = (Y I<S(®), e

i=1

The proof of the second part of 4.1 is analogous to the above one.

The main results concerning C° negligibility are:

492. TEEOREM. Let B be an infinite-dimensional, separable Banach
_space and let K be a weakly compact subset of H. Then BNEK and B are 0”
isomorphic.

4.8. TEEOREM. If either B is a separable Banach space or B is an arbi-
trary Hilbert space and T is a closed linear subspace of B with dim (B [F) = oo,
then ENF and E are C* isomorphic. '

Proofs. Theorem 4.2 follows from 3.1, 41 and 2.2. Theorem 4.3
is a consequence of 3.1, 4.1 and the fact that any C° norm w: B[F — Rt
induces a C° Whitney function for (w='({0}), E; w).

Theorem 4.2 admits the following generalization:

4.4. TaROREM. If B is an infinite-dimensional Banach space admitting
a total sequence of linear functionals and K = H is a weakly compact set
[resp. If B = X*, where Y is infinite-dimensional and separable Banach
space and K < B is a weakly-star compact set], then BXT,(A)NK x {0}
is C° isomorphic with B x 1,(A) for every p e[L, co) and every A.

Proof. This follows from 3.1, 4.1 and 2.6.

4.5. OOROLLARY. If K <1,(4) is a compact set where pe[l, 00)
and A infinite, then L, (A)NK and 1,(A) are C® isomorphic.
Let us notice the following consequence of 4.2:

4.6. COROLLARY. If K is a convex, closed and bounded subset of amn
infinite-dimensional, separable, reflexive Banach space B, then ENK and B
are C° isomorphic.

Hirschowitz [11] hag shown that 4.2 cannot be extended to the non-
separable case. Namely, he gave an example of a non-separable Banach
space B such that B\{0} and B are not C° isomorphic. The following
shows that B = ¢y(4), with 4 uncountable, may also serve as an example.

. 4.7. ProPOSITION. Let A be uncountable and Tet @: 6,(A)N{0} — ¢;(A4)
be & closed homeomorphic embedding. Then @ & C°(6,(A)\{0}, co(/l)).
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Proof. Denote B = ¢y(A) and U = ¢(4)\{0}. We first show that
(i) Given any feC"(U, R), there is an extension fe C°(H, R) of f*
To this end write f|V = 3P|V, where 0 ¢ ¥V is an open set and

n=1

P,, Py, ...are polynomials on B. Tt follows from the result of Pelezyriski [16]
that there is a countable set T = A such that P,(z+2) = P,(x) for every
zeB, zel =c(ANT), and every n e N (we identify E and H@c(T)).
We define a O® function g on the set G = {(#,2) e EXE': a+2 %0,
@ # 0} by g(®, 2) = flw-+2) —f(x). Since g vanishes on some open subset
of the connected set @, it follows that g = 0. Hence an extension f ean
be defined by f(@) = f(») for # = 0 and f(0) = f(x+-2) for some #+2 = 0
with 2z e B'; this completes the proof of (i).

Now, supposing a eontrario that ¢ e(*(U, B), ¢ has an extension

* §eC°(B, E) according to [11]. Then ¢~'op(z) = & for all » e H, which

is impossible.

5. (= negligibility. We shall deal with Banach spaces B satisfying
the following econdition:

(L)) there exisis a continuous, linear injection T': B — ¢, (A) for some set A.

For a list of spaces satisfying (L) we refer the reader to [20]. We only
mention that the weakly compactly generated (= WOG) Banach spaces,
hence in particular all separable and all reflexive Banach spaces, satisty (L),
of. [13], Theorem 2.4. The Banach space l(A), with uncountable 4,
may serve ag an example of a space whiech does not satisty (L).

We shall employ the following fact concerning the existence of non-
complete C*° norms.

5.1. PROPOSIEION. Ewvery infinite-dimensional Banach space satisfying

(L) admits a non-complete C= norm.

Proof. It is known (see [4]) that c,(I") admits an equivalent ¢
norm. Thus it is sufficient to show that there exists a non-closed con-
tinuous linear injection Ty: B —> 6,(I") for some I'. By the agsumption (L),
there is a continnous linear-injection T': H -» ¢,(A). If T(HB) is not closed,
the proof is complete. Otherwise we may assume (the inverse mapping
theorem) that B is a closed linear subspace of 6(A). By Theorem 2.1
of [13], there are Banach spaces B, F, such that F = B,®H, and E,
is infinite-dimensional and separable. One can check that there exists
2 non-closed continuous linear injection S: E;— ¢y(N). Finally, we put
Ty: B> co(A) X 65 (N) = ¢o(AUN) by Ty(z) = (8(z), T(xz,)) for ==
(#,, #;) e By x B, (assume that ANN =0).

From 3.3 and 5.1 we obtain our main Theorems 5.2 and 5.3,
about 0% negligibility.

5.2. THEOREM. Let B be an infinite-dimensional Banach space satis-
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Jying (L) and let K < H be a compact set. Then there exists a 0 isomorphism H
of ENK onto H. Moreover, if w is an arbitrary, non-complete 0° norm on B
and U is a w-neighbourhood of K, then we may additionally require that
H(x) =wforz¢T.

5.3. THEOREM. Leét H be o WOG-space and let F < B be a closed,
linear subspace with dim (B[F) = co. Then there emists a 0= isomorphism H
of EN\F onto B. Moreover, if w is an arbitrary, non-complete C* pseudonorm
on B with w™({0}) = F, then we may additionally require that H (1) = &
for w(x) > 1.

We also have

5.4. THEOREM. Leét B be an infinite-dimensional, separable Banach
space and let K, L be disjoint, weakly compact subsets of B. Then there
ewists @ 0% isomorphism H of ENK onto B with H () = z iff # € L.

Proof. By 4.1 there is a non-complete 0* norm w on ¥ such that -

K UL iy w-compact. Applying 1.2, we take a 0 Urysohn function ¢ for
(K, L) with

lp(@1) — @ (@a)] < M- (@) —5)
for a certain M < oo and every =z, z, € B.
By 3.2, for ¢ = M 2 there exists a path g e 0%((0, ), E) satisfying
(1)~(3) of 3.2.
The formmla
H(z) =2—q(p(x))
gives the required C* isomorphism. ‘
5.5. Remark. The assertion of 5.4 iz also true if B = 1,(4), where
pe[l, o) and A is infinite, and K, L arve compact sets. (The proof may
be obtained, as in 5.4, by using the fact that for each pair of compact sets

of the space 1,(4) there exists a lipschitzian Uryshn funetion.) -
Let us notic that the R-analytic version of 5.4 is false.

5.6. Exawpir. Let 3 = {(x,) e ly: X n2al <1} be an ellipsoid in

n=1
the space I,. Then 3 is compact and has the following property: if U is
an open and connected subset I, containing 3, then for any Banach space F

and any f,f, eC0”(U, F) with f,|2 = f3|9 we have f, =f,. .

6. Negligibility in manifolds. It is clear that the Negligibility Scheme
does not generally work in the case of manifolds. However, the Scheme
can be extended to the spaces Z = F X M, where F is an infinite-dimen-
sional Banach space and M is a manifold. Since many conerete infinite-
dimensional ‘manifolds admits such a product structure (cf. [5], [141),
the study ‘of negligibility in the spaces Z seems to be reasonable.

‘We adopt the following notation. Given a continuous, non-complete
pseudonorm % on a Banach space F and a metrizable " manifold (r e Nu

for o eE\K
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U{w)) M, possibly with boundary, modelled on a normed linear space,
we fix a metric d on M and we pub
(%) 175((:701, %)y (Y1, ?/a)) = max (w($1_w2): (Y1, yz))
(®g; ) e BEXM (i =1,2);
% is a pseudometric on B x M. We denote .
§ =i,xid: BXM B, xM.

Suppose we are given a w-closed set A < ExM and w-neighbour]?ood
U of A. A continuous function p: B x M — R* will be called a C" Whitney
function for (4, U; ) if ™" ({0}) = 4, ¢ is of class (" on ExM/A,

for

lp(@1, §) — @ (@, )| < W(@—2a)  for (@5, 9) e BXY (1 =1,2)

and ¢(2) = oonst for z¢ U.

We start with the following generalization of 3.1.

6.1. PROPOSITION. Assume that there exists a OF Whitney fumction
for (4, U; @) with r e Nu{w} and 4 is w-complete (i.e. 1(4) is complete
in B, x M). Then there ewists a C" isomorphism H of EXMN\A onto BX M
with H(z) =2 for ze B xM\U.

Proof. It is easy to check that under our assumption there exists
a (" Whitney function ¢ for (4, U; @) of the form ¢ = g0t such that

oo (@1, ¥) —PolZa, HH < Mw (@, —2,)
for a certain M < co and every &,%; €K,

and ¢(z) = 1 for z ¢ U. By 3.2, there is a path ¢ & 0’((0, o), B) satisfying
(1) and (2) of 3.2 for ¢ = M /2. Then the formula

H(v,y) = [p—goo(®,9),9) for (,9)eIXUNA

gives the required C" isomorphism.

6.2. THEOREM. Assume that, under our notation, w is of class C? and
then model of M is OF smooth with pe N. If A = i~l04(4) is @ set of B XM
such that i(A) is compact and U =i"*oi(U) 15 a mighbou.rhood of A4,
then there exists a CP isomorphism H: ExXx MNA > ExXM with H (z? =2z
for x¢ U. If (BExM, ) is separable and A = i‘loi(A) :is an ar.bztmry
w-complete set of B X M, then B X MNA and Bx M are GF isomorphic.

Proof. It is clear that for any 2 € B X M and for any w-neighbourhood
U of z there is a funetion feCP(ExM,[0,1]) Wi_th f(z >0 and
supp(f) = U which is w-lipschitzian in the f.i:fst coordnlmte. There.fore,
argning as in 1.1, one can construct & c? W]ntnesf fu_nctmn q),,pfor (@ (\A‘{)17
i(U); w) [resp. for ((4), By, x M; )] such that @04 is of class O” on ENA.
Now, the assertion follows from 6.1.
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6.3. Remark. The first part of the assertion of 6.2 holds true under
the additional assumption that the model of M admits OP partition of
unity (e.g. if M is separable and 0% smooth, cf. [4]), for an abitrary closed
set A and its neighbourhood U such that 4 = i3} (4;) X4, = ™Y (U)x T,
= U = HxM for some compact set 4, c B,. (This follows from th;

fact that in this case a O Whitney function for (4, U; %) can easily be
constructed.)

6.4. COROLLARY. Suppose that H is an infinite-dimensional Banach
space satisfying (L) and the model of M admits CF partitions of unity (p € N)
If A = {0} x M < B x.M i3 a closed set, then there ewists a 0% isomorphism H

of ExXMNA onto B x M. Moreover, 'bf w is an arbitrary, non-complete
0% norm on B and UcM is a neighbourhood of the projection A omio M,
th:')z,o 1,;1-(; X%_ay additionally require that H(z,y) = (m,y) for (u ,Y) ¢

‘We note that this ecorollary is a generalization of the main lemma of
" Bzigeti [18].

Theorem 6.2 gives some information about the mnegligibility of one-
point sets in non-separable 0 smooth Banach spaces H, e.g. if B admits
i\.m eontinlt)mus linear projection on an infinite-dimensional, separable

ear subspace or, more generally, on a subspace

E\{0} and F are C? isomorphie. v pace tmmyng (L), then

The study of (" negligibility in non-trivial 0® manifolds is much
more difficult than in the smooth case. We derive from 6.1 the following
fact about it:

6.5. COROLLARY. Assume that M admits a C° embedding into a separ-
able Banach space F, E is either an infinite-dimensional separable Banach
space or B =1,(4) with p e[l, o) and A infinite, and K <= B x M is
a compact set. Thm E X M\K and B xM are O° 'bsomorplnc In particular,
the assertion holds if M {is finite-dimensional. ’
) Proof. Let w be a non-complete 0 norm on F, see 4£.1. By 2.5 there
is a 0" Whitney function for (K, E x F'; %), where % is given by {*) with
the metric d defined by the norm on F. Now, the assertion follows from 6.1.
) Finally, let us notice that 6.2 and 6.5 make it possible to formulate
igotopic versions (cf. [6], p. 381, for the definitions) of all our statements
concerning negligibility.

7. R-analytic and smooth extensions of homeomorphisms by the
technique of Klee. The primary purpose of this chapter is to prove the
following two theorems:

7.1. TewoREM. Let B be o Banach space of the form B = B X L, (4)
and let h: Klm 2 be a homeomorphism between compact subsets of H.
If B’ has an wnoowdmoml Bchauder basis, then h admits an extension to an
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autohomeomorphism H of B such that H: E\KI——>E\K2 is a 0° isomor-
phism.

7.2. THEOREM. Let E be a separable Bamach space with dimBF>2 .
andlet b Ky 5 Ko be @ homeomorphism between finite-dimensional compact
subsels of B. If either B is infinite-dimensional or K, is countable, then h
admits an extension to an auiohomeomorphism H of B such that H: ENK,
— E\K, its a 0° tsomorphism.

A proof of the ¢ version of 7.1 in the special case where BE=1,
or ¢, has been given by Renz [17], Corollary 5. The idea we use in esta,bhsh-
ing 7.1 and 7.2 is motivated by Renz’s paper. The basie role is played
by the following “flattening lemma?”.

7.3. Lmvma, If By = B; X 15, (), where E; is a separable Banach space
and p; e[1, o) for i =1,2, K = B, is a compact sei and f: K— H, is
o continuous map, then there ewisis an autohomeomorphism @ of the space
B, x B, such that

® @ (“71: f(ml)) =
(2) @ is C" isomorphism off the graph & (f)

(#,0) for zeK,

= {(wl’f(wl)): &y EK}.

Proof. There exists a splitting 7, (_/11) =
countable sebt An (4 = AN\4) such that K ch xl (./10) c By X1,
Write B = Hj X1, o, (o) and identity K with the prOJeetmn onto E.

Let F: 143'1><R—->E5 be the map of 2.3 (see also 2.5) applied to the
triple (Bx T, () xR =B XR,f, X = B,). So, there exists an M << oo

M for (x,1) ¢ K x {0} <« B, xR. Since G(f) =

(A‘,)@l (A4) for some
p, (A1)

]
such that ”"a?l”(“'”’ ) u <

« B, X B, is compact, there exists, according to 2.2 and 2.5, a ¢ Whitney
funetion ¢ for (G(f), By X Hy).
The required homeomorphism can be defined by

Doy, 02) = (@1, 22— F (0, QM) (@, @) for (21, 39) € By X Ty

7.4, Lmvva, If Bn, By and K < B, are such as in 7.3 and f: K-> H,
is an embedding, then there ewists am auiohomeomorphism & of the space
B, x B, such that

®) B(zy,0) = (0,f(22)) for ek,

(4) & |B, x B, NE x {0} is a O isomorphism.

" Proof. Let &, and &, be the homeomorphisms of 7.3 applied to the
tnples (By,f, By) and (B,, 7 By, respectively. Tt is sufficient to put
& = Po0P.
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7.5. Temuma. Let B be a Banach space of the form E = E' x1,(4)
where B’ is separable and p € [1, oo) and let h: K, > K, be a homeomorphism
between compact subsets of B. If there eaists o closed complemented subspace
H, < B which contains & sei- homeomorphic to K, and any translation of
which intersects KUK, at most af one point, then h admits an extension to
an autohomeomorphism H of the space H such that H: ENK; -~ BI\K,is a
“0° isomorphism.

Proof. Let i: K,—~ B, be any homeomorphic embedding. By E,
denote & closed complement of E,. Under our assumption there are con-
tinuous maps f;: wg (K;) > By such that K, =G(f;) for ¢ =1,2 (ng,
denotes the projection of B, X B, onto E,). Denote by &; the homeomor-
phlsm obtained hy 7.3 and applied to the triple (&, f;, B,) for i=1, 2.
Let &, @, be the homeomorphisms of 7.4 applied to the trlples

(B, i0ho (mg,0 B))7g,0 Dy (Ky), By (By, g0 Py04™, By,
respectively. Finally, put H = &;'oP,0d,00,. ‘ ‘
Proof of 7.1. Since &’ has an unconditional Schauder basis, it follows

from a theorem of Corson {[17], Corollary 8) that there exists an infinite-
dimensional complemented subspaeds’ B, < B any ‘translation of whieh

and

intersects K, U K, at most at one point. Wemnelmde the proof a@plymg 5.
Proof of 7.2. Assume that F is infinite-dimensional. Since the

space span (K, U K,) is sigma-compact, B admits a complemented subspace
B, such that B,nspan(K,UK,) = {0} and dimZF, > 2dimK,+1. Now,
the assertion follows from 7.5 becaunse K, admits an embedding into H,.

Assume that E is finite-dimensional. Write K UK, = {a}.n-
Take a vector @ in E not parallel to any a,—a; (i # j). Then R-a = B,
is as required in 7.5; thus the assertion follows.

Let us observe the following facts concerning extensions of homeo-
morphisms in the O category:

7.6. Remarks. A. Assume that E is a non-separable WOG-space,
K,, K, « ¥ are compact sets [resp. E is a non-separable space ¢,(4)
and K,, K, c F are closed separable sets] and h: K, — K, is a homeo-
morphism. Then A admits an extension to an antohomeomorphism H
of the space F such that H: ENK,; - E\K, is a §® isomorphism.

B. Assume that M is a mefrizable and commnected C? manifold of
dimension > 2 (p e N) modelled on a OF smooth Banach space satistying
(L), K, K, = M are countable compact sets and h: K, — K, is a homeo-
morphism. Then % admits an extension to, an autohomeomorphism H
of the space M such that H: M\K, - M\EK, is a 0P isomorphism.

The proofs employ the following €™ version of 7.3.

7.7. Lmvwa, Suppose that E,, E, are Banach spaces satisfying (L),
K c F, is a compact set, f: K~ E, is a continuous map and w is a O
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norm on B, X Hy; then there exists an awtohoméomorphism & of the space
B, x B, satisfying

@) Doy, fler)) = (81, 0) for @€k,
(2" @ is 0 isomorphism off the graph G(f),
(3" 'if w(x) =7, then P(x) =2 (for some 5> 0).

Questions and remarks.

A, Let us say that a normed linear space X is 0% smooth (p eN)
if X admits a non-constant lipschitzian function ¢ e OP(X, [0,1]) whose
support is bounded. It is obvious that if X admits an equivalent OF norm,
then X is OF smooth. Let us note that the assertion of Lemma 1.1 remaing
valid under the assumption that X is O smooth.

Q1. Does any C% smooth space admit an equivalent ¢® norm? Is
a 0% smooth space OZ smooth?

B. The following problem is still unsolved.

Q2. Are one-point sets C* negligible in any non-separable Banach
space H?

To the author’s best knowledge, the answer is unknown even if
B =1,(4), where A is uncountable. (Let us recall that I (4) does not
possess property (L) and therefore Theorem 5.2 is not applicable.) Also the
following problems concerning 7 (/)-spaces are open:

Q3. Let A be uncountable and let fe CP (1, (4)N{0}, 1 (4)). Does f
admit a P extension to the whole 7(A4)%

Q4. Let A be uncountable and let fe O
on countably many ecoordinates?

Q5. Let 4 be uncountable. Is there an f € 07(1(4), R) with f~*({0})
= {0}t

As mentioned at the end of the proof of 4.7, a positive answer to Q3
would imply a negative answer to Q2, whereas it follows from Theorem 6.2
that a positive answer to Q5 would imply the positive solution of Q2 in
the case where F =I,(4) with 4 uncountable. Let us note, moreover,
that a positive answer to Q4 would give a positive answer to Q3.

C. It was observed by Szigeti [18] that, if Z is a Banach space such
that there is a P isomorphism H of E\{0} onto ¥ with H (x) = for
lwll > 1, then E is O smooth. On the other hand, if # is infinite-dimensional
and separable, then the converse holds true.

Q6. Assume that ¥ is a non-separable 0P smooth Banach space [or B
is 0% smooth, or B admits an equivalent 0P norm], where p e N. Does
there exist a (7 isomorphism H of B\ {0} onto E with H (z) = o for |lu|| =11

1 (4), R). Does f depend


GUEST


138 ’ T. Dobrowolski

It follows from 5.2 and from Lemma 3 of [1] that the answer to Q6
is affirmative if we additionally assume that the space F satisfies (L).
Hence it is natural to ask:

Q7. Must a C° smooth Banach space satisfy condition (L.)?

Recently, Lindenstrauss and Johnson discovered (see the Israel
Journal of Mathematics 17 (1974), p. 222) a Banach space B which admits
an equivalent Fréchet differentiable norm. and ¥ is not a WCG-space
but F still satisfies condition (L).

The corresponding question to Q6 in the R—analymc category is the
following:

Q8. Assume that every continuous function on an infinite-dimensional
Banach space B can be approximated by a function R-analytic in the (°
‘Whitney topology [resp. F is infinite-dimensional and admits an equiv-
alent 0° norm]. Is then B\{0} 0 isomorphic with E?

The proof of Theorem 6.2 suggests the following gquestion, which
is more general than Q8.

Q9. Assume that E is an infinite-dimensional Banach space and
there is. a 0" function on E\{O}, where 7 £ NU{w}, which admits no ¢"
extension to the whole . Ts the one-point seb €7 negligible in E?

D. The assertion of Theorem 7.1 does not hold for the nen- sepmble
space B = a,,(A) This follows from the fact that if X < B is'a -corapach
set and H € 0°(B\K, E), then there exists an extension HEG"'(E B
of H (use the argument of the proof of 6.2). However, the following question
is open:

Q10. Does the conclusion of Theorem 7.1 hold true under the assum-
ption that & is an arbitrary infinite-dimensional separable Banach space ?
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