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The L? mapping problem for well-behaved convolutions
by
W. B. JURKAT (Syracuse, N.Y.) and G. SAMPSON* (Ambherst, N.Y.)

Abstract. In this paper we discuss convolutions

(E+f) (@) = [E(—y)f y)dy

over R™. For kernels K which are “weakly oscillating” we give necessary and suf-
ficient conditions (in terms of K) in order that K maps L® into I2.

§ 0. Introduction. In this paper we discuss convolutions of complex-
valued functions of several real variables,

0) (Exf)a) = [E@—f@)dy = [K@)f@—ydy,

where the integration is over R" (n 2> 1 integral) and f e IF(R"), 1 < p < .
For precise definitions, see § 1. The mapping problem consists of finding
necessary and sufficient conditions for K to-map L? into L% The condi-
tions should be in terms of K and sufficiently simple to become applicable.
This is & very important problem, but in general quite hopeless at the
present time except for the cases p =1 or ¢ = oo (Toeplitz, Banach~
Steinhaus), p > ¢ (Hormander), and p = ¢ = 2 which is known at least
in terms of the (distributional) Fourier transform K. Areasonable approach,
however, is to ask this question for various classes of “well-behaved”
kernels. Here we will be concerned with weak forms of the condition

L WE@y) < By HEMW], ¥ #0

with B = B(K)> 0. Condition (1) is satistied rather generally by nice
kernels whose growth is similar in every direction and restricted by |z|*°.
We describe this as “weak oscillation” which is related to but somewhat
less restrictive than “slow oscillation”.

Tn §1 we introduce several averaged forms of (1) which resemble
Lipschitz conditions. For the corresponding clagses we prove various
necessary conditions in order to map L” into L? strongly or even weakly

* The research of the first anthor was supported in part by the National Science
Foundation.
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(Theorems I, IT, IV). In case p = ¢q, several of these conditions have
been considered before by Hormander [3], Stein [5], Benedek, Calderén,
Panzone [1] and Muckenhoupt [4] and are known to be sufficient. So they
represent a solution of the mapping problem (Theorem ITI). In case p < g
our necessary conditions are also sufficient (Theorem V), but this fact
seems to have been overlooked before. In dimension 1 the necessary con-
ditions can be simplified and agree again with known sufficient conditions
of Hardy—Littlewood. .

§ 1. Definitions and - related properties. For standard notations the
reader is referred to Stein [5], pp. 28-53. We always assume K to be lo-
cally integrable except possibly at 0, K e L, .(R"—0). We introduce
generalized Cauchy-Lebesgue integrals by

@ . {f@ds = lim [ loff(@)da,
R S SR =0 k1
where we also require |#]°f(s) to be integrable for |z| <1 and all e >0,
and by
3) o ff@de = f@yde+ [ fl)de,
RN ’

lzl<1 lz|=>1

where both integrals on the right should exist, the second in the Lebesgue

sense. The Cauchy-Lebesgue class CL(R™) consists of those K € Ly, (R"—0)

for which §" K(a)dw exists.
) =<1
To define the convolution with K we restrict ourselves to test func-

tions f e O (R™), i.e. infinitely differentiable functions with compact sup-
port. If we only know that K e L;,(R"—0) we consider
K(z) for |z|>=e
) K. (a) = () el = e,
k 0 elsewhere

for e>0or K,,=K,—K, for 0<s<n< oo. Then K,+f is defined
by (0) for feCy. If, however, K ¢ CL(R"™), then also K¢ e CL for any
¢ e 0p in view of

6) § E@gp@ds =¢0) § K@do+ [ E(z)(p(2)—p(0))do.

Ji<<t lzl<1 lzl<1

Therefore we give the definition

(6) (Exfo) = § E@)f@—y)dy, fe0@(K eOL),
ot . . . R’n . :

which reduces to (0) in the case that K is also integrable at 0.
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We make use of the “weak norm® for measurable g
(7 gy = supl(mfs: lg(2)1> 2",  1<g< oo
>0

and the “operator norms” (if K e OL)

. _ 1B . I »fI

8 K|, , = sup —-L ¥ o= 2

(8) iy 4 D T 2:6]x b’lfIP m,

when 1 <p<g< oo, feC, Ifl, # 0. In case K ¢ OL we work with K,.
We say that K e LF, (resp. K e L,,) if IE|#, < oo (resp. 1K ]lp,q < o)
and speak of weak type (p, q) (vesp. sirong type). |

We say that “K, eL¥, uniformly” if IEF, <B(K,p,q) < o

and similarly for uniformly strong type. It is convenient to observe that (7)

may be replaced for 1< g< oo ((1/g)+(1/g') =1) by an equivalent
(actual) norm

(1 sipa| [glo)f(@)dn|, g e Lo(RY),
@, Rrn

where a> 0 and fe CF, IfI <1, m{suppf} < a. (This has the same effect
as varying f over L™ with the same restrictions.)

Suppose that 1< s< co. Hormander’s condition K e H, requires

®) ( [IEG+o)—E@)Fay)" <BE, )< for o0, 2] < o/2

lyl=e
or equivalently

(8" (fIK(y+m)—K(y)de)”s<B(K,s)<oo for @ #0.

y=>21z]

We introduce the following two conditions concerning weak oscillation :
K eV, requires for 0> 0, |2|<do

(9) ( f JK('y—i-suv‘)—1{f(y)isdy)1fs< %( f lK(y)isdy)”s< o
esivisze e<lyi<ze

with suitable § = 8(K, s) e (0, 1).
K e W, requires for ¢ > 0, lz| < 0/2
@) ([ Ey+o)-E@)ra|* <Blie( [ Em)Fay)* < oo

e<IyI<2e eslyl<ce
with suitable B = B(K,s)> 0.
Clearly, (9) follows from (10) and this follows from K ¢ W requiring

(1) |E(y+a)—E(@y) < Blally|IE(y)l for |yI>0, |z| < lyl/2
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with suitable B = B(K) > 0. Condition (11) replaces condition (1) and
does not use V. Ift K & 0" (R"— 0), condition (1) is equivalent to (11) since (1)
implies [K(y,)/E(ys)| <B for 1/2 < |9l/lysl <2, 9. # 0 by estimating
the variation of log|K|. The constant 1/2 in (9) could be replaced by 1 — &
but we use 1/2 for simplicity.

For finite positive absolute constants depending at most on n, p, ¢, s
we write generically 4; if also dependency on K is permitted, we use B
generically. Since the conditions on weak oscillation are central to this
paper, we make additional comments on W, for 1<s< co. First we
consider the case of dimension » = 1. Then one can show that K ¢ W,
is equivalent to

var K(y)<Be™ f K (y)ldy < o,
eslyl<2e
(12)

fIK Yy < Bf 1K (y)ldy,
@2

and K e W,, 1 <8< oo, is equivalent to K (y) being absolutely continuous
for y # O (after adjusting the definition on a set of measure 0) and

>0,

[ 1E (y)rdy < Be* f K@) dy < oo,
@)
f K (y)*dy <B f 1K (y)1*dy,

of2

Also observe that (12) implies

o>0.

{127 sup
X e<lyi<?e

and that (13) implies |K{° e W;.
Similar considerations apply to dimension n > 1 in which case we
assume K e O'(R"—0) for simplicity. Then K e W, is equivalent to

WE@yPdy<Be™ [ IE@)Fdy< oo,

20
E@)I<Be™ [ IK(y)ldy, o>0,
e

e<lyl<2e e<lyl<ze
{14)
Eyldy<B [ |E@lrdy, o>0.
912<]v{<4e QSWKZE
‘We also introduce for 1<s< oo
(15) k() = [ K@) (@), >0,

ls]—1

icm°
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where o i8 the measure (surface area) on the unit sphere. If K e W,, it
follows that %, is absolutely continuous (¢>0) and

M <s [ K@)V K@) o(d), t>0.
lel=1

Hence, by Hélder

2e 2¢
(16) [ H@la<de™ [ PE@)IE@F dy<Be™ [ k),
e e<ly|<2e e
so that &, € W, and can be estimated by its average.
In conclusion, we mention the two-dimensional example K(z,y)
= (¢*+ )" with a # 0 (z,y,a e R). Tt satisties K e W, for 1 <8< oo,
but K ¢ W. Observe that its growth is quite different in various parts
of the plane, however, if we approach 0 or co along fixed rays, we see the
same behavior in the end with only two exceptions.

§ 2. Necessary conditions for type (p,q). Here we give necessary
conditions for weak type (p, q) based on the assumption K eV, which
is our least restrictive condition. We wse the notations (1/p)--({1/p’)

» APy —@Ajg) =1—(/r).

TEBOREM I. Assume 1<p
and K eV, Now,if K, eL

o (J

e<lyl<2e

If also K e CL(R"), the same conclusion can be drawn from K e L¥,.
Before we enter the proof, we make various comments. Condition (17)
becomes stronger for larger s. We have 1 <7 < p’, 80 8 = r is a possible
choice. Tn case ¢ < r the integrability of |[K|* at oo is implied, in case
§ < r the integrability of [K|* at 0 is implied. Tf 8 — oo is possible, we have

(18) |E (@) < Blw|™r, @ #0.

< oo, 1K
# , uniformly, then

<8<, Keli,(R"—0)

K(y)}’dy)l/’ < Bgﬂ((lls)—(llf)) , o>0.

In general, our conclusions can be somewhat improved if we use the strong-
er condition K e W,.

COBOLLARY 1. Assume the situation of Theorem I with V, replaced by W,
ond § < co. Now, in case n =1, condition (18) is always necessary. In
case n > 1 we obiain the stronger necessary condition
(19) k(1) < B,

provided that K e C*(R™—0) also.

The corollary follows in case n =1 since |K|® e W, and ean be esti-
mated by its mean value, cf. (12’). In case n > 1 we use k, ¢ W, cf. (16).

>0,


GUEST


232 W. B. Jurkat and G. Sampson

The condition K e W can also be used to make a connection with
Hoérmander’s condltmn H,.

CoROLLARY IL. Assume the situation of Theorem L with V, replaced by W,
and let 1< o<s 0<1/o<(1fr)+(1/n). Then it is mecessary that for
2> 0,5 < o/2

(20) ( [ Et+a)—-E)ray)" < B(o)gia-om.
vi=e
In particular, if s > r, then ¢ = 1 is possible and K e H, is necessary.
To see this apply K e W, and (17) to obtain for ¢ > 0, |#| < 0/2

E(y+0)~K@ay) " < B grei-um,

e<|yi<2e

In this condition we can replace s by o and o by 27p. Adding overj = 0 1.
yxelds

@) [ 1Bwto-E@ra <l pton,  p<ep.
lvl=e ¢

As a special case of Corollary IT the condition K ¢ W, will ensure

that K e H, is necessary. Note, however, that for well-behaved kernels,

K eW, iy satisfied rather generally while K ¢ H, means an additional

restriction similar to (18). For well-behaved kernels K e H, is an import-

ant part of the mapping property as seen from the necessary side and
from the results of Hormander.

Proof.of Theorem I. We may assume, given ¢ > 0, that

| E@raf =4>0 (<)

e<lyi<<2e

Now seleet f e 07 with support in {o < |y] < 20} such that
| Ewf-nay|>31, Ifl=1.

e<lyl<2e
This is also possible for 8 =1 or s = oo (if permitted). Then, by K e ¥,
for |z < dp
(22) | | (Eg+a—E@)f(-yay|<22,

e<iyi<2e,
hence, with & = (1—d)g,

(EsH@l=| [ E@+af(—ydy|>
e<iyi<ze

miz: |(K,*f) (@) > 1} > A" = Bg".

The LP? mapping problem for well-behaved .convolutions 233

The condition K, equ uniformly therefore implies

B < K +fIF < Blfl,-
In view of p<<s' << oo, )
IFIE < IFIB (4 Q")) < Agnti=tois),
Hence ) -
i< Bgﬂ((llp)—(lls’)—(llq)) = Bgn((lls)—(llr))_

The case K e L, does not require the introduction of z, and the proof
is complete.

Remark I. Essentially the same proof works if K e V, is replaced by

28) ([ IE@+e)—E@m)dy)" < Bewa-an)
e<lyi<2e
for o>0, [#/< 0/2.

Observe that in (22) the right side becomes Bo™Wa)~0) which can be
assumed < 2/ since we are finished otherwise (provided that the objeetive
was to prove A < Bg(¥-0/) with B independent of ¢ and the- choice
of f). Also observe that the proof can be modified even if 1 = co. So we
obtain K e ILj,(R"—0) as & necessary condition (without having to assume
it). We note that condition (23) becomes stronger for larger s. Finally,
we remark that condition (23) in case s = 7 is somewhat weaker than

K € H,. So the condition K e ¥V, of Theorem I (s = r) may also be replaced
by KeH,.

§ 3. Further necessary conditions for type (p, p). Besides the growth
conditions (17), (18) there are further necessary conditions in case p = ¢.

THEOREM II. Assume 1 <p < oo, K € Lyo(R*—0), and
(24) ] Ewlay<B, e>0.
e<lyi<e
Now, if K, e L, uniformly, then
(25) | | Ewa|<B, 0<a<au<w.
e<iyi<e;
1If also K e CL(R™), the same conclusion can be drawn from K e L;‘;‘f,,

It should be pointed out that the necessary condition (17) with

P = q implies (24), so Theorem II is applicable in the situation of The-
orem I (p = ¢).

Proof. We select fe O such that 0<f(y)<1 always, f(y) =1
for Jy] < 2¢, f(y) = 0 for |y] = 3p (¢ > 0). Take 0 < & < ¢ and let

2i=| [ Eway|, [ 1E@lay<B

lvi<e e<lyi<de
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‘We may assume A > B’ since we are finished otherwise. Hence, for || < g,

(Esf@ = [ Bay+ [ E@fle—ydy,

lvi<e e<ly|<de

(E.+f)(®)| > 24—B'> 4,

IEoxf) (@) > 3} > Ag

The condition K, eLjfp uniformly therefore implies
A" < K +fIF < Blfll, < Be™®

giving the conclusion 2 < B.

In case K e L¥, we drop ¢ and write generalized Cauchy integrals.
Thus we get

m{w:

fmowl<s

which implies (25) by taking differences.

§ 4. Necessary and sufficient conditions for type (p, p). Here we use
results of Hormander [3], Stein [5], Benedek—Calderén—Panzone [1] to
show that our necessary conditions are sufficient as well, at least in the
case of weak oscillation. Since several ideas are fa,mlhar, the exposmon
will be brief. :

TEEOREM ITI. Assume 1<p< oo, 1<s<p, K eLloc(R"—O),
and K € W,. Now, K, e L, uniformly if and only if for 0> 0, 0 < g, < g,
< oo

@) ([ IE@ray)* <,

K(ydy|<B
e<lyl<e

o1<Ivi<ey
If also K e CL(R"), the same conclusion holds with respect to K ¢ I

The simplest case is s = 1 if one fixes s in the assumption. It follows
that the weak mapping properties are equivalent for 1<p <<s' (p < o)
and therefore also equivalent for the strong mapping properties for 1 < p
<8’ (8 < o) by the Marcinkiewicz convexity theorem. Some of the
restrictions for p can be removed by duality and the use of the Stein-Weiss
convexity theorem [6].

Proof. The necessity has been shown already in Theorems I and IT.
For the sufficiency observe that K e W, and (26) imply K < H, as shown.
in (20), (21) with r = 1 = 0. In view of the simple inequality

K. (y+2)— K, (y)|dy

lyi=2lzt

< [ E@+o-Emia+2 [ K@)y,

lyiz2lx] e<|yI<3s

icm
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it follows that K, e H, uniformly and K, , € H, uniformly. By Benedek—
Calder6n—Panzone it also follows in view of (26) that K, , € L, , uniformly.
Next, by Hoérmander it follows that K, , e L{f uniformly and (by eon-
vexity and duality) that K,, e L¥, uniformly. Now, a Fatou-type argu-
ment a8 n— oo shows that K, e L, uniformly. This eompletes the proof
unless we are in the case K e CL. Here we introducefor 0 < e <1< < oo

K@) = o E(@) for |o|<1, E,,(@) = o> 1
and observe that for z # 0

K, (@) for

1
K, (@) =¢ f K, (@) dt.

So the kernel K, o 18 & convex combination of the kernels K ,. Therefore
K, , ¢ H, uniformly and K, , € L, , uniformly, hence as before K, eL¥,
uniformly. Letting first # - 4-co and then ¢ — 40 it follows by a Fatou-
type argument again that K e I# . This completes the proof in the second

case. }
Remark IL Essentially the same proof works if in Theorem ITL
= 1) the condition K e W, is replaced by K e H, (use Remark I for
the necessity). We have explained why this may be less satisfactory
though. However, a slight extension of Hérmander’s proof (in combination
with convexity theorems) gives that under the assumption K e H,nCL
the condition K e L, is equivalent to & e I™ for any p e (1, o). So we

learn that under the assumption K € H,CL the conditions of Theorem ITT

(s = 1) are also equivalent to K e L. While the sufficiency here appears
to be relatively straight forward (see Benedek—Calderén—Panzone), we
do not know of a direct proof for the necessity of (24).

§ 5. Further necessary conditions for type (p,q). Here we discuss
the case p < ¢. In dimension n = 1 condition (18) is necessary for our
kernels according to Corollary I, but also sufficient since the Hardy—
Littlewood—Sobolev kernels map. For dimension # > 1 there are further
necessary conditions.

THEOREM IV. Assume 1<p<g< oo, 1<s<p, 0<1fs<(Ar)+
+(1/n), K € Lj,o(R*—0) and K ¢ W,. Now, if K, equ wniformly, then
27) I < oo
If also K e CL(R"), the same conclusion can be drawn from K e Ly,

Observe that in case n = 1 the choice s =1 is always possible,
while in general at least the choice s = r is possible.

Proof. By Theorem I we have (17), hence for ¢ > 0

(28) [ Ewlay<Bg™, [ |E(y)ldy<Bo"
e<lyI<%e jvi<e
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since > 1, 7" < oo. Also, by Corollary IL (¢ = s)

( j' [K(y—l—w)—K(y)]"dy )1/3< Bgn((lls)*(llf))
lvi=e

(29)

for >0, @ <o/2.

Let @ = ¢" and fe Oy, |fI<1, m{suppf} <a. Then, by (28) and (29),
we obtain K e I, and for |z|< o/2

| [(E@—+o)—E@)f(—y)dy|

R

< [ (E@+ol+E@l)dy+( [ 1E@+o)—K@)Prdy)” o

lvi<e lyI>e
< Ballr'+Ba(lls)—(1/r) al/s’ < B’ al/r’.

We need only deal with the case K e L¥, (use Fatou), and we may assume
that ‘ .

Inan(y)f(—y)dyl =21, ,1>Bfa1/r"'

since we are finished otherwise in view of (7). Hence,
(E*f) @) >2—Bal >4 for jo<of,
m{w: (Exf) (@) >4} > da.
But then : :
MAa)" < |E +fl|¥ < Blifl, < Ba'?

giving the conclusion i< Ba"P-0/9 — Bal'". In view of (7') this com-
pletes the proof. ’

Remark IIT. In case r <s<p’ (s < o) the condition K e W, in
Theorem IV can be replaced by K e ¥,. By Theorem I condition (17)
is still necessary and implies (23), (29) for || < 8o. So the same proof
works. In case s =r the condition K e W, can be replaced by K e H,.

Then (29) holds and also (17) according to Remark I, and there is no change
-in the proof.

) §6. Necessary and sufficient conditions for type (p,gq). Here we
d_1seuss the case p < q and show that our necessary conditions are suf-
ficient as well even without any regularity conditions on K.

. THEOREM V. Assume 1<p< 1< o0l 0<1fs<(1r)+
+(1/f:_z), K €L, (R*—0), and K eW,. Now K, e L¥, uniformly if and
only if |E|F < oo. If also K cCL(R™), the same conclusion holds with
respect to K e L,

If 9ne fixes ¢ in the assumption, it follows that the weak mapping
Properties are equivalent for pairs (p, ) with the same » in the range

e ©

icm
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1<p<s (< o) and therefore also equivalent to the strong mapping
properties for 1 < p < 8’ (g < oo, s < o0). Some of the restrietions for p
can be removed by duality.

Proof. The necessity has been shown already in Theorem IV. For
the sufficiency note that 1 < » << co, and we may interpret (27) by means

of (7') since K e I, follows easily. Hence we obtain for fe L and |g| =1

or 0 (g measurable) the inequality

J| way\E(@+y)g(—n)f(—)I<4 [aylf(—y) IKIF gl
R"

RnxXR"

{30)

< Bl fll, ligl-

By (30) in connection with (7') we see that K is of weak type (1, r) and
of restricted type (', oo). Therefore, by Stein-Weiss, K is also of strong
type (p, q) for p > 1, ¢ < oo, 80, in particular, of weak type for all pairs
in question. The same proof works with K, in place of K, uniformly in .
In fact, we have shown (K| eL¥,.

Remark IV. The condition K € W, in Theorem V can be replaced
by K eV, if ¢ > r (additionally) and by K € H, if s = r (see Remark III).
Note that the extra conditions were only needed in the necessary part.
In case of dimension # = 1 condition (27) can be replaced by the stronger
condition (18), see Corollary I. By a slight extension of Hormander’s
proof (in combination with convexity theorems as used in connection
with (30)) we find that under the assumption K € H,nCL the condition
K eI}, is equivalent to K eLf, for all pairs (p, g) with that same r.
By comparison we see that K e Lf, is equivalent to |K|ff < oo at least
under the additional assumption ¥ € H,nCL. It turns out that the ad-
ditional assumption K € H, is superfluous for this conclusion (1 < 7 < o).
For the sufficient paﬁ-t this was already shown above. For the necessary
part we refer to the fact that mappings from L can be handled in con-
siderable generality. Further details will be discussed in a forthcoming
paper by Fiedler, Jurkat, and Koérner on L? estimates for more general
operators.

In conclusion we mention that the example at the end of § 1 with
a = —3/4r satisfies |K|¥ < oo, but not (18), although K is a ease for
which our theory applies.
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Abstract. We show that every separable Banach space X is a complemented
subspace of a separable Banach space ¥ which has the following rotation property:

There is a dense subset S of the unit sphere of ¥ so that for every =,y € § there
is an isometric automorphism T: ¥ — ¥ with T{») = y. As a consequence, there
is a separable Banach space satisfying this rotation property which, on the other side,
fails to have the approximation property.

This paper is concerned with the following Banach space properbty:

(M) Let X be a Banach space (real or complex). There is a dense subset 8
of the unit sphere of X such that for every x, y € 8 there is an isometric
automorphism T: X -+ X with T(») =y.

An igometric automorphism of a Banach space X is sometimes called
rotation. We obtain immediately:

Let X be a Banach space having (M). For every e>0 and 3, ye X
with o}l = [lyll =1 there s an automorphism T: X — X with (1—e)j
<IT@I<@A+e)lll  for all ee X and T(z) =y.

Clearly, the separable Hilbert space satisfies (M). In [7] it was shown
that there is a separable Banach space @ with property (M) whose dual
space G* i isometrically isomorphic to an abstract L-space (cf. [5]). It
turns out that the rotation property of (M) holds on the set of all smooth
points of @ (i.e. on the points # with |#]] = 1 and there is only one linear
functional #* with #*(z) = |lo*| = 1). The set of smooth points is a dense
@G,-subset of the unit sphere of any separable Banach space (Mazur [9]).

On the other hand, the unit sphere of @ contains points @, ¥ which do
not admit a rotation 7' of @ carrying # onto . Thus @ is an example of
a Banach space having (M) which is different from a Hilbert space. Exploit-
ing Banach’s characterization of the rotations [fm L,(0,1); 1<p < o0;
P # 2;([1] Chap. XT), we obtain:

Let f, geL,(0,1); 1< p < oo; p #2; (with respeci to the Lebesgue
measure i) so that |fll = gl = 1.
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