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Abstract. We show that every separable Banach space X is a complemented
subspace of a separable Banach space ¥ which has the following rotation property:

There is a dense subset S of the unit sphere of ¥ so that for every =,y € § there
is an isometric automorphism T: ¥ — ¥ with T{») = y. As a consequence, there
is a separable Banach space satisfying this rotation property which, on the other side,
fails to have the approximation property.

This paper is concerned with the following Banach space properbty:

(M) Let X be a Banach space (real or complex). There is a dense subset 8
of the unit sphere of X such that for every x, y € 8 there is an isometric
automorphism T: X -+ X with T(») =y.

An igometric automorphism of a Banach space X is sometimes called
rotation. We obtain immediately:

Let X be a Banach space having (M). For every e>0 and 3, ye X
with o}l = [lyll =1 there s an automorphism T: X — X with (1—e)j
<IT@I<@A+e)lll  for all ee X and T(z) =y.

Clearly, the separable Hilbert space satisfies (M). In [7] it was shown
that there is a separable Banach space @ with property (M) whose dual
space G* i isometrically isomorphic to an abstract L-space (cf. [5]). It
turns out that the rotation property of (M) holds on the set of all smooth
points of @ (i.e. on the points # with |#]] = 1 and there is only one linear
functional #* with #*(z) = |lo*| = 1). The set of smooth points is a dense
@G,-subset of the unit sphere of any separable Banach space (Mazur [9]).

On the other hand, the unit sphere of @ contains points @, ¥ which do
not admit a rotation 7' of @ carrying # onto . Thus @ is an example of
a Banach space having (M) which is different from a Hilbert space. Exploit-
ing Banach’s characterization of the rotations [fm L,(0,1); 1<p < o0;
P # 2;([1] Chap. XT), we obtain:

Let f, geL,(0,1); 1< p < oo; p #2; (with respeci to the Lebesgue
measure i) so that |fll = gl = 1.
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(i) If either A(suppf) = A(suppg) =1 or A(suppf), A(suppg) <1,
then there is a rotation T: L,(0, 1) — L, (0, 1) with T(f) = g.

(ii) If A(suppf) = 1 but A(suppg) < 1, then f and g do not admit & ro-
tation, T with T(f) = g.

The latter assertion follows from the facts that

{f e Ly (0, )] Ifl ="1, A(suppf) =1}
is the set of smooth points in L, (0, 1) and

If =gl + 17+ 91" = 21fIFP+2 lg}?

iff A(suppfosuppg) =0; 1< p < oo5 p # 2 ([1]). Hence ij(O,l) has
property (M), too, and the above space @ (the Gurarij space) seems to fit
into this eonecept of IL,(0, 1)-spaces taking over the position of Ly (0,1).

In view of these examples it seems natural to agk in how far property
(M) depends on the intrinsic structure of a given Banach space. The
purpose of our note is to show that property (M) is a universal property
which is related in some sense (theorem below) to every separable Banach
space. This provides us even with a separable Banach space satisfying (M)
which fails to have the approximation property. So, in particular, we
obtain an example which is extremely. different from a Hilbert space.
Notice that all Banach spaces previously discussed do have the. appro-
ximation property. - ' : ’

TEROREM. Let X be an arbitrary separable Banach space. Then there is
a separable Banach space Z = X satisfying (M), and a contractive projection.
P:. Z-+X.

CoROLLARY. There is o separable Banach space X which satisfies (M)
but does mot have the approzimation property.

Proof of the Corollary: There is a separable Banach space X
which fails to have the approximation property ([2], [3])- Our above
theorem yields a separable Banach space X o X with property (M) and
& contractive projection P: X —X. Hence X cannot have the approxi-
mation property. Indeed, otherwise let K <= X be compact and &> 0,
so that T': X — X is a linear operator with finite rank and 1T (2) —2|| < e
for all z € K. But then P-T).X is 2 linear, finite rank operator from X into X
and

(P -T') (@) —al| = ||P(T(x)) —P@)|< |T(@)—2|<e forall vek.
Hence ¥ would have the approximation property if this were true for X. m
In order to prove the above theorem we need a lemma first.

LevwA. Let Y be a separable Banach space. Let B, = Y be a sequence
of subspaces of ¥ and let T,: H,— ¥ be isomeiric linear. Furthermore,
assume that there are contractive projections P,: ¥ - E,ondQ,: ¥ 1T, (8,

e ©
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for all n. Then there are a separable Banach space ¥ o Y, isometrfo- exten-
sions T,: Y—~X of T, and coniractive projections P: ¥ - ¥,0Q,: ¥ —
- T.(Y) for all n.

Proof. Consider (® Y )iy (endowed with the norm (%)l = Z ly:ll
i=1 i=1

for all y; € ¥) and let V be the closed linear span of all vectors ( —T,(e),
0,...,0, ¢ ,0,...) where e e B,, n e N. Set ¥ = (@ ¥),)|V. Since
i=1

n+1

i <int{ly— 3 7T,
n=1
for ally e ¥, we can Y identify with the subspace spanned by the elements
(y,0,0,..)+VeXY,ye¥.
We observe that (T,(e),0,0,...)+V =(0,...,0,¢ ,0,...)+V for
all ¢e B,; for all n e N. Furthermore, we obtain ntl

+ D llealll e, € Byim e N} < Nyl
n=1

il > it {ly — e, |+ 5‘11e,—11+!]f,’1’,.(e,.)]§1 6 € By; i eN)
i=1 i=1
i#En

> inf {ly— e, T (e + Y, (e~ ITs(el)] o € Bys m e N}
i=1
i#En
= liyll
so that we can T, extend isometrically by setting T, (y) = (0,...,0,¥ ,
0,...)+Vforall ye ¥ and all » e N. Set wt

P((f’/i)+ V) = (?/1: Py (ya)y Palys), )+ v

and
Gnld+7) = (@nfra+ __f,‘(Tin)(ym)),o, 0,00, 50,0 )4V
izn "

for all ;€Y and neN. )
We have defined projections with ||P| < sup(|P;)<1 and [|§,] <
i‘zlvP(HinHlPil}) <l.= N

Proof of the Theorem. Define ¥, = X. Assume that we have
introduced already Y,, and

Qy, ={T,: B, Y,,| T, isometric, linear},
where B, are certain subspaces of ¥,,. Assume furthermore, that there
are contractive projections P, ¥, — B, ; @2*: ¥,, T, (B,) and R,,:
Y,,~X. We use the above Lemma to define ¥,,., > ¥,,, isometric
extensions T),: ¥,, — ¥,,,, of T,, and contractive. projections P: Yoia
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= Vyos Q2 Yy~ Tn(Xy,) for all m eN. Another application of
the above Lemma by replacmg T, by Tm , B, by T i (Yan)y P2 by QU+,
T.(B,) by Y, and @i} by P for all m yields Y,, ., ¥, isometric
extensions 8, of T, 8,,: F,, = Y,u,,, Where F,, are subspaces of Ym .2
with ¥,, < F,, and 8,,(F,) = ¥,,,, for all m ¢ N. We obtain in addition
contractive projections Put®: Yo, 0 = Fp;@: Yyppo = Youpn = 8p(Fp)-
We set Ry, = Ry, P-0Q.
Consider now a countable dense subset I" of the unit sphere of ¥,,.;
and define

= {T: (@)~ <yp| T linear isometric; x,y e I'; T(x) =y},

where (x> denotes the linear span of x.
Then certainly 2 is countable. The theorem of Hahn-Banach pro-
vides us with contractive projections from Y,,., onto <> for all x eI

Set Q,,,, = 2,0 Q and continue the induction by defining ¥, ;- L

Finally, set Z = | Y, and define a contractive projection from' 7
neN

onto X by the R,,, neN. n
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A characterization of localized Bessel potential spaces
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Abstract. Localized Bessel potential spaces 8(g, y), ¥ > 0, were recently intro-
‘duced by Connett and Schwartz in conneetion with ultraspherical multipliers and
characterized for integer y in terms of sequence spaces. Analogous results are obtained
in this paper for all real y > 1/q, where 1 < g < co. These results are then wused to
derive best possible multiplier criteria of Marcinkiewicz type for Jacobi expansions
by interpolating between end-point results due to Askey and to the authors and to
derive analogous multiplier criteria for Hankel transforms.

1. Introduction. In [11] Connett and Schwartz showed that localized
Bessel potential spaces S(q, y) are useful in the theory of ultraspherical
multipliers. However, one disadvantage of these spaces is that it is hard
to verify when a sequence is the restriction- (to the positive integers)
of an element in 8(g, y). Jn case of y being a positive integer, Connett and
Schwartz characterized S(g, y) by means of (finite) difference conditions
upon the sequence. The main result of this paper, Theorem 1, extends
this characterization to all ¥ > 1/g for 1 < g < co. We also give a neat
description (Theorems 4 and 5) of the imbedding behavior of the wbvy
and WBV-spaces (defined below), which are important in multiplier
theory. These results are then used to derive various multiplier criteria
for Jacobi expansions (Theorem 6) and Hankel transforms (Theorem 7).

‘To define the localized Bessel potential spaces we first recall that
the standard space of Bessel potentials L(R), y > 0,1 < ¢ < oo, is defined
by (see [20], p. 134)

L = {g e I9(0, o0): g = G, xh, lgll,, = Ihly < oo},

where the Bessel kernel @Q,(») is a function whose Fourier tramsform is
given by

= [ Gl@)e " dn = (L+op)7",
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