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Bases for ((K) spaces are not in general B-perturbable for any B.
‘Warren [7] and Wojtaszezyk [8] have shown the existence of a normalized
basis {f,} for ([0, 1]) which is weakly convergent to 0. Warren’s construe-
tion provides an example of a basis for C([0, 1]) which is not B-perturb-
able for any B > 0.
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Subspaces of smooth sequence spaces
by
M. 8. RAMANUJAN (Ann Arbor, Mich.) and T. TERZIOGLU (Ankara)

Abstract. This work is concerned with subspaces of nuclear Fréchet smooth
sequence spaces. Particular attention is paid to those subspaces which are isomorphic
to power series spaces.

The investigation of all infinite-dimensional subspaces of nuclear
power series spaces of finife and infinite types is the subject of two import-
ant papers of Dubinsky [6], [7]. The earlier works of Rolewicz [12]
and Zahariuta [16] were concerned, to some extent, with subspaces of
power series spaces. The concepts of smooth sequence spaces of finite
and infinite types were introduced in [13] as a generalization of the notion
of power series spaces and nuclearities based on such spaces were briefly
studied in [4]. The present paper is basically concerned with subspaces
of nuclear Fréchet smooth sequence spaces.

In Section 1 we collect the necessary definitions and in Section 2
obtain some properties of block basic sequences with respect to the ca-
nonical basis of nuclear Kothe spaces. Section 3 is on basic sequences in
A, (a) and @ -subspaces of 4,(a) and G,-subspaces of 4,(a). In particular,
it is proved that if a @,-space is isomorphie to a subspace of 4,(a), then
it iy isomorphiec to a power series space of finite type (Theorem 7).
In Section 4 we study subspaces of G,-spaces; the subspaces considered
are power series spaces of infinite type or L;(b, co) spaces of Dragilev [3]
or @,-spaces. Zahariuta [16] showed earlier that an I.(b, oo) space is
either isomorphic to a power series space of infinite type or has no subspace
isomorphie to a power series space. We show that this result does not
extend to general G -spaces. We also give examples of G -spaces which

‘do not contain subspaces isomorphic to power series spaces while these

G-spaces are themselves isomorphic to subspaces of each nuclear power
series space A (f) which is stable.

The authors are thankful to Professor C. Bessaga for helpful remarks
leading to the present form of this paper.

1. Preliminaries. We refer the reader to [41, [9], [10], and [11] for
terms that are not defined here.


GUEST


800 M. S. Ramanujan and T. Terzioglu

Smooth sequence spaces were introduced in [13] as a generalization

of the notion of power series spaces without the countability assumptions

ma.de in the definitions that follow. In this paper a countable Koéthe set
= {(a¥)} is called a G.-set and the corresponding Kdthe space A(4)

@ G -spawe if A satisfies:

(1) @& =1 and af < af,, for each & and n;

(2) VK34 with (al)* = 0(ad).

The nuclearity of such a space is equivalent o Dlfal < oo.

A countable Kothe set B = {(b%)} is called & Gy-set and A(B) a G-
space if

(1) 0 < BE,, < bE<1 for each k and n;

(2) Vidj with 5% = O((83)).

The nuclearity of A(B) is equivalent to B < I;.

W. Robinson has proved that a Kothe space is a @y-space (resp.
G.-space) if and only if it is regular and (d,) (resp. regular and (d,)) in
the terminology of Dragilev [3]. An indication of the proof for the case of
@,-spaces is given in Section 4.

Let f be a positive, log-convex function on [0, oo) and let (b,) be an

inereasing sequence of positive real numbers with limd, = co. Then
Ly(b, ) is the Kothe space A(P), P = {ef"‘bn)) k=1,2,...}. This
is a G-space and the particular choice of flu) = u gives ’che power series
space A, (b,) [3].
) Considering only nuclear G; or G, -spaces A(4), the space 1(4) is
said to be stable if it is isomorphic to A(4)x A(4) and multiplicatively
stable if A(4) is isomorphic to the complete (projective) tensor product
A{A) ® A({4). The G-space A(4) is stable if and only if for each % there
is a j such that af, = O(af) and multiplicatively stable if and only if
for each & there is a j such that ak:= O(af) (see [14]). The power series
space A (a) is stable if and only if a,, = O(a,) (see [4]).

A sequence (2,) in a nuclear Fréchet space X is a basis if each z e X
has a unique representation of the form # = }%,#,. A sequence in X
is called a basic sequence if it is a basis for the closed subspace it generates.
A sequence (y,) is called a block basic sequence with respeet to a basis (2,)
in X if there is an increasing sequence (p,) of positive integers such that

D,
D o #0

Dy —1+1
holds for all =.

Two bases (z,) and (y,) of Fréchet spaces X and Y are said to be
equivalent if there exists an isomorphism T: X - ¥ with Ts, =y, for
all n. The bases (x,) and (y,) are said to be semi-equivalent if there exist
sealars d, # 0 such that the map which sends each », to d,y, is an iso-
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morphism. The bases above are quasi-equivalent if there is a permutation =
of N so that (#,) and (¥.y) are semi-equivalent. All bases of a nuclear
smooth sequence space are quasi-equivalent [1].

Throughout we will have the following conventions. The Koéthe spaces
considered are all nuclear. If (y,) is a basic sequence in X, then Y denotes
the closure of the span of (y,). = is always a permutation of the set of
positive integers N. All the Fréchet spaces considered are assumed to
admit a continuous norm and therefore the space w of all sequences of
scalars is excluded from our considerations.

A basis (@,) in a nuclear Fréchet space X is said to be regular if there
is a fundamental system of norms (j ||} such that

[ Py 12+ 2 b1
2yl 12 4l

(,) is said to be of type (ds) if there is a fundamental system of
norms (|| ;) such that

Vn,keN.

Viide, > 0 with g Zalbs o Walhess
lla, {1,152

For details see Dragilev [3] and Dubinsky [8].

2. A fundamental inequality. As is well known, the basis theorem
for nuclear spaces states that every basis of a nuclear Fréchet space is
equivalent to the canonical basis of a suitable Kdthe space (see [10]).
If (y,) is & basic sequence in a Ko&the space 1(A4), then Y is isomorphic
to the Kothe space generated by the Kothe set {(|y,/z): k=1, 2,...}. Using
the nuclearity of A(A4), the norms

Wl = ) l6F1aF
can be replaced by the equivalent system of norms
19alle = max || af,

where #? is the sth coordinate of 4, in its expansion in terms of the ca-
nonical basis (¢;) of 1(4). Following Dubinski [5], [6] we define

q(k, n)
We then have

= ¢"(y,) = max{g: .l = |f5lag}-

lynll, =
Similarly, we have

[t -+d.m)) a»q(kﬂ- ny = ”ynnk—}-j(a‘g(k+j ! "'q(k+1,ﬂ))

”yn”k +i = Itq(k n)l ag(k n) — "yn"k( g(k,‘n.) /a‘ (k. n))
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Combining these two we obtain the following fundamental inequality:

%
< WURD)
ki °
g(rym)

Ui, m) < 1Yl
Ggieimy  Walless

@

This inequality gives, for instance, the following resulf:
PRrOPOSITION 1. If (y,) is a block basic sequence with respect to a regular
basis of a nuclear Fréchet space, then (y,) is also a regular dasis of Y.
Proof. We can assume that the nuclear Fréchet space is A1(4) and

(akjaktY) is a decreasing sequence of n, because of the basis theorem and
regularity of the basis. Since

Dy,
Yn = ‘_5_: t? €5
Dy —1+1
where 0 =p,<p,<Py<..., we have p, ,<q(k,n)<<p, and so
q(k+1,n)< q(k, n+1). Therefore, from the fundamental inequality
and regularity we obtain
Ohestmy — OeEnsn) 11l

Walzen ~

The characterization of subspaces of (s), the space of rapidly decreas-
ing sequences, has been the subject of two recent important papers by
Dubinsky [8] and Vogt [15]. Vogt (Satz 2.1., [15]) has shown that a nuclear
Fréchet space X is isomorphic to a subspace of (s) if and only if there
exists a sequence (|| [l,) of norms defining the topology of X such that there
isa C > 0 with

Jo1 = k+l = -
a‘q(—;c—i-l,n) %(%,w) Wnrallzsa

VkEIj with flolf < Clol.l=l;, =eX.

Dubinsky’s characterization is more restrictive in the sense that the sub-
spaces have bases. Vogt (loc. eit.) has shown that the above mentioned
condition is equivalent to (d,)-condition when X has a basis. When X
has a basis, considering X = 1(4) and dividing each a* by a* we have
that A(A) satisfies (d,) if a}, = 1 for each n and

V %35 with (a¥)2 = O(al).

If we assume in addition that af<Caf,, for all & and n, then A(4) is a
G -space. .
PROPOSITION 2. Let (y,) be a basic sequence in A(A) and assume A(A)

satisfies (dg)-condition. Then (y,) is semi-equivalent to the camonical basis
of A(A4y), where

Ay = {(agan): & =1,2,...}.

icm°
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Proof. For a given & find j with (af)* = O(af*’). Then, by (1),

k+]
Pk,
ity Wally < @ Walle < €'~ gl = O(Itnlls)-
‘a(k,n)

Thus for each % there exists a j with

a;c(k’") - 0( ”yn”k+j ) .

A
On the other hand, for each % we have again from (1)

1Yally > kl
"ynl Ik a’q(lc,ﬂ.)

and so

Wnlle = O(Hynlllw'&k,n)) .

This completes the proof.

Note that if (y,) is a block basic sequence in A(4), then ¢(k,n+1)
> ¢q(k,n) and so we obtain

COROLLARY 3. If (v,) %8 a block basic sequence with respect to the ca-
nonical basis in o G -space, then Y is also a G -space.

Thus we see that the subspace spanned by a bloek basic sequence
with respect to the canonical basis in a power series space A, (a) is iso-
morphic to a G -space. Dubinsky ([8], Problem 3) has given an example
of a G.-space which is not isomorphic to a subspace of (s) spanned by
@ block basic sequence. The following result illuminates this phenomenon.
K denotes the field.

THEOREM 4. Let Y be o subspace of A, (a) spanned by a block basic
sequence. If Y x K is isomorphic to Y, then Y is isomorphic to a power
series space of infinite type.

Proof. By Proposition 2 we may assume that ¥ is equal to the
G-space A(4,), where

4, = {(k“q(km)); kF=1,2,..}.

Since A(4,) is isomorphic to a subspace of A (a), from consideration of
diametral dimensions ([13]) we have A,(a)’ = A(4,)" and hence

ay = o (aq(ko,n))

for some integer k,. The assumption that 1(4,) is isomorphic to 1(4,) X K
implies the existence of a j, satisfying

Gqyun+t) = O(g(ig,m)-
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Since ¢(f, n) < ¢(ky, »+1) for all j and n, we have for each m, ay,,
< Gty = O (a5, m)- If we now pick f, = gy W See that
}'(AO) = Aco(ﬁn) )

Remark. The above result shows that if 1(P) is a G-space which
is mot a power series space and if i(P)x K = A(P), then A(P) cannot
be isomorphic to a subspace ¥ of any power series space of infinite type
spanned by a block basic gsequence. The assumption that ¥ x K is isomor-
phic to ¥ is essential in this, cf. Proposition 13. On the other hand, it is
known that A(P) is isomorphic to a subspace of (s) spanned by a block
basic sequence with respect to a permutation of the canonical basis of (s);
for details see Dubinsky [8].

3. Basic sequences in 4, (a). Let (a,,) be a nuclear exponent sequence
of finite type and let A, = ¢ * Then the Kothe set {(4,)*: & =1,2,...}
generates the power series space A, (a). So if (y,) is a basic sequence in 4, (a)
and q(k, n) = ¢"(y,) as before, then our fundamental inequality beeomes

oyl
(2) ( lq(kﬂ,n))ﬂk(k-'ri) < nllk </ zq(km\)ﬂk(kﬂ)_
”yn"k—l-j

‘We first discuss briefly the problem of embedding a G -space in A, (a)
and start with a somewhat technical necessary condition for this.

PrOPORITION 5. Let (y,) be a basic sequence in A;(a) such that ¥ 1is
isomorphic to & G-space 1(P). Then there ewists a permulation w such that

VE3j with exp(k oy, ) = O(pf,(n))
and
8 —

- )
aQ, .
s a(s,n)

Proof. Since all bases of a @ -space are quasi-equivalent ([1]),
there is a permutation = and scalars d, > 0 so that the Kothe sets {(d,[¥, /) :
k=1,2,..} and {pk,): k¥ =1,2,...} are equivalent. So, find k, with

1= p:z(n) = O(dn uyn"ko) .

Now, using inequality (1) with & = j, we get for a given k

Vids with pi,, = O(exp(

1
dn”yn"kexp (’570' aq(k,n)) = O(dn Hﬂ/n"zk) .

‘We find m with d,,[[y,ll.. = O(phy) and then j such thab (p,’{‘)”‘2 = 0(pl),
this being possible since 1(P) is a G-space. Then

B (ly, 1) exp (g ) = O (D)
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So, if & > k,, we have

exp(kaq(k,n)) = 0(p3;(n))‘
Since it follows from (2) that for » > s one has g(r, n) > g(8, n), we have

that the above boundedness condition holds for all .
Now for the second assertion we first determine j, with

gl = O(D8)-

Let j> j, and for this j find m so that (p)* = O(py) and determine &
so that pl, = 0(d,lly,lls). Then we have

j H?/ﬂlls)
Ty = 0 .
Fra ( Wl
Appealing now to (2), we have

Pl =0 (exp((s—l/s) aq(s,n)).
Finally recognizing that there is no loss of generality in assuming j = j,
we see that the proof is complete.

A consequence of the necessary condition just proved is the following
result which exhibits a limitation on how simple the embedding of a G,
space into a power series space of finite type can be. This result is an exten-
sion of & result of Dubinsky ([6], Theorem 2).

TeEOREM 6. Let L(P) be a G, -space which is isomorphic to A(P) x K.
Then A(P) cannot be isomorphic to a subspace of any A, (a).spanned by a block
basic sequence with respect to the canonical basis of A,(a)-

Proof. Assume, if possible, that there is a bloek basic sequence (y/,)
in A,(a) such that A(P) is isomorphic to ¥. Using Proposition 5 and the

" nuelearity of A(P) we determine j with

XD Ggqr,ny = 0(Phim)s
where « is the permutation whose existence was obtained in Proposition 5.
Now find m with

Pl = o(w7)
this being a consequence of the hypothesis A(P)x K =~ A(P) and of nu-
clearity. Let
Ny = {n: n(n+1) < =(n)+1}.

Then N, is an infinite set (ct. [6], p- 270) and 80

1impg;(1t+l)/p;’zn) = 0.
neN,
Using again the previous proposition and nuclearity, determine % 50 that

kF—1
ey ] |+

?;n('n) = O(GXP( %



GUEST


306 M. 8. Ramanujan and T. Terzioglu lm

We find », € N, such that for all » in N, and exceeding 5, we have

k—1
log poimy < 7 %t

and
log pon 1) < log p7yy -

Sinee (7,,) is a block basic sequenee,gwe also have q(k,n) < ¢(1, n-+1)
and hence combining these we obtain

. k—1 E—1 k—1 .
10g?3-(n+1) < 5 yin) S 7 O,u41) S 3 10gp?1(n+1)'

This contradiction completes the proof.

Our final result in this section. is on G4-spaces isomorphie to subspaces
of A;(a). As remarked earlier, every nuclear Ko&the space satisfying
(ds)-condition is isomorphic to a subspace of the power series space (s);
in contrast to this, Gy-subspaces of any power series space of finite type
are much more restricted.

THEOREM 7. If @ G-space 1(Q) is isomorphic to a subspace of A,(a),
then A(Q) is isomorphic to a power series space of finite type.

Proof. We assume the existence of a basis sequence (y,) in A,(a)
such that Y is isomorphie to 4(Q). This means, however, that (y,) is quasi-
equivalent to the canonical basis of A(Q) ([1]). Hence there is a permu-
tation = and d, > 0 such that (d,, |jy,l,) and (q,’,(,,)) are equivalent. Hence

we find m and j, with
@ulynlls = O(dhny)  and gy = O((gh)?).
If k, is chosen so that ¢, = O(d, 19nlle,); then
i = Olgly,y).
AP
Now, from (2) and the fact that ¢, < 1 for all » and j, we have
(l) GXP( - aq(ko,n)) = O(ta?n)) .
For each fixed j find r and k; such that
@ =0((g)) and g = O(dyly,ly)
for each k> k. Then, by (2), we have
Q;(n) = O(dn"ynngk GXP( - aq(k,n)/2k)) .

Since (d,)ly,lly) is dominated by some (@7(m), it i8 & bounded sequence.
Hence we have shown that for each j we can find %; such that

v(ll) . . qzx(n) = O(BXP(_ aq(k,n) l k))
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for each k > k;. We are now ready to show that 1(Q) is isomorphic to 4,(8)
where B, = —loggls, j, as in (i).
Given j > j, we find k > k; and % > %, so that by (ii) we have

(Qzl(ll))lc = O(GXP ( - a{l(k:n))) ‘

Sinee by (2) agum = Cgrym)s W get from (i) and the above boundedness
condition

(q:i'z(n))k =0 (qztu(ﬂ)) -

Hence we have shown that for each § there is an integer & with

4, = O(exp(—B,)"
and this completes the proof.

4. G -subspaces of G -spaces. We first point out two useful facts
about G-spaces. Assume that 2(4) is & @-space and 4 = {(a¥)}. If we
set o = logaf, then A(4) is equal to the intersection of the power series
spaces Ay (d¥), k =1,2,... Define b% = alal ... a*. Then A(B) is also
a @,,-8pace. Since af < bf and b < (a¥)* = 0(al) for some j we have that B
is equivalent to A. Moreover, since

Xk k
1 1 by,
k+1 T k+l ¥kl T pk+l ?
bn an a‘n+1 bn+1

the basis of A(B) is regular. This argument is due to W. Robinson. In
view of this we shall assume that the canonical basis of a G-space is also
regular.

We first derive a necessary condition for a @,-space to be isomorphic
to a subspace of another given @ -space and later consider special versions
of this.

PROPOSITION 8. If a G -space A(P) is isomorphic to a subspace Y spanned
by a basic sequence in a G -space A(A), then there exists a permutation
such that

Vkaj with a;‘(k,n) = O(_pg’,(n])
and
ViTs with pl) = 0(afq)-

Proof. By our assumption there is a basic sequence (y,) in A(4)
such that Y is isomorphic to A(P). This means that (y,) is qua.si-equiw_ralent
to the canonical basis of A(P). By Proposition 2 we have that (pf,(n)) is
equivalent to (d,af,,) for some permutation = and d,> 0. Here

q(k, n) stands for ¢*(y,) as usual.
First find j, so that

g
dn = dna';(l,n) = 0(17:1%1»))'

6 — Studia Mathematica LXV.3
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Now, for a given j, find % so that p]pl = O(pk) and then find s with

Phy = 0(d, ays,)- Then

dn.,pzz(n) < P;(}n)Pi(n) =0 (dn a‘z(s,n)) -
This proves the second assertion.
To prove the first assertion, we set
i = “;c(k,n)/l’f;(n)
and
prl =yt
We assume, contrary to the first assertion, that there exists a %, such that
for each jsup i’ = co. Let
n
Ny = {n: yi? > j}.

Then. each ¥; is an infinite set and since pi, < pit), N;,, = N,. Let n;
be a subsequence of integers with n; e N; and N, = {n;: j =1, 2,...}.
If j> s, then

Pt > ol > j

and so limy%?® = oo

neNy
for every s. From regularity of the canonical basis of A(4) we have
q¢(k+1,n)> q(k, n) ([6]; Lemma 1) and therefore

F+1,7 K1 Jo+1
Yu _ a’q(k-[—l,‘n) > a’q(k,'n) >1
BT T Tk =k =4
Ve g\, m) a(ke,n)

Hence
Im % =
neNy

for each k&> %, and each j. For each k we find r,, > & with (af)*=
Then

Tk rk ’.
a <ol o Yalemy i
an) S @7k SO T i
a(k,n) 'a(k,n) Hr
and so we obtain
ki 0 ‘“;;k:l
Yn~ = Y Y i
pn(n):un

For each k> k, we find j with dna,z’(‘,k,") = 0(pip) That is wr<o
for some ¢ and all #. Thus

1
ki
. Pl

icm°
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for this j depending on %. So
Hm P:’;(n)/"yfk = limdna’g(k,n) =0
neN, neNg
for each k > k,. But, on the other hand, we can find s with

L= palz(n) = O(dna’g(s,n))-
Since for & > s we have q(k, n) = q(s, n), this sets up a contradiction.

‘We now give specialized versions of the above result.

ProrosirioN 9. If A, (a) is isomorphic to a subspace of a G -space
A(4), then there exists a permutation m, integers i, and Ky such that (o)
is asymplotically equivalent to (log affn) for each k> k.

Proof. Preserve the notation in Proposition 8; find %k, with 2™
= 0(“’;?1«0,7,)) and set 4, =g(ky, »). For k=k we have g,
= O(logaf ). For k>k, we find R>1 with a¥,, = O(R™™). Since
4, = q{ky, ) < q(k, n), we have loga,{.‘n = 0()-

COROLLARY 10. If the G -space A(A)is such that for each k there exists
a j> k with lim(logal /logaf) = oo, then A(A) has no subspace isomorphic

n

to a power series space A (a).

Spaces u(a) and »(a). Let (a,) be an infinite type exponent sequence.
We define pu(a) to be the G, -space obtained from the Kothe set {(expk™):
k=1,2,...} and v(a) to be the G -space obtained from {(expdk):
k=1,2,...}. It follows from the above corollary that neither u(a) nor
v(a) contains any subspace isomorphic to a power series space. However,
the spaces x(a), »(a) have the following interesting property:

ProrosirroN 11. u(a) and »(a) are isomorphic to subspaces of every
stable power series space A (B).

Proof. 4,(B) is stable implies that g, = O(n*) for some k > 1. Now
we show that u(a) and »(a) are both Ay (n*)-nuclear for each % > 1. Since
the diametral dimension of »(a) is contained in the diametral dimension
of u(a), it iy sufficient to show this only for »(e). By nuclearity of A («a)
we have logn = O(a,) and so n = O(exp(jan)) for some j>= 1. Thus
nF = O (exp(a,)™) for some m > 1 and this means that the G,,-space »(a)
is Ay (n*)-nuclear and so A, (8)-nuclear [11]. M. Alpseymen [2] has proved
that a 4, (f)-nuclear Kothe space which satisfies (d;)-condition is isomor-
phic to a subspace of A, (f).

We now give an application of Proposition 9.

THEOREM 12. Let A (a) be isomorphic to' A (a) X K. If a G -space A(4)
has a subspace isomorphic to A, (a), then A(A) is dself isomorphic to a power
series space of infinite type.

Proof. By Proposition 9 we have =, k, and (4,) with logafﬂ ~ i)
for each %>k, Define 7, = max{i,—1;: 1<j<n}. (r,) increases to
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infinity and further loga,’fn ~a, f E>k. Let j, be the smallest
integer with nL . Then

logak+! logaz’ch

loga® ~ logaf

p—1

Let ¢ > 0 and ¢ > 0 be such that

e 1
Ioga <oy,

and

I
log a%_1 =00, ;.

logaf*t O(i)

loga® 4 1]
Since A4, (a) is isomorphie to A, (e)x K means a,,,[q, = O(1), we have
shown logef*™! = O(loga®) for k> k,. So if we let §, = logafs, we see
that A(4) is isomorphic to A (B).

Finally, we give an application of Corollary 10. It is known [16]
that an (b, oo)-space is either isomorphic to a power series space or it
has no subspace isomorphic to a power series space. In view of this and
Theorem 12 one may ask whether the above result is also true for G-
spaces. We now construct an example of a proper G -space which contains
a complemented power series subspace.

We start with an exponent sequence (a,) of infinite type with
(a,41/0,)} 00 and consider the following infinite matrix:

Then

0 A @, U5 QGg Oy Oyg
@ O3 @ O Gy O dig

ag . 0 . ap
a; . O
51

Let af denote the positive integer % raised to the nth entry of the kth row
and 4 = {(a¥): k=1, 2,...}. It is easy to verify that 1(4) is a G,,-space.
The subspace of odd indexed entries of 1(A4) is isomorphic to the power
series space A,(B), where f; = a;, B, = g, fi; = a, et.c. Also (loga¥tt/
floga%,) is inereasing for almost all # and its limit is infinity. Thus the
even indexed entries of 1(4) form a subspace isomorphic to a G -space
A(4,) which, by Corollary 10, has no power series subspace. Since 1(A4)
is isomorphic to A, (8) x A(4,), it is an example of a G -space, which is
not a power series space and yet it has a complemented subspace isomor-
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phie to a power series space. In view of Zahariuta’s result mentioned above,
A(4) is not an L,(b, oo)-space.

We will supplement the phehomenon described above by showmg
that such a G -space can be constructed in any power series space of
infinite type.

PROPOSITION 1. Let A (y) be any nuclear power series space of infinite
type. Then there exvists & block basic sequence (y,) in Ay (y) which is semi-
equivalent to the canonical basis of a G-space A(A4) which has the property
AMA) == A(Ay) x A (B), where A(A,) is a G,-space which contains no subspace
tsomorphic to o power series space.

Proof. Let (a,) be a subsequence of (y,) such that e, < a,,, and
(ay,q1/a,)t oo. Then A () is a “Stiickraum” of 4, (y) (cf. [9], § 31). So if (y,,)
is a block basic sequence with respect to the eanonical basis of A (a),
then it is also a block basic sequence with respect to the canonical basis
of A (v). Hence, without any loss of generality, we may work in 4_ (a).
In the notation preceeding this proposition we have A(4) == A(4,) X
X A (B). Now, let

Yo =6, Ya =16+, Yy =,
Yy =t tle e,  ys =6 ete

where we shall choose the (tj). Using a lemma of Dubinsky ([6], Lemma 2)
choose 2, such that ¢'(y,) =2 and ¢2(y,) = 3. If k> 2, then ¢*(y,)
= ¢*(ya) ([6], Lemma 1); also ¢ (y,) < 3 by definition of y, and s0 ¢*(y,) = 3
for all % 2> 2. Therefore (ayky,) is exactly the seeond column in the matrix.
‘We can apply Dubinsky’s result and choose tg, 1%, ¢4 ete. so that (g gygy) 18
equal to the 2nth column of the matrix. By Proposition 2 we have that (y,,)
is semi-equivalent to the canonical basis of 1(4) constructed before.
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On a singular integral
by
CALIXTO P. CALDERON (Chicago, TIL)

Abstract. The commutator singular integral
pv. [ K (o~ y}F (o)~ F@)te)dy

{where K (x) is even, positively homogeneous of degree —x— 1, integrable over the
unit sphere of R?)is studied when

grad Fe LP(R"), 1<p<mn, geIlZ(R"), 1<lp+1lfg<{n+1)/n.

0. Introduction. The purpose of this paper is to extend results in [6].
Yet k(x) be positively homogeneous of degree —n—1, even and locally
integrable in |z| > 0. Let F(x) have first order derivatives in the distri-
butions sense in LP(R"), 1< p < co. Let g(x) be a function in LZ(R™),
1< g < oo. Assume that 7 is given by 1/r = 1/p+1/q, p and ¢ not infinity
simultaneously. Consider now the operator

(0.1) T(F,g)=pv. [{F(@)~Fy}E(o—y)g(y)dy.

Rn
It has been shown in [2] that, if » > 1, the above limit exits in I” norm;
furthermore, the principal value converges a.e. (see [1]). Ifp = oo, r =1,
q = 1, it is shown in [1] that T(F, g) converges a.e. provided that smooth-
ness is assumed on K (») (for example (7).

In the paper [6] it is shown that if r = 1, p is such that 1 < p < oo,
then (0.1) exists a.e. and in L'(R™)-norm; no smoothness condition is
assumed on K. (*) In addition, if the following smoothness condition is
agsumed on K:

(0.2) K (z+h)— K

jxi >4k}

(@) =] de < C.

() In a non-published paper Pointwise estimates for co tator singular in-
tegrals B. Bajsanski and R. Coifman have shown a very similar result, but weak type
instead of strong type, and making the following smoothness assumption on the kernel:

[ |E@+h)—E(@)|do < 0-hf’,

lal=1

0<d< 1.
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