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with this property, is ab least /2. Thus we assume the opposite situation
prevails.

: To recapitulate, I, has more than 3#/2 elements. To each element 5
in I, there are indices j, & such that |s;—s;| < & and [t,—%,] < h. At least
one of j, % belongs to I,, by the construction of I,. For at least # elements 4
of I, (we call these Iz) ati least one of j, k belongs to I,. We write I, if § e I,
and % e I,, and I,” otherwise. Then one of the sets I2 , I.” has at least »/2
members.

Assuming that I," has at least 7 /2 members, we finally attain a contra-
diction. For I, has fewer than #/2 members, so that I, containg two el-
ements 4,and 4o, such that for some 7, we have |s; — 8 < hand is ~sj] < h,
whenee |s; —s; | < 2h. Also, [t ip Uil < I, With some % in T,. Thus (85,9 1)
is included in the firgt method of selection, a contradiction.

5. To complete our estimation of |I(R, u)[3r, we recall that this wwas
expressed as an integral over F®), and that the integral over FEINH,
was found to be negligible. The measure of Hj was ]ust found to have
order (R*%)# — RU=)*. The integrand, moreover, is in L?(4), for
1<'p<2a and its norm in T? has oxder R™". The integral over Hy,
therefore has order R™-RU1¢ wherein ¢ = (p—1)p~'> 0. As 17
decreases to 0, the exponent approaches —arg, so that ||I(r, )i has
magnitude B, R~ Ior any ¢ << ag. The number was subject to the in-
equality ¢ < 1—(2a)7" so that ¢ is subject to the mequahty c<a—1/2.
This allows us to conclude that the density of the meagure A belongs to
a certain Holder class, depending on a.
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Singular integrals on generalized Lipschitz and Hardy spaces
by
ROBERTO A, MACTAS and CARLOS SEGOVIA (Campinas, Brasil)

Abstract. Let d(z, y) be a quasi-distance and z a measure, both deﬁnec% on X,
such that (X, d, u) is a normalized space of homogeneous type. Singular fntegml
kernels are defined on (X, d, u). Norm inequalities are given for the singunlar m’segr{sl
operators, associated with these kernels, acting on atomic Hardy spaces and their
duals.

Introduction. Let X be a topological space and d(x, y) 2 non-negative
function defined on X x X satisfying:

(i) d{z,y) =0 if and only if # = y.
(i) d(@,y) = d(y, »).
(iii) There exists a constant k such that

d(w: RS k(d(.’l}, 2) "‘,d(z: ’/))
(iv) The balls with eenter at # and radius r > 0,

B(wy‘r) = {y: iz, y) < 7'}7

are a basis of neighbourhoods of 2.

Moreover, we shall assume that there is a regular Borel measure
such that for every ball B(z,r), # € X, r> 0, there exist two positive
and finite constants ¢;, ¢, such that

(1) e < p{Blw, 7)) < oor-

This property of the measure u implies that if b> 0 and &> 0, then,

@) [ a@, 7 du(o) <™

a(x,2)>b>0 ‘
The triple (X, d, ), satisfying the requirements above, shall be called
a normalized homogeneous space {see [3]). )

Let p(x) be a real or complex valued function on X, square inte-
grable on bounded subsets of X. The mean value of g(2), on & }:fall B,
#(BY"*f ¢(x)dp (=), shall be denoted by mp(p). We shall say that this fun-

B . .
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ction ¢ belongs‘to Lip(y), 0 <y <1, if there exists a finite constant e,
such that for every ball B

- 2
) (#B [ lp(@) —mp(@) du (@)™ < ou(BY
B
holds. We observe that our definition of Lip(0) coincides with the usual

definition of BMO (Bounded mean oscillation, see [6]). The least constant ¢
such that (3) holds shall be called the p-Lipschitz norm of ¢ and shall

be denoted bY llpllsp(y- The norm of a function ¢ is equal to zero if

and only if ¢ is equal to a constant almost everywhere. Therefore, if we
declare two functions equivalent when they differ in a constant, the
y-Lipschitz norms define Banach spaces that we shall denote by Lip(y).
‘We denote by @ the equivalence class of a function ¢ (see [7]).

Let 0 < p <1. A p-atom on (X, d, u) is a function a(2) whose support
is contained in a ball B satisfying:

@) (#(B) [ la(@)dp(a)
B

1/2
=~

< ﬂ(B)—llpr

@
(i) [ a(@)du(e) =

(See [2] and [7].) A p-atom can be identified with a linear functional
on Lip(l/p—1) by
Ly 7y = [ a(@)p(z)du(@).

This can be shown as follows. By part (ii) of (4), we have

[a(@)p(@) du(@) = [a()(p(@)—mz(p) du(@),
then, by Schwarz inequality, (3) and part (i) of (4), we get

|f a@p(@)au(@)| < (f]a(m Pau( m))llz(flcp m)—-mB(tp)[‘dy(m))llz

< lpluip arp-y -

This also shows that ||L,)]| < 1. For the sake of simplicity, we shall write a
instead of I,, therefore, <a, #) means <{I,, #>.
For any sequence of p-atoms {a}2; and any sequence of numbers

{A32, with 2 |47 < oo, the series of functionals on sz(l fp—1),

2“"

i=1

is absolut;ely convergent. We shall say that a linear functional f belongs
to #*F(X, d, u) or simply to #7, if there exist a sequence {a,}32; of p-atoms
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and a sequence of numbers {A,}i2, with ' |A4,/* < oo, such that

f= 2 A

The norm of f is defined as

Wi =int{ 31407, f = 3 haf.
This is mot a norm in the ordinary sense, unless p = 1. However, s#7
with ||f|l,e» becomes a complete metrizable topological vector space. The

dual space of #7 can be identified with Lip(1/p —1) through the bilinear
functional (see [4], [5] and [7]),

oo = D 4 [ a@) o) du(w)

where f = ' J;a;, > 141 < oo and ¢ e Lip{1/p—1). The norm of 7 as
an element of the dual space of #? is equivalent to the norm of @ in
Lip(1]p —1).

Statement of the results

DEFIvITION 1. Let K (%, ¥) be a measurable function defined on X x X.
We shall say that K (», y) isa singular integral kernel if the following assump-
tions hold:

(i) For any ball B and &> 0, if 4 = {{=,5): d(z,y) > (B x B),
then

[ B @, y)Pau@) duly) < oo.
A
(ii) The operator K,, 5> 0, defined as
E(f)@ = [ K 9)fy)duy),

X~Blzy1)

which by (i) is well defined for any f(y) with bounded support and in
IYMX, p), satisfies

HEoflle < ellffle-

The constant ¢ is finite and independent of f(y) and 7.
(iii) For any f in L*(X, p) with bounded support,

ImK, f = Kf
70
exists in IL*X, p). ‘
(iv) If d(w, 2) > 2d(y, 2), then K(z,y) satisfies
E (2, y)—K(z, 2)| < cd(y, 2)* [d(z, 2,

where 0 <e<<1land ¢is a f].mte congtant.
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By (i) and (iii), the operator K can be extended as a continuous
linear operator on I?(X, u). Therefore, the adjoint E* is well defined.
Let B> 0 and let () be the characteristic function of the ball B(z, R),
where 2 is an arbitrary point of X, then

(v) The limit of K*(zz) for B tending to infinity exists weakly in IZ?
on bounded sets and it is equal to a finite constant.

As a reference to Definition 1, see [1].

Let a({w) be a p-atom in (X, d, u) and K(», y) be a singular integral
kernel. Since a () belongs to L* (X, ), the function K (a)(z) is well defined
and belongs to I* (X, x).

TeEEOREM 1. Let 2/(2+¢6) < p < 1 and let a(z) be a p-atom with support
contained in B = B(z, o). Then, the function M (%) = K(a)(x) satisfies:

(6) f[ﬂf(a})]?dlu (m) < GO.—(Q/Z;).;.-_[’
(M f]ll[(m)]gd(m, z)(zlp)—1+adlu(w) <oot,
® [M (@) dp(@) = 0.

Remark. A function M (x) satistying (6) and (7) is absolutely in-
tegrable on X.

DerFINTTION 2. We shall say that a measurable function M (z), de-
fined on X, is a (p, &)-molecule if there exist a point ze X, ¢ >0 and
0 < ¢ < oo such that (6), (7) and (8) hold.

The definition of molecule and Theorem 3 for the Hardy space #*
is due to R. R. Coifman.

THEOREM 2. Let M(x) be a (p, &)-molecule. Then, for every ¢ belonging
to Lip(1/p—1), the funciion M (x)-@(x) is absolutely integrable on X and
the linear functional given by

Ly(p) = [ M(2)p(z)du(a)

is well defined and bounded on Lip(1/p—1).

TeEEOREM 3. (Decomposition of a molecule into atoms.) Let M (z)
be a (p, &)-molecule such that the constant ¢ in (6) and (7) is smaller thamn
a positive mumber A. Then, there exist: a constant B, o sequence {a}i, of
p-atoms and a numerical sequence {1352, with ) |1A;/® < B, such that the
Functional Ly, defined as in the statement of Theorem 2, satisfies

8

Ly(p) = ; A0, B,

3=

-

for every @ € Lip(1[p —1).
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Theorem 3 shows that the linear functional L,,, which by Theorem 2
belongs to the -dual space of Iip(1/p—1), also belongs to #? and that
Moallsen < B.

DermurioN 3. Let K(x,y) be a singular integral kernel and &
> (1/p)—1. Let B = B(z, o) and 2kB = B(z, 2ks). For ¢ € Lip(1/p —1),
we define the function X#(p)(y) on B as

Ej@y) =lim [ E(e,y)p@)ds) +

70 2% B~B(y,)

+ [ (K@, 9)—E(, 2))p(r)du(),
X-L2kB
where the limit is the weak-Z* limit on B.

DEeFINITION 4. Let K(x,y) be a singular integral kernel and &
> (1/p) —1. For every ¢ e Lip (1/p —1), we define K¥(p) as the class of all
the functions p(x) on X sueh that, for any ball B there exists a finite
constant ¢p satisfying

y(¥) = EF(9)(¥) + e,
almost everywhere on B.

It will be shown later (see Lemma 3) that the class K¥(g) is not
empty and if y(z) € K¥(g), then y,(z) e K¥(p) if and only if the dif-
ference v (2) —y, (#) is equal to a constant, almost everywhere on X.

THEOREM 4. Let K(x,y) be a singular integral kernel. For any o
elip(lip—1), if v e K*(g) then yelLip(l/p—1) and there is a finile
constant ¢ such that, )

1¥lLipam-1) < €1@lizipam—1 -

Therefore, K* defines a bounded linear operator from Lip(1/p—1) into
Lip(L{p—1) and |E*]| < e {for previous results, see [8] and [5]).

THEOREM 5. Let K(z,%) be a singular integral Ternel and 2[(2+e)
< p < 1. Let f belong to #7, that is, f = 3 J;a;, where the a;'s are p-atoms
and 3, |2;/" < oo. Then, the operator

Ef = > 4K (a)

is well defined. Moreover, K is linear and there is a constant ¢ independent
of f such that

&S ler < cliflloew-
The operator E¥ is the dual operator of K.

Proofs of the results. First, we shall prove two lemmas that will be
needed in the sequel.
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Levva 1. Let ¢ belong to Lip(y), 0< y< 1. Letr; = alo, a> 1,06 > 0
and § a non-negative inieger. If we denote by m; the mean value

m; = mB(z,r_.,-)(‘P)?
then, the following estimates hold:
(i) If 0<y<1, then
] < Cllfl’]lmp(y)(aj”)y + ||
(i) If.y =0, then
lm;] < eliglluipeyd + 170l
where the constant ¢ is finite and does not depend on j, o or g.

Proof. Let B; and B, be two balls satisfying B, > B,. Then,

Mg, (9) —mp,(9) = n(B)" | (p(@)—msp, () du ().
B
Taking absolute values and enlarging the domain of integration, we have
(9)  Imz,(9)—mp, (@) < (#(B) (B ) u(B)™ [ Ip(w) —mg, (¢) du(x)
B

2
< u(By)u(By)™ llplizipeyy 2 (Ba)? -
Now, writing m; as

(my—my_y)+my,

e

i
~

mj =
k3
we get
i
]771';,'] < [, — ;| -+ ||

i=1

and applying (9) to B, = B(z, r;_,) and B, = B(z, r;), we obtain

(10

(115 — 11| < 0 ]l@llgipey) (0 0)7,

where ¢ is a finite constant depending on the homogeneous space only.
Thgrefore, using this estimate of |m; —m,_,| in (10), it follows that

i
| < calpllipgy D, (a%0)" + Iml.
=1
Computing the sum on the right-hand side, separately for 0 <y <1

and y-= 0, we obtain the estimates (i) and (ii) claimed in the statement
of the lemma. m
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LA 2. Let ¢ belong to Lip (y), 0 <y < 1, and let K (z, y) be a singu-
lar integral kernel with & > y. Then, if ¢> 0 and Y e B(z, o/2), the esti-
mate

(11) [ 1E@,y)—E(@,2)llp) du(@)

X~B(z,0)
< ed(Y, 2)* (6" @l + 0 1Mpe, o@l)
holds, with ¢ a finite constant not depending on @, o, 2 and y € B(z, o/2).

Proof. Let yeB(z,0/2). Then, d(z,2)>c =2(c/2)>2d(y,2).
Therefore, from (iv) in Definition 1, we have

K (2, y) — E(2, 2)] < cd(y, 2)*d(z, 2) 77",
Thus, the integral in. (11) is smaller than or equal to

ey, [ d(@,2) 7 lp(@)|du()
X~B(z,0)

(12)

(=]
= cd(y, 2)° 2 ) .
i=0 B(z,a**+1o)~B(z,a%0)

a(@,2)7 " lp(@)|dp ()

5]

<ed(y,2) ) (ao)

1=0

[ lp@)duz).

Bz,alt1a)
Now, if as in Lemma 1, we denote mpy, 4, (9) by m;, we have

(13) f

Ble,dtt1e)

lp@)du@) < [ 19@) —mil du(@) +-clm, oo

Bz.attle)
By Lemma 1 and the definition of the Lip(y)-norm of ¢, the right-hand
side of (13) turns out to be smaller than or equal to

¢ ((6°0)*” IpllLipey +a* olmal),
for 0 <y <1, and
' @i "o (lpluipgo + I1al)
for » = 0. .
Therefore, by the estimate we have just obtained, (12) is smaller
than or equal to.
P% i _\—&
g (ai0)™),

© ed(y, ) (Iplupe D, (a"0)" 4 ol
=0

for 0 <y <1, or

ed(y, z)g(“‘}"”Lip(o) + |my)) Iz (aia)_x;

[\4 8

1

[
°

for y = 0.
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In either ease, these expressions ave equal to

cd(y, 2)* (llpllipgyy 07 ° -+ e} 6™°),

with ¢ a suitable chosen constant which does not depend on ¢, g, zory. m

Proof of Theorem 1. We begin by proving (6). Since M ()
= K (a)(#), from (ii) and (iii) in Definition 1, we have that

J1 @)F () < ¢ [ la(o)* du (),
and by part (i) of (4), we get
J10@)Fa(z) < u(Bz, o).
Then, taking into aceount that by (1), z(B(z, ¢)) = ¢, we obtain
J 1M @) dp(@) <eome+1. .
Let us show (7). We have
14) 1M @) d, P ()

= [ 1M@Pa, o)+
B(z,2k0)
+ [ IM@Pae, P ).

X~B(z,2k0)

Since (2/p)—1+4&> 0, for the first integral on the right-hand bside, we
have

y fk ) 1 (@) d (e, 2P * 2 () < 064 [ | M (@) P (@) .

Then, by (6) already proved, we obtain

[ 1M @, 0 (o) < oot
B(z,2k0) .

As for the second integral on the right-hand side of (14),if B, = B(z, 2k-2%c),
then

(15) [ M@, P01y 0)
X~B(%,2k0)

=D [ 1M@)Pa(a, 20 (o)

i=0 B;431~B;

<o S [ jurau.

=0 Biy1~B;
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Let ns estimate the integral

[ M @)Pap ).

Biy1~By
For ¢ B;, y € B(#, o), we have,
%20 < (@, 2) < K(d(@, 9)+a(y, ) < (o, y)+ ho.
Therefore, d(w,y) > (25 —1)¢ > 0. Thus, for = ¢ B;,

(@) =lim [ K(o,9)a@)duly) = [E (e, y)aly)ap(y).

=0 XeB(x,n)

Sinee, by part (ii) of (4), the integral of a(y) is zero, we get

M) = [(E(z,y)— K (=, 2))a(y) du(y).
Now, since z ¢ B; and y € B(z, o), the inequalities

- d(m, 2) > 2250 > 20> 2d(y, 2)

hold. Therefore, by (iv) of Definition 1 and part (i) of (4),

13 ()| < o [ d(y, ) d(@, 2)™ " a(y) du(y)

< 00“““””’(1(3}, z) 1-s

From this estimate for M (v), it follows easily that

f ]M(iﬂ)]z d‘u (m) < coe+e—@lp) (2io,)—-1—2s .
Bip1~B; ]
Therefore, since (2/p) —2—¢ <0, the sum of the last member of (15)
is smaller than or equal to ‘

(o]
GO‘BZ 9i(CI)-2—e) _ 540,
Pu=

This ends the proof of (7).
Let us show (8). By the remark following the statement of Theorem 1,
M(2) is absolutely integrable. Therefore,
JH@)dp(o) =lim [ M(2)du (o)
R->00 B(2,R)

=lim [ K (a)(@)1z(®)du(@) = lin [ a@)E (1) (@) du().
R0 R0

Then, since a(z) is supported on a bounded set, by (v) of Definition 1 and
part (ii) of (4), we have

fM(m)dy(m) = cfa(w)d,u(w) =0. H
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Proof of Theorem 2. Since a molecule is an integrable function,
then the integrability of M («)p(w) is equivalent to the integrability of

M (m)(w(m)—mmz,,)(zp)). Moreover, since the integral of  M(s) is
equal to zero,
Ly(p) = [ M(@)g(@)du(@) = [ M(2)(p(@) —mp o(¢) du(@).

Therefore, we can work with @(®) —Mpy,q(p) instead of g(z) or, equi-
valently, with functions ¢(# ) such that mpy, (@) = 0.

Let us define B; = B(z, 2°0) for i a non-negative integer and B_,=0.

Then,

16) 12 (@)lp(@)|du(x) = 1L ()l (a0) | i (0)

uMz

.

Me

< @) {1 () — |+ g e ()

i=0 By~B;_y
~B;

B;

-
[
°

T i—1

Mz

[ 1M @) )" x

By~B; 3

>
% [( [ (@) —miPaua)|" +muBy").
B;

T

0

.
]

By (1), we have
e 1(By) < 6,2

By Lemma 1 and recalling that m, = M0 (@) =0, we obtain

1 y((ip)-1) . :

(18) my] < {C(QI' a) lelLpap-1y, for

¢t llpllLipo) s for

<1,
p=1.

The definition of Lip(1/p —1) and (17) imply
(19) ( [ 9@ —miP au(@)] < 1@l (B2
By

< ellplnipap-1) (2 o) HI=12,

As for the integral of |M (#)[2 on B; ~ B,_,, we have that if i > 1, then

[ 1M@)Paue)

<@ o)ERE= [ (@) d (2, @)1+ du ().
By~Bj_y

By (7), the integral on the right-hand side of this mequahty is smaller
than or equal o g°. Therefore,

(20) J

By~By_1

M (@) 2du (9;) < 2U-D(-@p)+1~e) (—(alp)+1.

For the case ¢ = 0, we get the same estimate, using (6) this time.
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The estimates obtained in (17), (18), (19) and (20) imply thas, it p < 1,
then the series in the last member of (16) is majorized by

[}
¢ ( Z 2""”) llpleioqm—1y

=0

and if p =1, by
o D +1)27") Il

4=0

which. show that
st ()| < [ 1M(2)] (@)l dps (2) < el pluipgyp—ry W

Proof of Theorem 3. As usunal, if B < X, yz(o) stands for the
characteristic function of H. Let B; = B(z, a'c), 4> (cy/e,), see (1),
and O; = B; ~B,_, for any positive integer 4. Cy is defined as B,. Let
a; () be the function

a; (%) =

(M (@) —my) 50, (@),

where

M= u(C f M () du(w).

Clearly, the integral of a,(2) is equal to zero and its support is contained

in B;. Then,
m) XBm(w ZM’ ‘yof

Now, let {8,}52, be the sequence defined as

[ M@)dp@), it i>0,
X~B;
and
= [M(z)au() =o0.
X
This sequence satisfies
= u(0;) My,

8= bipy = [ M (w)du(®)
G

therefore,

ZMJC'Z )dw—ém (o

_Za

o, (@)

(0) e, (@) — 1 Csma) Mgy _, (@) —
- 5m+1 M (Om)—lxc’m(m) .

5 — Studia Mathematica LXV.1
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Define §;(2), 7 > 0, as
Bil@) = 8- (1(0) 0, (#) — (i) Mg, _, (@)

Clearly, the integral of §,(«) is equal to zero and its support is contained
“in B;. -
‘We can write:

(21) Z as(@)+ D) fila)

Let us estimate the normalized I*-norm of a,(x). We have:

(1B 1@ Pau@)” < (0(B)™ [ 1M (@) ap()"+|b1,).
G

= M(‘/‘n)me (w) + 6m+1;“(0m)_‘1x0m(w) .

Since,
1M < w(0)7 [ 1M (@) dpe(o) < w(BYPu(O) ™ (w(B)™ [ [M(2) du(o))",
C; ) o;
theﬁ,
(B [ os(o) P da(a)) "
< (L+pBPPu(C) " (B [ 1M @) du(@)”.
C;

Recalling that 0; = B; ~B,_;, we get, u(0;) = u(B;)—
by (1)
#(C) =
with ¢ > 0. This shows that

M <o (u(BY [1M (@)1 du (@),

Ci

#(B,_y). Then,

610' 0 — 030" 0 > (00— ¢0)a* 1o > (e a— ) e ey u(B,) = op(By),

1f2

therefore,

@) (#(B) [ oo

1/2

o) dp(@) " < o-(u(B) f | (@) dps (@)

Arguing in the same way as it was done in the plOOf of Theorem 2 in order
to prove (20), we can show that (22) is smaller than or equal to -

co— 1P g—((1p)+e2) ,
which shows that o, () is equal to a constant s, times a p-atom. The modu-

lus of s; is smaller than a given constant depending on 4 times g~ HMP)+e2),
Next, we shall estimate the normalized I*-norm of §;(x). We have,

(1B [ 180) P du (@) < el8i) (aF0) ™
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Now, |§;] can be estimated as

Bl< [ 1M () du()

X~B;

< ([1r@F e, oD @) ([ a(e, a)Cre-gu @),

X~B;

‘Therefore, applying (2) and (7), we get

(23) 18] < ¢o™® (aF o)~ (U HI=sl2,
Thus,

(1B [ (@) Qs (2))* < eop g it0im+ ),

Then, as in the case of the o,’s, we get that g, (s) is equal to a constant 7;
times a p-atom. The modulus of ¢, is smaller than or equal to a given
constant depending on 4 times o HEP), The pepresentations
obtalned for the a;’s and the [31’.5 allows us to write the left-hand side of
(21) a

. om+l
D) hay(@),
i=0

2m+

where the a,’s are p-atoms and Z‘ |4:¥ < B, for B a suitable chosen

constant depending on 4 but not on . Therefore, since the linear fune
tional L, on Lip(1/p—1) associated to a p-atom has its norm bounded
by 1, see (5), and since

0 oo " Bl/p
;ﬂ’ (,,2;: )" < B,

we get that

]

2 4 f a:(@)p (@) dp (o)

=
is finite for every ¢ e Lip(1/p —1).

Multiplying by @(#) on the right-hand side of (21) and integrating,
we obtain

(24) f M () p () dpa (@) + 8y 11150, f (@) du(®).

Since, as we have shown in Theorem 2, M (.’L‘)q)( ) is integrable, then the
limit of the first term on (24), for m tending to infinity, is equal to

[ (@)p(@)dp(@).

Now, we shall prove that the second term in (24) goes to zero for m tending
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to infinity. We have

(€ f 9(2) du(@)| < o-(a"0) ™ f lp(@) — M, (@) du (@) + Im 5 (9)].

Applying SOhW‘lI‘Z inequality, the defmltlon of Lip(1/p—1) and Lemma 1
(we can assume without loss of generality that my, (¢) = 0), we obtain
that if p<1,

|acm™ [ !P(w)dﬂ(m)[<c-(a’”o)“’”’”lHtpllmpu/p—l)
Cp )
and

| 1(0,) f 9 (@) ()] < emplgipgo)

for p == 1. Therefore, since by (23),

(] < co?- (am-x—lo.)—(1/p)+1—-5/2,
we get
| 8pns2 0, fqo(m au(s) |
{605[2( am+l g)=(Up)+1=ei2 (g A Uip)—1 leluipam-y, for » <1,
Cﬁ"(’”“)gﬂm||‘7’[|mp(o), for p =1,

which clearly go to zero for m tending to infinity. m

Before continuing with the proofs of Theorems 4 and 5, we have
to show that Definitions 3 and 4 malke sense. We will consider first Defi-
nition 3. K# (¢)(y) is the sum of two terms. In order to see that the first
term exists, take h(y) € L*(B, ), then, we have

[ EW)@)p@)dp@) =lim [ K, (k) (@)p (@) du()
2B >0 9;B
= lim
10 3%B * X~B(x,n)

K (@, y)(9) 4 () p() du(a)
By Fubini’s Theorem, this is equal to

imf{ [ Ko, 5)p@)ds@) by ds),

0" ok B~B(y.n)
therefore, the weak-IL* limit on B
im [ E(o,y)p()du@)
70 2%B~B (Y1)
exists. As for the second term in the definition of K# (9)(y), Lemma 2
shows that it is bounded for y € B.

The following lemma provides the properties of K#(@)(y) that will
be needed in order to prove that Definition 4 is meaningful.
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LemuMA 3. Let B, and B, be two balls such that B, < B, and lei p; and ¢,

belong to Lip(i/p—1), &> (1/p—1), satisfying .(y)—p.ly) = constant,
almost everywhere. Then,

1) K§2(¢) (y)——K}fl(qa)(y) is equal to a constant for almost every y e B,.

(2) For every ball B, K (:)(y) — K% (ps) (y) ©s equal to a constant for
almost every y € B.

Proof. The first claim follows from identity
E5(0)w) K50 = [ (K@, 2)—K@,2)e

X~2kB,

(@) () +-

+ [ K@, z)e@du(@),
2k By~akB;
where y € B; and 2, and 2, denote the centers of B; and B,, respectively.
As for the second claim, we can assume that ¢, —¢@, = 1. Then if 2
is the center of B, we have

Ef (90 () — B (92) () = EE(1)()

= lim Kz, y)du(w) + f
710 2k BwB(y,n) X~2kB
Let h(y) be any function in L*(B, u) with integral equal to zero. We shall
show that

@, y)—K (@, 2))du ().

[EED) )by duly) =0,
which will prove claim (2). It is easy to check that, if B > 2%k, then

E@,y)dp@)+ [ (E(@,9)~E(e,2)ds@)

2kB~B(y,n) X~2kB
= [ E@ypg@+ [ (E@9)-E@,-z)dpo)—
RB~B(y,m) X~RB
— f K (%, 2)du(w).
RB~2kB

By Lemma 2, the second integral on the right-hand side goes to zero
uniformly on ¥ € B as R goes to infinity. Therefore,

JEEQ) () h(y) duly)
= lim [lim K(z,9)d, du(y) —
tmfim ([ K@ (@) ) dpe(y)
—[( ] K@) b))

RB~2EB
The last integral is equal to zero, since the expression in parentheses does
not depend on y. On the other hand,
lim [ E(,y)du()

0 RB~Bly,n)

= K*(ZRB)7
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then, by (v) in Definition 1, we get

J BEO @) = 5[ K (1) )0 du (o)

= const fh(g/)dy(y) =0. =

Part (1) of Lemma 3 allows us to construet a function y(x) on X

satisfying the requirements of Definition 4 for a given p(»). Part (2) of

 Lemma 3 shows that the class K¥#(3) does not depend on the represen-
tative of @ ‘chosen.

Proof of Theorem 4. Let B be a ball in X. Let @ belong to
Lip(1/p—1). We can assume that myz(p) = 0. Let v & K¥#(p). By defi-
nition of K* (), there exists a constant ¢, such thab

v(y) = EF(9)(y) +op,
for almost every y € B. Then,

(B [ loly) —mu(p)Pan(y))"
B

= (u® [|EE () ) ~ma (KF (@) du(y)) ™
B - .

< (w(B [ I O))Pduy)" + Ims( K ()]
B
Since

l””'B (Kﬁ (‘P))l

(B)™ f K (9) (9) dp(y),

then, by Schwarz inequality,
s (% (9)] < (u(B)~ f K% (9) ()P adus () ",

therefore,

(28)  (u(B)™ S —ms (o) du(y <o (u(B) f K% () () du(y))”“
In order to estimate the Z*norm on B of K% (¢), let us take any function
hiy) e I*(B, u) and cousider

fhy)K%(qa)(y)dm.«/ = lim f ry) [ E (2, 9)9(0) (@) (o) +

2kB~B(y,n)

X~2kB

+J h(y)( | (E@y-K ($,2))¢(m5d#(w))dﬂ(?!)'

=I+1,
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For I,, we have

I, =lim fh(y)( f
=0 3

2kB~B(Y,7)

—tm [ [ E@h@)dw) e @
100k B X~Blz,m

[ Eh)(@)p(@)du(a),

2%kB

(@, 9)9(@) du(@)) dp(y)

!

thus,
L < VE W)l ( [ lo(@)*aps(a)

2kB 2B

12

and since myp(@) = 0, we also get that ‘
Ll < IEW( [ 19@) —mas(e)du@) " 1l
2kB

< O NE @ lnipap—1 #{B)Y P R,

As for I,, from Lemma 2, we have the estimate

i< [l [ 1K@, 9)~K@, )l lp@)du(a)) duly)
B X~2kB
< [ @) (@, ) #BID* Iplspqyp-1) d(9)
B .
< ep(B)P 7 plpap-y [ 15)du(y)
B

o (BY P R lplltpeuipy Whla

- therefore, by the estimates obtained for I, and I,, we get

| JruEE) ) dp ()| < 0lPlipip—n e (B)IP 72l
which implies that
( J 15 0) 0 (9)) <ol )
Using this in (25), we get
(wB J (@) —ma () Pan)" <

which shows that vy e Lip(1/p —1) and that

WllLipp—1 < ¢lelLipam—1y,

<IEN( [ lo(@)?du(@))” Bl

o llpllipm—1y & (B)iz-1,

1
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therefore,
|\ E* (P zipap-n S €
The proof of Theorem 5 depends heavily on the following lemma.
LEeMMA 4. Let a(x) be a p-atom and K(v,y) o s'mgulaw ‘integral kernel
with & > (1/p)—1. For every g € Lip(1/p—1),

(H(a), 7y =&, K* (@)

12l zinqp—1y- ®

holds.

Proof. We proved in Theorem 1 that K(a)(x) is & (p, e)-molecule.
Moreover, by Theorem 2, we have that K(a)(z) @(#) is an integrable
function and that the mtegml

(26) [E(a)(@)p(@) du ()
defines a bounded linear functional on Lip(l/p —1). Then
[ E(@)(@)g(@)du(e) = lim [ K(a)(@)g(@)du(®).
R“’“’B(z R)
By definition of K(a), we get that

[ E(a)(@)p(w)du (@) ) = lim [ E,(a)(@)p@)du(z)
B(z,R) B(z,R)

=im [ ([ K@ 9e@du®))e@dse).
10 B(z,R) X~B(z,1)
Since the support of ¢ (y) is bounded and % > 0, by part (i) of Definition 1,
we can change the order of integration, obtaining

im ([ K@ ye@)du@)ay)duy).

0" Ble, Rj~Bly,)
Let a(2) be supported on B(z, o), then, if 0 <7< ¢, we have B(y,n)
< B(z, 2ke) for every y in the support of a(y). Thus, for B > 2ko,

K (@,y) ¢(@)du (@) a(y) dp(y)

Bz, R)~B(v,n)

=[{ |  Eeye@du@)ay)asy)+
B(z,2ka)~B(y,7)

0 (E@ K@) p0)duw) al)duw) +

B(z,R)~B(2,2k0)

+ E(@, )9 (@) dp())a(y) du(y).
B2, R)~B(z,2k0)

‘We observe that the last integral is equal to zero: since the inmermost
integral does not depend on y and [a(y)du(y) =.0. Thus, for the integral
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in (26), we have

@n f K(a)(z

=lim
70 " Bs,2ko)~B(y,1)

9(@) dp (@)
E (@, y)p(@)dn (@) aly)dp(y) +

+-Tim

R0 Bz, R)~B(z,2%0)

(E (@, y)—E (@, ))¢(2) dp(@)) a(y) dp(y).

By Lemma 2, integral

(B (2, y) — K (2, 2)) p(a) du ()

B(g, R)~B(z,2ko)
is uniformly bounded for y e B(z, ¢). Then, by the Lebesgue bounded
convergence theorem, we can take the limit in B under the integration
sign in (27). As for the limit in % in the same expression (27), we observe that

K (2, )¢ (#)du(®) aly) du(y)

B(#,2ko)~B(y,7)

= (‘pXB(z,zku); Kﬂ (a)) 3

and since, by hypothesis, K,(a)(#) converges in L*(X, p) to K(a)(#)
for any a(z) in I*(X, u) with support in B(z, o), it follows that

Tim K (@, y)o(@)du (@)

10 B(g,2ko)~B(y,n)

exists weakly in L2 on bounded sets. Therefore,
CE(a), 9> = [K(a)(@)p(@)dp (o)

= f (hm

0 B(z,2k0)~B(y, )

+f( [ (E@w

X~Blz,2k0)
= (a, E*@)). m
Proof of Theorem 5. Let f e #7 be represented by

R
- Sia
g=1

o0 \
where 3 |4,]” < oo. Comsider the series

i=1

(28) oD WK ().

i=1

K (2, 9)p(®)du(2))a(y) du(y) +

— K (@, )9 (o) dn (@) a(y) du ()
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Theorems 1, 2 and 3 show that for any 7,
< ¢. Then, since p < 1, we have

DI (@)l < 0 ) 11l < e
=1 i=1

K (a;) belongs to 7 and K (a;)]¢»

(i’ 1/1,.|1’~)"” < oo.
i=1

This proves that the series in (28) converges in #? to an element ge H#?.
Moreover, :

(29) gl <

oS

Consider now @ € Lip (1/p —1). By Lemma 4, we have
G2y = uE(a), 7y = > h(K(a), 7>
i=1 i=1

= 3 ica, TF @) = <21 a, E*(9)) = (f, E*(p)).

i=1

Thus, <g, > = {f, K*(p)D, which shows that g does not depend on the
representation of f as a series of multiples of p-atoms but on f itself.
Therefore, we can define

Ef =g,

moreover, from (29), we see that

WEf Ly = 191,pp < 01y
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