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Extireme operators on ATl-spaces

by “

A. IWANIK (Wroctaw)

Abstract, For two AL-spaces B and F, we find a necessary and sufficient condi-
tion that the unit ball ¥ in the space of all bounded linear operators from E into F
coincide with (conv ex V)~ where the closure is taken with respect to the strong operator
topology. We also present some related results for positive operators and consider the
norm approximation by conv ex¥V.

1. Tntroduction. A Banach lattice B is called an absiract Lebesgue
space (briefly, AL-space) if its norm is additive on the positive cone. By
the Kakutani representation theorem, the most general example of an
ATL-space is the space I'(u) for some positive measure p. Besides, any
Al-space E can be identified as a Banach lattice with the space N (Y)
of all order continmous (= normal) bounded Radon measures on a (unique
0 within homeomorphism) compact hyperstonian space ¥. The space c(Y)
of all real valued continnous functions on ¥ is now a Banach lattice isomor-
phic with the Banach dual ', and the space M (¥) of all bounded Radon
mesasures on Y is a Banach lattice isomorphic with B (see H. . Schaefer
[6], II, 8.5, 9.2, and 9.3).

Let B, F be any AL-spaces and ¥, X their corresponding hyper-
stonian spaces. Throughout, we will identify B with ¥ (), E with C(XY),
B with M(Y) and, respectively, F with N (X), F' with 0(X), F'" with
M(X). We denote by V and U the unit balls in the spaces of bounded
operators L(B, F) and L(F', '), respectively. By a standard argument, U -
is a compact subset of L (¥, B’) with respect to the weak* operator top-
ology o (L(¥", E'), F'®E). This, by the Krein-Milman theorem, the convex
hull of the extreme points of U is always dense in U for this topology.
Tt is not so with ¥: it may even happen that in V there are no extreme
points whatsoever. Nevertheless, in Section 3 we obtain certain Krein—
Milman type theorems for ¥ by using the technique of the adjoint embed-
ding 8- &' of V into T.

The set ex U of all extreme points of U was characterized (in a more
general setting) by M. Sharir in [8]. The extreme points of V have been
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identified by the present author in [1]. In the sequel we will make constant
use of the below-gpecified results on extreme operators.

The set V’ of all adjoints of operators from V eoincides with the set U,
of all order eontinuous contractions in U. Also, we have exV’' = V'nexU
([11, Proposition). The set ex U consists exactly of the so-called mice
operaiors, i.e.-operators T e L (C(X), 0( X)) of the form Tf(y) = r(y)f (qp(y)}
where ¢: ¥ — X i3 & continuous map and r e 0(X) with |r| =1 ([8],
Theorem 2; see also [1], Theorem 1). Moreover, ex V' consists of all nice
operators that are induced by continuous open maps ¢ ([1], Corollary).
Analogous results for positive operators are stated in Section 4 of the
present paper.

Our main aim is to characterize those pairs H, F of ATl-spaces for
which all operators from V can be approximated, with respect to the
strong operator topology, by convex combinations. of exV (Section 3).
If ¥ and ¥ are finite dimensional, then V is compact, so that such an ap-
proximation can be carried out by the direct use of the Krein—Milman the-
- orem. In [2] C. W. Kim has shown that the approximation is still possible
in case H = F = I". Our Theorem 1 and Corollary 2 of Section 3 extend
this last result. Similar approximation problem for positive operators
is considered in Seetion 4. In Section 5 we present an explicit represen-
tation of the convex hull of ex U. Section 6 shows that, in general, the norm
closure of the convex hull of exV does not coincide with V, even if the
strong operator closure does. Finally, in Section 7 we observe that convex
combinations of extreme contractions attain their norm on the unit ball of F.

The results of this paper have been presented by the author at the
conference Riesz Spaces and Order Bounded Operators organized at Mathe-
matisches Forschungsinstitut Oberwolfach in June 1977.

2. Density of adjoint contractions. For any two Banach spaces ¢, H
the algebraic tensor product G'’®H can be viewed as the set of all finite
rank operators in L(G', H). The ¢-unit ball U,in ¢'®H can thus be ident-
ified with the set of all finite rank contractions ([6], IV, 2). Clearly, the
e-unit ball of G®H consists of those finite rank contractions in L(G, H)
whose adjoints take H’ into G. Let us recall that the Banach space H
is said to have the metric approzimation property if the identity operator
in L{H, H) ean be approximated in the topology of compact convergence
by elements of the e-unit ball in H'@H ([6], IV, 2.2).

: LEMMAIL&t @, H'be Banach spaces. If H has the metric approwi-
maiion property (e.g.,if H is an AM-space), then every contraction in L(@', H)
can bé approsimated in the strong operator topology by elements of the e-unit
ball W, in GoH. If G is a Banach lattice and H is an AM-space, then, in
addition, every pasi?‘ifbs contraction can be approvimated by positive members
of W,. i
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Proof. By [6], IV 2.3 (¢), the e-unit ball U, in G’@H is dense in the
unit ball of L(@, H) with respect to the strong operator topology. Further,
by [6], IV 5.4 Cor. 8, W, is dense in T, for the weak, and hence for strong,
operator topology. This completes the proof of the first part of the lemma.

For the proof of the second part, note first that the identity map
in the AM-space H can be approximated by positive contractions in T,
(see [6], a remark preceding IV, Theorem 2.4). Since the evaluation map
taking & Banach lattice into its second dual is positive, Cor. 3 in [6],
IV 5.4 holds true also for positive parts of the respective unit balls. Sinee H
hag the metric approximation property ([6] IV 2.4), the proof is concluded
by an argument analogons to that used in the first part.

The following consequence of Lemma 1 will be used in the sequel.

CoroLLARY 1. Lei H, F be any Al-spaces. Then V' is dense in U for
the sirong operator topology in L(F', E'). The same holds for the positive
parts of V' and U, respectively. ,

Proof. Put ¢ =F and H = F in Lemma 1.

3. Approximation by the convex hull of ex V. By the Krein—Milman
theorem, the convex hull of ex U is dense in U for the weak* operator
topology (in fact, by Theorem 2.1 of Morris and Phelps [4], it is dense in T
even with respect to the strong operator topology).

PrOPOSITION 1. The convexr hull of exV is dense in V for the sirong
operator topology imw L(HE, F) if and only if ex V' is dense in ex U for the
weak* operator topology in L(F', B'). : :

Proof. If convexV is dense in ¥ for the weak (strong) operator
topology, then clearly eonv exV’ is dense in ¥’ for the weak* operator
topology in L(F', ). Thus, by Milman’s “converse” of the Krein-Milman
theorem, ex V’ is dense in ex U for the weak* operator topology (V' is dense
in U by Corollary 1).

Conversely, if ex 7’ is dense in ex U, then evidently eonvex V' is dense
in conv ex U, so that also in U and, moreover, in V’. Therefore, convexV
is dense in ¥ for the weak (and thus for the strong) operator topology in
L(E, F).

Our next task is to identify those AL-spaces for which the equiv-
alent conditions of Proposition 1 are satisfied. '

By the representation theorem [7], 26.4.7 for AL-spaces, there exists
for  a unique well-ordered family m,,—1< o< 7, of cardinal numbers
such that set {o: m, % 0} is cofinal in =, each m, for o> 0 is either equal
to zero or to one, or else is uncountable, and ¥ is Banach lattice isomorphie
with the I-join ‘

o)+ D) me L),

I<o<t
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whiere, for any infinite cardinal number o, s, denotes the produ(j,t measure
on the Cantor cube {0,1}°. We denote by M, the corresponding hyper-
stonian space for IL'(s,). Now the hyperstonian space Y of F can be
viewed as a compactification of the direct topological sum of the space
pm_y (= the corresponding hyperstonian space f01" T*(m_,)) and the spaces
I, ,m, copies of each. The measure algebra of u, i8 homqgeneous (see [T],
28.1), 50, by an easy application of Maharam’s‘theo.rem, each non-empty
closed-and-open subset of M, is homeomorphio with M,.

LEMMA 2. There exisls a continuous open map @: M- My if and
only o a>=p. ,

Proof. Suppose a > f. The natural projection of {0, 1}* onto {0, ~1}
induces a lattice homomorphism Tt L*(up) - L™ (1,). The coyegpondmg
lattice homomorphist O (M) — C(M,) takes 1 into 1, so tha.t‘ it is an ex-
treme contraction ([6], IIT 9.1) and is induced by 2 conltmuous fnap
@: M,— M;. Since the projection is measure presgr@g, T takes .L (tha)
into I'(ug), whence T has a pre-adjoint, so that }t is order continuous
and ¢ has to be an open map ([6], IL 9.3, Proposition).

Conversely, if there iz an open eontinuous map g: M o> My, t;hel},
a8 @(M,) is a closed-and-open subset of My, We - may agsume that ¢ is
onto. Thus, the associated lattice homomorph_‘tsyn T:0 (I.M 8~ C qu)
is one-to-one. Therefore, the range of the pre-adjoint §: L (fha) —+L1(/zﬂ)
of T is dense in I*(u). This implies that the densi.ty character g of I; (246)
(see [71, 24.4.9 (A)) is less than or equal to the density charaeter a of L' (4a).

Let now

Bo)+ ) 1l (o)

o<
be the like representation for the AL-space F.
LEvwa 3. If sup{e: n, # 0} < inf{c: m, 5 0}, then ex V' is dense
in ex U for the strong operator topology.
" Proof. By the Stone-Weierstrass theorem the continuous character-
istic functions form a linearly dense subset of the Banach space C(X).

Thus, by [5], TIT 4.5, it suffices to show that for any finite partition Xy, ...,
X, of X into non-empty closed-and-open gets and for any TeexU

there exists T, € ex V' such that Ty, = Toy; (¢ =1,...,n), where by z

we denote the characteristic function of X;. Since T is extreme, [Ty are
characteristic functions of certain closed-and-open subset; I.'I, ...,¥,,
forming a parbition of ¥ (see [L1], Theorem 1). By Corollary in [1], it
suffices to find a continuous open map @ such that ¢~ (X;) = ¥;. Clearly,
without any loss of generality we may assume that ¥; = Yand X; = M wg
— X. Thus it remaing to show that there exists a continuous open map
g Y>X. ’
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By the I'-join representation, ¥ is the closure of the topological direct
sum Y, of closed-and-open subsets ¥;, each homeomorphic either with
certain M, or with g m_,. Evidently, the set ¥\ Y, is closed and nowhere
dense in Y.

By Lemma 2 and by assumption, for each ¥, there exists a conti-
nuous open map ¢;: ¥;— X. Putting all these maps together we obtain
the continuous open map p = (J ¢ from ¥, into X. The formula » — yo 3
defines a positive eontraction 8: N(¥)—+ M (X). For any closed nowhere
dense subset 4 of X the inverse image p~1(4) is closed in Y, and has

“empty interior, so the closure of p~1(4) is nowhere dense in Y. Thus Sy

along with » vanishes on closed nowhere dense subsets, implying Sy
e N(X) ([6], IT 9). It is now not hard to see that the adjoint operator
8 e L(C(X), (X)) satisfies

8 f(y) =Fflv)
for all fe C(X) and y € ¥,. Thus, by continuity, 8 is a lattice homomor-

-phism and takes 1 into 1, whence 8’ eex V'. By virtue of Corollary in [1],

there exists a continuous openmap ¢: ¥ — X (inducing §' and extending ).

LEM_MA 4. If ex V" is dense in ex U for the weak* operator topology, then
sup{e: m, 7 0} <inf{o: m, # 0}.

Proof. Suppose that, on the contrary, n, # 0 and m, 7 0 for some
¢ > o. Then, in particular, F has a non-atomie part, so X eontains a closed-
and-open subset X, homeomorphic with some ng.

If m_, # 0, then ¥ has an isolated point y,. The extreme contrac-
tion I': 0(X)— O(Y) induced by a continnous map ¢ satisfying ¢ (y,) e X,
and ¢(y) ¢ X, for y * y, cannot be approximated by exV’ for the weak*
operator topology. Indeed, for any continuous open map ¢ the image
of ¥, is not in X, (X, has no isolated points), so that denoting by y the
characteristic function of X, and by & the Dirac measure concentrated
in y, we have (Ty, 8> =1 and {8y, ) = 0 for any S eex V".

I m_, = 0, then, by assumption, for some a < g the spaces ¥ and X
contain respectively M, and M, as closed-and-open subsets. We may
also assume that M, is a proper subset of X. Now taking Xa2,® s 28 the
appropriate funetional for (L(¥', B'), F'® E)), we can see by Lemma 2
that no operator induced by a continuous map ¢ satisfying ¢(M,) = M,
and (¥\M,) = X\ M, can be approximated by elements of ex V".

Putting Proposition 1 and the last two lemmas together we obtain
the following result. .

TEEOREM 1. Let B, F be AL-spaces. Then the following conditions
are equivalent: :

(1) sup {o: n, # 0} < inf{o:m, # 0},

(2) ex V' is dense in ex U for the sirong operator topology in L (¥, H'),
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(3) ex V"’ is dense in ex U for the weak* operator topology in L(F', B'),

(4) convexV is dense in V for the sirong (weak) operator topology in
L(H, F).

Tn the special case B = F we have the following

COROLLARY 2. Let B = F. Then convexV is dense in V for the sirong
operator topology if and only if B is homogencous, i.e. if there is only one
non-zero m,. If, in addition, B is separable, then convexV is dense in V
if and only of B is either non-alomic or purely atomic.

In the light of Lemma 2 the following corollary is also evident.

COROLLARY 3. If o< o whenever m, =0 and m, # 0 (in particular,
if B is purely atomic and F non-atomic), then exV = @.

4. Positive operators. Let V., and U, denote the positive parts of V
and U. If B = F, then the elements of V', are offen called sub-Markov
operators.

PROPOSTTION 2. Let B, F be Ali-spaces. Then V' is an extreme subset
of U, dense in U, with respect to the strong operator topology.

In particular, exV, =V, nexU,.

Proof. By Corollary 1, V', is dense in U,. We will prove that V7,
is extreme in U, . The set L, = {§': 8 e L(E, F)} is an ideal in L(F", E')
(more precisely, the ideal of all order continuous operators in L(#', B,
see Lemma 3 in [1]). Thus, it suffices to show that for any vector lattice I,
for any ideal L, in T, and for any convex subset @ of L, , the set @l
is extreme in Q. Let T' e @nIybea non-trivial convex combination T' = oT'
4 BT, with Ty, Ty e Q. Then 0< T, < o T, so that Ty el, and, anal-
ogously, T, € L,, whence @nL, is an extreme subseb of Q.

By [6], IIT 9.1, we can almost immediately characterize the extreme
points of U, in the following way: ) .

PROPOSITION 3. Let X, Y be any compact Hausdorff spaces. Then for
any TeL(C(X),C (X)) the following conditions are equivalent:

(a) T is am estreme point in the set of positive contraciions,

(b) T 4s an algebra homomorphism,

(€) T is a lattice homomorphism and T1 is a characteristic fumction,

(d) there emists a (unique) closed-and-open subset Yo of ¥ and a (unique)
continuous map ¢: Y,—> X such that

flew) o veX,
11(y) = [17®) o
. . 0 otherwise
for all feO(X). " :
By the already mentioned Proposition 9.3, IT in [6] and by our
Propositions 2 and 3, we can identify the extreme points of ¥, as those
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operators 8 e L(E, F), whose adjoints T = 8’ satisfy condition (d) of
Proposition 3 with ¢ continuous and open. Now all results of Section 3
remain valid if we replace V and U by their positive parts 7, and U,
(except Corollary 3, where the assertion exV = @ should now be substi-
tuted by exV, = {0}). Indeed, the obvious slight change is needed only-
in the first part of the proof of Lemma 3: now ¥i,..., Y,, need not be
a partition of ¥. The other proofs remain unchanged. In particular, we
have the following result.

PROPOSITION 4. (convex V)™ = V if and only if (convex V) =V,
the closures being taken with respect to the strong (weak) operator topology.

5. The convex hull of ex U. We will give a more explicit description
of conv ex U. Throughout this section ¥ and X denote compact Hausdorff
gpaces and we assume that Y is Stonian (= extremally disconnected).
TUnder these assumptions, L(0(X), G(X)) is a Banach lattice ([6], I 7.9
and IV 1.5). By U we denote the unit ball in L{C(X), c(Y)).

TEMMA 5. If @1y - -y @y aF€ CORtinous maps from Y into X, then there
exisis a finite partition Zyy ..., Zy of ¥ into closed-and-open subsets such
that for any Z; and any i,je {1, ..., n} the open set

{yeZy: @:(y) # o; (¥}

is either empty or dense in Z.

Proof. It is well known (and easy to see) thatb the family 4 of all
sets of the form GUN with & open and N nowhere dense is an algebra of
subsets of Y. For any i, j the set

Fii,5) = {yeX: g:(y) = o)}

is closed, so F(i, §) e A. Thus the partition generated by all sets F(i, )
consists of the sets A4, = G,UNy (k =1, ..., m) with G open and Ny
nowhere dense. For any non-empty @, we put Z; = G, Since Y is Stonian,
the Z,, are closed-and-open and pairwise disjoint. Moreover, since the finite
union | J N, is & nowhere dense seb, Zy, ..., Z, form a partition of ¥. Fina-
Iy, for any 1< k< m the open seb :

{y € Gy 9;(y) # o)}

is either empty or coincides with @, whence the assertion follows. P&

Under the above assumptions on ¥ and X, the nice operators in
L(C(X), O(Y)) (see Section 1) coincide with ex U ([8]; ef. [1]). For any
continuous map g: Y X the positive nice operator f— fop will be
denoted by T,.
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THEOREM 2. Let X, Y be compact Hausdorff spaces and let ¥ be
Stowian. For any operator T eL(0(X),0(X)) the following econditions
are equivalent:

(a) T is a comvew combination of nice operators (i.e. T e convexU);

(b) there ewist a partition Zi, ..., Z,, of X into closed-and-open subsets,
an array of real mumbers By (L<i<<m, 1<j<<ny) with 3 [Byl< 1 for

7
1< i< m, and a corresponding array of continuous maps vy: Z;—> X with
{#€Z;: py(2) # pu(@)y” =2Z;, for j =k, such that T is represented as

m ki
=) xziz BTy
g=1

i=1

Proof. (a)=(b). Let T'= 3 a7, T, With o> 0, Y op=1, 1, e C(T),
|el =1, @, continuous, and ¥ =1, ..., n. By Lemma b there exists a parti-
tion Z,, ..., Z,, of ¥ into closed-and-open sets such that for each 4 any
two mappings ¢;, ¢ either coincide on Z; or differ on a dense subset of Z;.
Since the sets {y: r,(y) =1} are closed-and-open, we may (and will)
agsume that the r, are constant on each Z;. For each 1 << << m we can
partition the set {1,...,n} into subsets Jy, ..., Jy,, so that any ¢;, ¢
coincide on Z; if j and k are in the same atom of the partition and differ
on a dense subset of Z;if j and % belong to different atoms. Assertion (b)
is satisfied by letting v, be any representative of the set {p,: k eJ;}
and by putting By = > opry(2), where z e Z; and k runs over J;.

(b) =(a). By an inductive argument with respect to m, it is not hard
‘to show that there exists a finite sequence (o), ¥ = 1, ..., %, of non-nega-
tive real numbers with Zak= 1 such that for each 1 < 4 < m there exists
a partition Jy,...,Jy, of {1,...,n} satisfying B; = } oy, where
low] =1 and &k runs over J;. By putting ¢.(2) = p;(2) and 7,(2) = o
for z€Z; and k e Jy, we obtain T = Ya,7T,, .

LevumA 6. Let ¢y, ps be continuous maps from Y into X. Then T,
and T, are disjoint in L(C(X), 0(X)) if and only if

A ={y: @:(y) #= ()}
8 o dense subset of ¥.

Proof. Sufficiency. Suppose yeA and let fi+f;=1 be a
continnous partition of identity in C(X) with f{p;(y)) = 8;. We have
T,fily) = 0ford + j, so that T1(y) = T(fy+f2) () =0, where 7 = T, A
AT, . Therefore, T1 = 0 on A and, consequently, T =0.

Necessity. If p;(¥) = @a(y) on a non-empty open subset of ¥,
then the equality holds on a non-empty closed-and-open subset Z. Thus
T, > 12Ty = 22Ty, #0 for i =1,2, whence T, AT, +#0.

As a consequence of Lemma 6 we obtain the following corollary.
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COROLLARY 4. If T econvexU is represented_as in (b), Theorem 2,
then its modulus cam be expressed by the formula

lTl = ZM;Zlﬁiilij-
. i=1

i=1

In particular, iz, |7} econvex U, for 1< i< m.

Proof. The first part is straightforward and the second follows from
Proposition 4.

6. Failure of the approximation for morm topology. In th.is section
we show that for non-atomic T no non-zero compach 00]}171‘2161310]1 can b.e
approximated in norm by convex V. Observe that F is non-atomie if
and only if X has no isolated points.

TEmva 7. Let » be a mon-atomio positive measure in N (X).. Then for
amy finite family {@1y +oer Put of continuous open Maps from Y into g amg
for any >0 there exist non-empty dlosed-and-open szf,bsets Y, = an
X, = X such that »(X,)<e and @ (X)) < X, for 1<

Proof. Since » is non-atomic, there exists a non-empty eloseé—fmd—
open subset X; of ¢1(¥) such that »(Xy) < &/n. Clearly, ¥, =¢; (Xy)
is & non-empty closed-and-open subset of ¥ and @,(¥;) = Xy. Su;lxposs,
by induction, that for m <# we have already found non—emp.ty ; osgt];
and-open subsets Xy, ...y Xn in X with »(X;) <_a/'n,, and ¥,, in W:% )
oY) = X E=1,.., m). Since » is non-atomic and the seb q)m_a_l( m
is closed-and-open, @myi(Ym) contains a nonxemptslr c}osed—an t—'oﬁeﬁ
subset X,,,, With »(Xn, 1) < g/n. The indu?mve aissumpmon is nov; satis ned
for Y = X1 (X Thus the induction w[orks 111};1 . 0 N &
letting X, = X U ... Xy, Y, =Y,, we gejb Fhe desired Test. .ﬁm ons

Let (), 1<j<m bea family of dlS]omt.chametem‘sTsm : ¢ 1(;ts
in B' = 0(Y) and let (%), L<j<mn be a,‘f.amlly of 13051t1v«3. gemenk
of norm <1 in F = N(X). These two families determine a finite rai
positive contraction defined by

(+) To——:Zv_.,@xjeV:l_. )

Clearly, |l < |\ Toll whenever z; # 0, and for some §, say, j =1, the
lity holds. . o
equaLez now T; eex V'+ for 1 < i < m and let 7 be a convex combination
1
T = YT, cconvex V.
d

Levma 8. If F is non-atomic, then ||To—T| = Tl /2. -
Proof. By the remarks following Proposition 3, each T, is induced
by 2 continuous open map @;: Y, »X with ¥; closed-and-open. For i
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in (+) we denote {y:" x;(y)

=1} = Z;. According to the previous remark,
. we have |||

= [IT,l. Let % be the maximal integer < m such that
Z.nNY; #9
ek

for a subset K < {1, ..., m} of cardinality % Without loss of generality
we may assume that either ¥k =0 or ¥ ={1,..., k}. Now we consider
two cases.

1) ay+ ...

- a, > [ T4]|/2. Applying Lemma 7 with » = »,+ ... +9,
and with :

Z =Z,nNY;
ek

instead of Y, we find closed-and-open subsets ¥, < Z and X, = X such
that »(X,) < eand ¢;(Y,) = X, for 1 < 7 < m. Letting 4 be the character-
istic function of X, we get

k

Ty) > ) ax(ew) 2 @ > |1 Tollj2-

i=1 i=1

On the other hand, we have

Toy = D<o D1 <&y <,

whence [[Ty—T|+e>= |Toll/2 for any s> 0.
(2) 5 =0 or o3+ ... +o; < |[T,}l/2. By the mammahty of %,

m k
Ti(y) = Z’%Td(y) = Zai whenever

=1 t=1

yeZz.

=2y Ly(y)
—Tl = |T,ll/2, which concludes the

On the other hand, for any y eZ we have T,I(y)
Z vy 1 (y) = Lol Thus, |7,
proof of the lemma.

By an argument used in the proof of Lemma 1, each positive finite
rank contraction in V’, can be approximated in norm by contractions of
the form (--). Since the norm closure of all finite rank positive contrac-
tions coineides with the compaet operators in V.. ([6], IV 4.6, Cor. 1),
we obtain the following quick consequerice of Lemma 8.

TeROREM 3. Let H, F be Al-spaces and suppose that F is non-atomic.
Then for any compact positive contraction ;S‘,, eV, and any 8 econv exV
we have I8, —=8{ > §8,0/2.

In ease B = F, the set of positive contractiens ¥V, forms a topolo-
gieal semigroup with respect to the norm t;opology Both ex V+ and
eonvex ¥, are subsemigronps of V.
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CoroLLARY B. If B = F is a nmon-atomic AL-space, then the norm
closure of convexV., does not conlain any non-zero weakly compact oper-
ator.

Proof. If 0 = 8 eV, is weakly compact, then, by the Dunford-
Pettis property of F, the operator §* is compact ([6], IT 9.9, Cor. 1).
By Theorem 3 and by the continuity of composition in V,, S cannot
be approximated in norm by convex combinations of exV .

Now we return to arbitrary contractions. First, let us recall that if
S, e L(E, F) is compact, then its modulus |S,] is also compact ([6], IV 1.5
(i), TIT 11.4, IT 8.5, and IV 8.1). For any § ¢ L(N(¥), N (X)) and any
closed-and-open subset Z in ¥ we denote by i, the operator defined by
vy~ 8(v|Z), where »|Z is the restriction of » to Z. Clearly, (Si)’ = xz8'
and |St;| = |8]iz. Theorem 3 can now be extended in the following manner.

TaE0REM 4. Let B, F be any Al-spaces with F non-atomic. Then for
any compact contraction S, eV and any S econvexV we have ||8,— 8|
> 18,01/2.

Proof. Let T = §’ be represented as in (b) of Theorem 2. We have
then [Soll = [11Solll = 118ol’ll = max llyz[S,|'ll = max|||Solez|l. Suppose, say,
186l = [l18olez,)l. Thus

[18o— 811> 8oz, — Siz,| = | 18olez, — 18Itz [l > 11olezl/2 = 180l1/2,
the last inequality by Theorem 3 and Corollary 4.

7. A remark on norm attaining operators. An operator T attains
its norm if ||Tz| = ||Tf for some & of norm 1. Norm attaining operators on
various Banach spaces were treated in [3] and [9]. To the author’s best
knowledge still little is known about norm attaining operators on AL-
spaces (cf. [9], p. 299). We will show that all operators from convexV
attain their norm. Thus, in view of previous results of Section 3, we have a
fairly rich set of norm attaining operators in e.g. L(L'[0, 1], I*[0,1]).

PROPOSITION 5. Any operator S e convexV aftains its norm.

Proof. It suffices to show that if T econvex U, then 1" atbains
its norm on N (X). Let T be represented as in (b) of Theorem 2. Then
I = 2 E ﬂz’jT;ﬁ"Zi and |T') = m?x I jZﬁijT;ij iz, < mz:xg 8,;1. Suppose,

L)

say, ‘
1) = 1Byl

By the properties of p; (see (b) of Theorem 2), there exists y € Z, such
that all points #; = yy;(y) (1<J<n,) are distinet. By Urysohn’s lemma
there is & function fe ¢(X) with |f] <1, such that f(z) =signp, in
a neighborhood of #; (1< j <n1). Moreover, by the continuity of vy,
there exists a neighborhood & of y such that f (wlj(z)) = gignpy in G. .
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T » is & normal Radon probability measure concentrated on G, then we
have

S [y =T > = DIyl = 1T = 181,

which concludes the proof of the proposition.
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Smooth and R-amalytic negligibility
of subsets and extension of homeomorphisms
in Banach spaces

by
T. DOBROWOLSKI (Warszawa)

Abstract. It is proved that, if 4 is a compact set in the space B = F’ x I, (A),
where B’ is an infinite-dimensional, separable Banach space, then E\ A and F are
R-analytically isomorphic. It is also established that, if 4 is a closed subspace of
infinite codimension in a separable Banach space or in an arbitrary Hilbert space H,
then BN\ A and F are R-analytically isomorphic. In the smooth category analogous
facts hold true if F is any infinite-dimensional weakly compactly generated (WCG-)
Banach space. It is shown that any embedding of a compact subset A of a Banach
space B admits an extension to an autchomeomorphism of ¥ which is R-analytie
off 4 provided that either A is finite-dimensional and B = B’ x I, (4) for a separable
infinite-dimensional Banach space B’ or E = B’ X I, (4), where B has an uneonditional
Schauder basis. Other results of this type are proved.

. Introduction. Lt us say that a closed subset 4 of a manifold M is
smoothly or R-analytically negligible in M if M\ A and M are smoothly
or R-analytically isomorphic. Negligibility of subsets was investi-
gated by Renz [17], Moulis [14], West [21], Burghelea and XKuiper [5],
Szigeti [18]. The most general theorem known in this field so far was
established by Renz; it stated (in its weaker form) that compact sets are
smoothly negligible in smooth Banach spaces with unconditional Schauder
bases. The main result of the first part of this paper is the theorem stating
that compact subsets are R-analytically negligible in any infinite-dimen-
sional separable Banach space. This is a strengthening of the result
of Renz concerning smooth negligibility. (The only fact concerning R-
analytic negligibility known earlier was obtained by Burghelea and Kuiper
[5]; it stated that I,\{0} and I, are R-analytically isomorphic.) We observe
also that our theorem does not extend to all infinite-dimensional Banach
spaces; e.g. one-point sets are not R-analytically negligible in the space
¢ (4) with uncountable A.

In the second part of this paper we deal with questions concerning
the extension of embeddings of compact subsets K of a Banach space B
into the space H. Let us recall that Renz proved in [17] that if B =1,
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