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witd ¢ = g, =v = My,
2 fir =zea,
1 fir =ze[0,1]—a,

(also gleich der Hellinger-Hahnschen Vielfachheitsfunktion von M).
4. Zum AbschluB wird noch kurz das Beispiel D aus [17 diskutiert:
Mit Hilfe eines stetigen singulédren WahrscheinlichkeitsmaBes o mit Trager
[0,1] und der dadurch definierten Funktion F(2) = ¢([0, #)) wird dort
eine stetige Funktion ¢: [0, 1] — R eingefiihrt, so daB fiir den Operator M,
auf Z%([0,1],m) gilb: k(z) =1 fiir »fa. 2e[0,1], ¢ {e} =2 fa.
z2€[0,1]; v = }(m+ o). Die Uberlegungen von Abschnitt 3-5 kann man

k(z) = HP 1z} =2 fa. ze[0,1]

hier mit B, =[0,%], B, = (4,1] uwd E, =... = B, = leere Menge
durchfithren. Man findet o; = 3-m, g, = 30. Sei § < [0,1] eine Lebes-
gue-Nullmenge, auf der ¢ konzentiert ist. Dann ist% = Z[1-57 Zga

e ’ 0

= yg3 Dy =[0,1]—8, b, = 8. Satz 1 bestdtigt, daB3 %k(z) =1 fir »-fa.
ze€[0,1]. Die im Beweis von Satz 4 auftretende Ausnahmenullmenge
igt hier

Ny = [0, 31ng ' (8)u(},1]10g7'([0, 11— 8) = -8V (1—3F([0, 1]~ 8));
es ist p(N,) = SU([0,1]—8) = [0,1].
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On the Poisson integral
for Lipschitz and ("-domains

by -

BJGRN E. J. DAHLBERG (Goteborg)

Abstract. Let D be & Lipschitz domain and let Hf denote the solution of the
Dirichlet problem with boundary values f. In this note we prove that if f € L? (o),
where o is the surface measure of D and 2 < p < co, then the nontangential maximal
funetion associated to Hf is also in LP. Here the exponent 2 is sharp. However, if D
is assumed to be & (l-domain, then the results hold for 1 < p < co. The method we
use is to characterize the corresponding Carleson measures.

1. Introduction. Let D be a bounded Lipschitz domain and denote by é
the surface measure of éD. If E < 8D and P e D, we denote by «(P, B)
the harmonic measure of B evaluated at P, and if f is integrable with
respect to the harmonic measure, we denote by

Hi(P) = [f(Qw(P,dQ)
an

the Poisson integral of f. For the basic properties of o we refer to Helms [5],
Chapter 8. We recall that if D is the unit ball and 1 <p < oo, then
[ sup [Hf(r@)Fdo(@ <O, [ IfiPdo.
ap O<r<l 8D
In this article we shall study the analogues of this result for Lipschitz
domains. Tt turns out that the analogue holds if 2 << p < co but not always
if 1 < p < 2. However, if we assume that D is a ¢*-domain, then we can
extend the result to 1 < p < oo. We shall formulate these results in See-
tion 3, but we can give the following characterization of the corresponding
Carleson measures.
TarorEM 1. Let D < R", n 3= 3, be a Lipschite domain andlet 2 < p < oo.
If 4 is a positive measure on D, then the following conditions are equivalent:
(i) There is a constant M such that for all P € 6D and all r > 0 we have

(L.1) #{QeD: |Q—P| < vy M.
(ii) There is a constant K such that for all f e I” (o) we have
(12) [1Efrap< K [iffdo.
D oD
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If condition (1.1) holds, then the constant K may be chosen to depend
only on p, ¥ and D.

If D ¢s assumed to be a O'-domain, then the above result holds when
1<p< oo,

For domaing with smooth boundaries theresult of Theorem 1 is con-
tained in Héormander [8]. We would like to point out that it has been proved
in Dablberg [3] that I?(o) < L*{w(P, -)) and also observed that if 1 < p
<2 is given, then there is a Lipschitz domain such that IP(o)
¢ L'(w (P, -)). This explains the restriction p > 2 in the first part of the
theorem. .

We remark that our results continue to hold in the case when n = 2,
but to avoid the minor complications due to the logarithmic singularity
of the Green functions we have restricted ourselves to the case n > 3.

2. Technical preliminaries. We start by recalling that a function ¢
is called a Lipschite function if

(2.1 lp (@) —@(2,)| < M|z —].

The smallest possible M such that (2.1) holds is called the Lipschitz constant
of , which we denote by 4 (p). We say that a bounded domain D is a Lip-
schitz domain with Lipschite constant less than M if 6D can be covered by
right circular cylinders whose bases have positive distance from 8D and
corresponding to each cylinder I there is a coordinate system (=, y) with
e R", y € R, with the y-axis parallell to the axis of I and a Lipschitz
function ¢ with 4A(p) < M such that

LnD = {(z, y): (=) <y}nL and LoD = {(z,y): ¥y = p(x)}nL.

The greatest lower bound of all possible M is called the Lipschitz constant

of D. If in addition the function @ can be taken to be Cl-functions, we
say that D is a C'-domain. With this terminology it is easily verified
that a C'-domain has Lipschitz constant 0. If D is a Lipschitz domain,
we shall denote by o the surface measure of dD. If P e 4D and r> 0,
we put A(P,r) = aDNB(P,r), where B(P,r) = {Q: |Q —P| < r}. Since
Lipschitz functions are differentiable almost everywhere with respect
to Lebesgue measure (Stein [11], p. 250), it follows that for all points @
on 2D outside a set of vanishing o-measure there is an inward unit normal,
which we denote by ng.

TeeorEM A (Dahlberg [3]). Let D < R™, n > 3, be a Lipschitz domain
and denote by G the Green function of D. Let P € D and put g = G(P, -).
Then there exisis a set B < 0D such that o(F) = 0 and for all Q € 9D —
the limit ]tjlm(alanq)g(q +1ing) exists. If we denote this limit by (8]én)g(Q),

0 .

then the following holds:
(a) If @ €dD—E, then 0 < (8/8n)g(Q) < co.
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(b) Let o, denote the surface measure of {P € R™: |P| = 1} and define

¥ bY ¥a' = 0,(n—2). If F < 8D, then
w(P, F) =y, [(2/en)g(@)dc(Q).,
b

{e) There is a number C > 0 such that for all P’ e 6D and allr € (0,1)
we have

o A(®,7) [ [eemg@Pds@<C [ [(2/in)g(@))de(@).

AP _4{P",7)

We will need to compare positive harmonic functions which vanish
on a part of the boundary. The following result was stated in Kemper [9].
For a proof see Dahlberg [3].

THEOREM B. Let D be a Lipschitz domain. Suppose V is an open set
such that VoD = @. Suppose W is a domain such that W < Dand W < V.
Let Py e W. Then there is a constant C > 0 such that if w and v are non-
negative harmonic functions in D which vanish on V2D and satisfy u(P,)
< v(Py), then u(P)< Co(P) for all PeW.

We shall be working with a class of domains which we ghall now
describe. For m > 0 let L(m) be the class of Lipschitz functions ¢ such

; that ¢(0) = 0, 4(p) < m and the support of ¢ is contained in {z e R""':
12| < 1}. I ¢ € L(m), Wwe pub

Dip, m) = {(z, y): o(®) <y < Am, |z} <10},
8(g) = {(z, p(@): ol <1}~

We suppose that A is chosen so large that if m > 1, then D (g, m) is star-
shaped with respect to P, (0, mA) for all ¢ € L(m) and P, eI’—i—?—" for
all Pellz,p@): [z| <10}, when I' = {(z,y): lo|] <2my}. Also if A4
is chosen large enough, we have the following result from Dahlberg [3],
Lemma 1: :

Lemwma 2.1. Let m>1 and ¢ € L(m). Let G be the Green funcltion of
D(p, m). Then there is a number O such that for all @ € 8 (@) and all 7 € (0, 1)
we have

O Q+ (0, 1), Pr) < 0[Py 4(Q, 7)) < 0G(Q+(0,7), Py}

We will make use of the following consequence from Hunt and Wheeden
[71, p. 512:

Lmwva 2.2. Let m > 1 and @ € L(m). Then there is a number C with
the following property : If w is positive and harmonic in D(p, m) and vanishes
on 8D (p, m)—A(Q, r) for some @ € 8(p) and r €(0,1), then

w(Pr) < Cu(Q@+(0, 7)) 0 (Pr, A(Q, 7))
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We have the following estimate of the harmonic measure for sets
of the form A (P, r) (see Hunt and Wheeden [7], Lemma 2.1):

LemMA 2.3. Let D be a Lipschitz domain. Then there is a number § > 0
such that if PedD and r> 0, then o(Q, A(P, 7)) > & whenever Q € D
NB(P, ér).

3. The main result. We start with the following preliminary version
of Theorem 1.

Lmvua 3.1. Let ¢ be a Lipschitz function such that ¢(0) = 0. Suppose
the positive numbers A and B have been chosen such that A > sup {|g(z)|:
|| <10B} and the domain D = {(z,v): ¢(z) <y <104, || < 10B}
is starshaped with respect to a point Py = (0, A,). Let u be a positive
measure on D such that w(DNB(P, r)) < Mr** whenever P e {{z, o(®): |
< 10B}. Let & be the density of w(Py, -) with respect to o. Suppose there is
ttth €(1,.00) and an & > 0 such that if P & {(z, p(2)): || < 4B} and0 < r < &,

en,
(" [Raofe< i [ hdo.
A(P,r) A(P.r)
Then there is a number K, which can be taken to depend only on D, P,, L
and g such that if feL”(8% o), where §* = {(z, ¢(@): [z < B} and
P =q(g—1)7", then '

p{P e D*: |Hf(P)| > s} < Ks® f]f[”da.
sc

Here D* = {(z,9): |#| < 2B, p(z) < y < 24}.

Proof. Let ft =max(f,0), f~ =f*—f. Then f=f"—f". Since
#{P € D*: | Hf(P)| > 8} < u{P e D*: Hf* > s/2) +u4{P € D*: Hf > s/2},
it follows that it iy sufficient to prove the lemma in the case f>0. Put
Bn = [z, p(@): lo| <mB} and D, = {(z, y): |a| <mB, p(z) < Y < md}.
Let y = {(@,9): alw) <y, 0 <y < h}, where a and % have been chosen
so small that y(P) = y+P e D, whenever P € 8,. We assume from now

on that f> 0. Then we have from Hunt and Wheeden [6], Lemma 4,
that if P e §8,, then

(3.1) sup {Hf(Q): @ e y(P)} < Cf*(P),
where f*(P) = 513) (4(1! )fkda)(m(Pn, AP,r)) . Let V = {P e D*: Pe y(Q)

for some @ €8,} and put U = D*— V. Since U < D, it follows from
Harnack’s inequality that there is a constant ¢ such that if P e U, then
Hf(P) < OBf(Po) < Olfll,, where {fl, = ( [ |f/” do)"”. Hence

8D

(3.2) u{P e U: Hf(P)> s} < O, 7|f|
for & suitable choice of C,. If P = (s,y)e D, we put P* — (@, ().
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From (3.1) follows the existence of a positive number é > 0 such that if
P=(x,y)eV and Hf(P)>s then f*(Q)> ds whenever [|Q—P*
< dly—op(@). We now define R(P)={(2',¥): o—2'| <t(y—o(@)),
ly—9'| < 2(y—o(w))}, where t has been chosen so small that if @ € B(P)NS,,
then |@ —P*} < 8(y — (). Therefore we have from (8.1) that if PeV
and Hf(P)>s, then f*(Q)> 6s whenever @ e R(P)nS;. Suppose F
< {P € V: Hf(P) > s} is compact. Then there exists finitely many P; e F¥
such that # < {_J R(P;). Moreover, we may assume that no point £ belongs
to more than 2" of the sets R(P;) (see Stein and Weiss [12], p. 54). Hence
#(F) < Su(R(P)) < Co{Q e 85: F7(Q) > 8s}. Since F was arbitrary, it
follows that

(3.3) #(V) < 00 {Q € 852 £*(Q) > bs}.

We now see from (3.2) and (3.3) that the lemma follows if we can
show that o{Q € 8;: f7(@) > s} << Cs?||fi5. To this end we note that if
0<r<e and @ €8;, then

f Fhdo < 7 _1(7‘1_" f Fda}ﬂ?(,_p—n f [k‘lda)”q.

AQr) 4(Q.r) A(Q.r)
From our condition on % follows now that

(34) sup (w(Po, 4(Q, 7)) [ fhdo < O(MFH™ (@),
o<r<e A(Q,r)

where Mf(Q) = supr'™ [ fdo. From Lemma 2.3 follows the existence
o<r 4(Q,7)

of a number ¢ = ¢(z, D) such that o (Py, A(@, ¢)}>¢. I r> s and @ € 8,,
then (w(Po, A9, r)))“ [ fkdo < C|if|2, which together with (3.4) implies
A{Q.7)

that f*(Q) < C(Mf*)**+C|fl,. From the ordinary maximal inequality
(see Stein [11], Chapter 1) follows now that o{Q €8;: f*(Q) > s} < Cs~?|if B
which proves the lemma.

Let D be a Lipschitz domain and let 1 < ¢ < co. We say that a func-
tion f e L% o) satisfies condition B, if there is a constant B, such that for
all P € 6D and all r £ (0, 1)

[e(a®,n)* [ frao]™ < Blold(P,m))* [ fio.
A(P,r) A(Py7)

LevmyA 3.2. Let D = R* n > 3, be a Lipschiiz domain and let g € (1, oo).
Suppose there is a point Py e D such that k satisfies condition B,, where k
s the density of w(P,, +) with respect to o. Suppose u is a Positive measure
on D such that u(B(P, r)nD) < Mr"! for all P e 6D and all r > 0. Suppose
P <8< oo, where p = q(g—1)"'. Then there is a constant K, which can
be taken to depend only on D, k, s and M such that

JIEfrdu<E [|f*do.
2,

D
2 — Studia Mathematica 66.1
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Proof. As in the proof of Lemma 3.1 it is sufficient to treat the case
f> 0. From the definition of a Lipschitz domain follows the existence of
finitely many domains D,, Dy, ..., D, with the following properties.
First, D; < D for all ¢ and D, < D. Secondly, each of the domains D, ...

., Dy is congruent to a domain of the type considered in Lemma 3.1
and to each ¢ > 1 there is a right circular cylinder L; whose bases are on
positive distance from &D and L, nD =D,;, I;noD = I, r\&D At last,

the domains ean be chosen so that US* = 0D and D,y (UD*)

Suppose now that f has its support on 8f and f> 0. From Theorem B
follows the existence of a constant C such that Hf(P) < OHf(P,) < Olf lip
for all P e D—D}. Hence

(3.5) JEf < [(BfFap+OUfiE.
D

*
D;

Let @& and @, be the Green functions of D and D,, respectively. Let &,
denote the density of the harmonic measure of D, evaluated at P,. It V

is am open set such that V < L, and P, ¢ V, then it follows from Theorem B
that

(3.6) ™G (Py, Q) < (P, Q) < OG(P,,Q) forall QeV.

From Theorem A and (3.6) follows now that to each compact set K < I,;n
NoD there is a number ¢ such that if @ € K, then 07'%(Q) < %,(Q) < Ck(Q).
Hence we have from Lemma 3.1 that u#{P e Dj: H,f> s} < Os~"||f|2
when H; denotes the Poisson integral with respect to D;. The argument
leading to (3.5) gives that Hf|.D; < H,f+C|/fli,. Hence u{P € D}: Hf > s}
< Os7?[if| which taken together with the Marcinkiewicz interpolation
theorem (Stein [11], p. 272) and (3.5) gives that [ (HfYdu < E)if12
. D

lip-

N
Since any f € L”(o) can be written as ) Af, where h; is the characteristic
=1
funetion of 8}, the lemma is proved.

We shall next show that if D is a ("-domain, then the density of
the harmonic measure satisfies condition B, for all g e (1, ). We start
with the following fact. Suppose « is harmonic in a domain D < R" and
2 < g< co. Then the function

(3.7) F (Vu)= ([qulz—i—t((6/6y)u)2)q’2-g[Vzulz([VzuP+t((6/3y)u)2)‘q‘2)/2
is superharmonic in D (see Kiiran [10]), where { — (g—1)"}(n—1)?
n—~1
and |V ul* = 3 ((2]0z,)u)e
=1 -

Let 6> 0 be chosen so that for all ¢ e L(1) we have B(P,,56)
< D(g,1) and put D*(p) = D(p,1)—B(Py, é).
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LewwvA 3.3. Det n> 3 and suppose 0 << m < (n—1)""%. For ¢ € L(m)
let y denote the harmonic measure of 8D*(p)—{(z, ¢(2)): lo] < 10}. Suppose
2 < g < 14+m (n—1)"Y2 Then there are positive numbers A and B, which
can be taken to depend only on m and g, such that

F,(Fg)+Ay=2B((8/2y)g)* i D'(g),

where g is the Green function of D(g, 1) with pole at P,.

Proof. Put L = &D*(p) —{{x, @(x)): le] < 10}. Sinee 0 < g(P)
< {P—P,*™, it follows from the standard Schander estimates that there
are numbers 4, > 0 and B, > 0, which can be taken to depend only on g,
such that F,(Vg) > — 4, and Vgl < B, on I, where 'y denotes the gradi-
ent of g. We now assume ¢ € O°(R* ')nL(m). Then g is smooth up to
the boundary of D*(p) and, in particular, the tangential part of the gradient
vanishes on L, = {{z, p(2)): lz| < 10}. Hence, if PeZ,, then |V g(P)|
< m|(2/0y)g(P)]. From (3.7) follows now that there is a number
B = B(g, m) such that F (Vg)>= 2B|(0]/0y)g(P)" on L;. Hence we can
now choose a number 4 = 4(g, m) > 0 such that F (Vg)—2B|(2/0y)g1"+
+4 >0 on L From (3.7) we have that v = F,(Fu)—2B|(0/dy)g1*-+ 4y
is superharmonic in D*(p) and has boundary values > 0 on 2D*(¢) which
gives the lemma in the case when ¢ e C*(R" " )nL(m).

If ¢ e L(m) and not assumed to be %, we can find ¢; e C*NL(m)
such that ¢; > ¢ and ¢; > ¢ uniformly. Let g; denote the Green function
of D(g;, 1) with pole at P, and let y; denote the harmonie measure of
D*g)—{ (2, @;(x)): |#] < 10}. Then it follows from the arguments given
in Helms [5], p. 89, that g, — g uniformly on compact subsets of D(p, 1) —
—{P;} and y,— y uniformly on compact subsets of D*(p). Hence the
lemma follows from the previous case.

‘We shall need the following simple consequence from Theorems A
and B.

LEMMmA 3.4, Let D, and D, be two Lipschitz domains in R", n> 3. Let
P eD,;, i =1,2, and denote by k; the density of the harmonic measure of D;
evaluated at P;. Suppose there is an open set V such that VNDy = VNnD,
and VoD, = UNdD, 3= @. Then to each compact set F = VD, there
is a number C > 0 such that 0%, (P) < ky(P) < Oy (P) a.e. on F.

Proof. Let G; denote the Green function of D;, i = 1, 2. From The-
orem B follows the existence of a neighbourhood W of ¥ such that W < V
and 071G, (P, @) < G4 (P, §) < 0G (P, @) for all @ € W. From Theorem A
follows that %, is a.e. given as the normal derivative of G;(P;, -) from which
the lemma follows.

For m>0 let A(m) = {{z,y): o] < my, le]?+y* =1} and put
¢ = (0,1) e A(m). Let & denote the Beltrami operator of 8*~! = {P e R":
|P] =1} and let A(m) be the first eigenvalue of 6f+ if = 0, f = 0 on the
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boundary of 4 (m). Let ¢,, be the corresponding eigenfunction, normalized
by @, (e) = 1. Let a(m) denote the positive root of the equation t(f4-n—2)
= A(m). It follows from Courant—Hilbert [2], p. 321, that a(m) is a con-
tinnous inereasing funetion of m and
(3.8) lima{m) = a(0) = 1.

m—0

The fact which is important for us is that the function
(3.9) hy(P) = [P[*™g,, (PIP|™)

is non-negative and harmeonic in I'(m) = {(z, ¥): |2| < my} and vanishes
on the boundary of I'(m).

LevMA 3.5. Let m, @ and q be as in Lemma 3.3. Suppose in addition
that (¢—1)a(m) < q. Denote by k the densily of the harmonic measure of
D(p,1) evaluated at P,. Then there is a number C > 0 such that for all
Pe8(p) and oll r € (0,1) we have '

(1"1“” f kq+1dc)llfq+l)< Or'—" f kdo.
A(Pr) A(P5)

Proof. Define v(P) = F (Vg) 4 (A +1)y—B|(9/0y)g]% where A and B
are a8 in Lemma 3.3. Then » is non-negative and superharmonic in D*(¢)
and v>>1 on L, where L is as in the proof of Lemma 3.3. Moreover,
v> B{(d]dy)g|" in D*(p). For 0<t<l let u(P)= o[EP+ (1—1)P,).
If ¢ is sufficiently near 1, then v, is non-negative and superharmonic in
D, (p) = D(p,1)—B(P,;, 26). Fix a point P, e D,(p) and denote by %,
the density of the harmonic measure of D,(p) evaluated at P,. Since v,
is superharmonic and continuous in D, (), we have

(310) WP)> [ wPIk(P)do(P).
2Dy(9)

We now observe that from Lemma 2.1 follows that Vg is non-tangentially

bounded a.e. on 8(g), which means that Vg has non-tangential limits a.e.

on. S(p). Also it follows that lim |Fg(P)| > 0~'k(P) a.e. on §(p). From
i+1

Lemma 3.4 follows that there is a constant ¢ > 0 such that &, (P) > 0~ %(P)

a.e. on S(p). Hence we find from (3.8) and Fatou’s lemma that Cv(P,)

>S(f) (k(P))**'do(P). This means ke L**}(8(p), o). However, since the
@,

support of ¢ is contained m {z e R*': |z| < 1}, it follows that

(3.11) f ko < oo,
Iy

where I, = {(z, p(2)): 12| <10}. Let P’ e 8(¢) and 0 <r < 1 and put
% (P) =A(Ff )}6/ 2y(g(@))|?w (P, 4Q). From (3.11) follows that there is a con-

stant O such that u(P)< 0 on L. Hence u < Ov in D*(p) for a suitable
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constant C. From Lemma 2.2 follows the existence of & constant C such that

(3.12) u(P;) < Cu(P'+(0, n)) w(Py, AP, 7).

‘We now observe

(3.13) u (P’ (0, 7)) < O(F(Fg) + 4y) (P'+(0, 7))
< O(PglP+ )P (0, 7).

Let P, = P’ (0, 7). Then there is & number &> 0 such that B(P,, er)
< D{g)—(P,) for all r € (0, 1). Since g is positive and harmonie in B(P,, er),
we have that there is a number ¢, depending only on ¢ and #, such thab
Wg(P) < Crtg(P,). Let I' = I'(m) = {(&, ¥): |a] < my} and for P e 8(p)
define I'(P) = I'+P. Fix an 7, > 0 such that B(P,r)nI'(P) = D{p, 1)
for all P e 8(¢). Then there is a number O > 0 such that g(@)>0C, @ &

U {Q: Qel'(P),|Q—P| =r}. If s denotes the harmonic measure
PeSi@)
{Pee‘}’: [P| =} with respect to I'mB(0,7), then g(@)> Cs(@—F)
for all @ e B(P, 1) nI'(P). From Theorem B follows that there is a number
C > 0 such that 8(Q) = ch,,(Q) for all @ e B(0, }r,) T, where h,, is defined
by (3.9). Hence g(P,) = Cr"™ > 0 for all 7, 0 < r < 1. From Theorem B
and the assumption on g follows the existence of a number ¢ > 0 such
that y(P,) < Og(P,) < Clr~ g(P,))% ]
From (3.13) follows now that (P,) < C{r 'g(P,))? and using Lemma
9.1 wefindu(P,) < C (rl‘"co(Pl, AP, r))]q. Considering (3.10) we now have

PP < O(r "o (P, AP D)) Aas
From Lemmsa (2.1) follows now that Hm(0/%)g (P+(0, r)) > 07k(P)

-1

a.e. on |(z, p(@): |zl < 10}. Hence u(P,)> 0" f ' de from which
the lemma follows. AEn

Proof of Theorem 1. Let D < R" be a Lipschitz domain; then it
follows from Lemma 2.8 that (i) implies (i). If % denotes the density of
the harmonic meagure evaluated at some point P, then % satisfies a B-
condition (Theorem A). Hence it follows from Coifman~Fefferman [1_]
that & satisties a B,-condition for some g > 2. Lemma 3.2 shows now that (i)
implies (ii) in this case.

Tf D is a ¢i-domain, then it follows from (3.8), Lemma 3.4 and Lemma
3.5 that & satisties a B,-condition for all g & (1, oo). As above, considering
Lemma 3.2 completes the proof.

Wo shall now turn to some consequences of Theorem 1. Let D be
a Lipschitz domain and let I be a given open bounded circular cone wit.h
vertex at 0. We say that a compact set B < 8D is I-regular if there is
an open right circular eylinder L with axis parallell to the axis of I" and
a coordinate system (z,y) with # e R"™', y e R, with the y-axis parallell
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to the axis of I' such that LND = {(#,¥): ¢(x) <y}nL and LNdD
= {(#,9): ¥y =¢(@)}nL for some Lipschitz function ¢. Moreover, we
require that LnoD > F and there exists an open circular cone I" with
vertex at 0 such that '—{0} < I and I"+P < D for all P edDnL.

TaworEM 2. Let D < R™, n >3, be a Lipschitz domain and assume
that F <= aD is a compact set which is I-regular for some open circular cone I
with awis along ees®'. Let 2<p < oo and put for felL?(a) f*(P)
= sup{|Hf(Q)|: @ e '+ P}. Then

*

(3.14) [rde<c [ifPdo
L o aD

and Bim [|Hf(P+ de) — Hf(P)|do(P) = 0.
820

If, in addition, D is a C'-domain, then the above results hold for all
pe(l, oo).

Proof. To prove the theorem it is sufficient to prove (3.14) for the
appropriate range of p. It is sufficient to prove (3.14) for the case when
f>0. From our assumptions of I" and Harnack’s inequality it follows
f*(P) < Of**(P), where f+*(P) = sup Hf(P--te), where h is the height

o<i<h

of I'. If s is a non-negative function with 0 < s < h, we define F* = {P+
+s(P)e: PeF} and let T: F—>F be defined by ¢(P)=P+s(P).
Define now the positive measure x on F* by p(M) = o(T"(M)) for
M < F*. Then u is a measure such that u(B(P,r)nF)< Cr"! for all
P e F*, where C is independent of s. From Theorem 1 follows now that
[(Hf)?du < K [ f*do, where K is independent of s. By a suitable choice
P aD

of s we can arrange that Hf(T (P)) > 1f**(P) for all P € F, which proves
the theorem.

We shall now show a converse of Theorem 2.
THEOREM 3. Let D < R*, n >3, be a Lipschitz domain and suppose
V < 8D is a relatively open set such that V is I-regular for some open circular
come I'. Let 2K p< oo and put V, = {P+ee: P eV}, where e is the axis
of I'. Let w be harmonic in D and suppose that limsup ( rf [u]Pdo)'P < co.
>0

Then there is a function f e LP (o) such that lj.m(u(P)—ﬁf(P)) =0 for all
QeV. B>

If, in addition, D is assumed to be o C*-domain, then the above results
also hold when 1 <p < 2.

Proof. Define f, by f.(@) = w(Q +¢¢e) if @ € V and zero otherwise.
Then there is & number M > 0 such that if 0 < &< &, then ||f], < M.
Pick a sequence ¢ — 0 such that f,; converges weakly to f € L? (o) as j — oco.

Fix a point @ € V and let L be a right circular cylinder with its basis
at a positive distance from 4D and its axis parallell to ¢ such that @ e LnoD

R
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< R8D < V and LnD—&D < D. Define u,(P) = [u(P +e6) —Hf(P)]
it P e LnD and zero otherwise. Then there is & number &’ > 0 such that %,
is subharmonic in. I whenever 0 < & < &'. Also, it follows from Theorem 2
that if ¢ is chosen sufficiently small, then there is a number 8, such that

(3.15) (f (. (P + 5e)pdu))”p <0, 0<d<d, 0<e<e.
v

Tet R be an open geb such that LnD—aD < R < R—8D < {P+se:
PeT, 0<s< 8/2). Hence we have from (3.15) that fu,dP < Const x
R

>:( f u? clayl” < Const if 0 < & < &'. Also, there isa number?> 0 such thab

if ?’ e LD, then B(P,td(P)) = B, Where d(P) denotes the distance
from P to &D. Since u, is subharmeonie, we find

u (P) < CA(P)™ u, dP < Cad(Py™ fusdP < Kd(P)™™.
BP1PY) B

Define F(P) = Kd(P)™ if PeLnD, F(P) =+ if PeLniD and

zero otherwise. Then F is upper semicontinous in I, f (log*FY¥dP < oo

L
for all ¢ > 0 and u, < F whenever 0 < &< (?'. Now it is known that if
a non-negative function ¥ is upper semicontinuous In & domain 2 < R
and (log® Fy*~1*° is locally integrable in £ for some &> 0, the‘n S ()
contains a largest element o, where S(F) = {u: % 18 sul;!ha.rmomc in Q
and » < F} (see Domar [4], Theorem 2). Hence thel:e is a func,tlon ?
subharmonic in I, vanishing outside LND such that if 0 <e< ¢y then
%, < v in L. Hence |u{P)—Hf(P)| = ,-l.i:.? gy < »(P). It follows from the

Wiener criterion. (Helms [5], p. 220) that I —D is not 'thjn. (He']ms {61,
p. 209) at Q. Hence »(Q) = lim sup 9(P) = 0, which implies that
P->Q,PeL-D ]
lim sup | (P) — Hf(P)| < limsupo(P) = 0. Since Q was arbitrary, Theorem 3
P-Q P-Q

follows.
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On weakly* conditionally compact
dynamieal systems

by

W. SZLENK (Warszawa)

1. Let (X, ¢) be a topological dynamical system, i.e. X is a compach
metric space and : X - X is a continuous mapping. Denote by Cc(X)
the space of all continuous, real (or complex) valued functions on X,
and let U, be an operator defined as follows: U.f =foq, feC(X).

A sequence (f,) of elements of a Banach space Z is said to be weakly™
conditionally compact if for every sequence of positive integers (n,) there
is a subsequence (nk) such that for every linear continuous functional
® e E* the sequence of scalars (P(fny, )} is convergent. In the case of
B = C(X) it means that the sequence (fny, (z)) is pointwise convergent
(not necessarily to a continuous function).

If for every sequence (n;) there exists a subsequence () and an
element f € B such that (f,) is weakly convergent to f, then the sequence
(f,) is said to be weakly conditionally compact.

DEFINITION. A system (X, ¢) is said to be weakly* [weakly] con-
ditionally compact it for every feC(X) the sequence (U"f) is weakly*
[weakly] conditionslly eompaet. For brevity, we shall call these sys-
tems w*ee [wee] systems.

The aim of the paper is to study some spectral properties, the strict
ergodicity (under some additional assumptions) and the sequence entropy
of w*ee systems.

Tn view of Rosenthal’s theorem [8] for every f e C(X) there are two
possibilities: '

(1) The sequence (U"f) contains a subsequence (U™:f) such that for
some ¢ > 0 and for every sequence of numbers (real or eomplex) @y, ...,y Gy
the following inequality holds:

m—1 m—1
1) sup IZ a, U”kf(w)} > 02 lag! -
x€X g k=0

(2) The sequence (U™f) is w+ce.





