- [8] B. V. Gnedenko and A. N. Kolmogorov, Limit distribution for sums of independent random variables, Addison Wesley, Reading, Mass. 1968.
- [9] J. Hoffmann-Jorgensen, Sums of independent Banach space valued random variables, Studia Math. 52 (1974), pp. 159-186.
- [10] and G. Pisier, The law of large numbers and the central limit theorem in Banach spaces, Ann. of Probab. 4, 4 (1976), pp. 587-599.
- [11] K. Ito, and M. Nisio, On the convergence of sums of independent Banach space valued random variables, Osaka J. Math. 5 (1968), pp. 35-48.
- [12] N. Jain, and M. Marous, Integrability of infinite sums of independent vectorvalued random variables, Trans. Amer. Math. Soc. 212 (1975), pp. 1-36.
- [13] J. P. Kahane, Some random series of functions, Heath, Lexington, Mass. 1968.
- [14] L. Le Cam, Remarques sur le théoreme limite centrale dans les espaces localement convexes. Les Probabilités sur les structures algébriques, C.N.R.S., Paris 1970, pp. 233-249.
- [15] B. Maurey and G. Pisier, Séries de variables aléatoires vectorielles indépendents et proprietés géométriques des espaces de Banach, Studia Math. 58 (1976), pp. 45-90.
- [16] K. R. Parthasarathy, Probability measures on metric spaces, Academic Press, New York 1967.
- [17] H. H. Schaefer, Topological vector spaces, Mac Millan, New York 1966.
- [18] A. Tortrat, Structure des lois indéfiniment divisibles dans un espace vectoriel topologique, Lecture Notes in Math. 31 (1967), pp. 299-328.
- [18a] Sur la structure des lois indéfiniment divisibles dans les espaces vectoriels, Z. Wahrscheinlichkeitstheorie verw. Gebiete 11 (1969), pp. 311-326.
- [19] S. R. S. Varadhan, Limit theorems for sums of independent random variables with values in a Hilbert space, Sankhyā 24 (1962), pp. 213-238.

INSTITUTO VENEZOLANO DE INVESTIGACIONES CIENTIFICAS CARACAS, VENEZUELA

ano

UNIVERSIDAD NACIONAL DE LA PLATA, LA PLATA, ARGENTINA

Received February 15, 1977
Revised version June 11, 1977

(1264)

Multiply self-decomposable probability measures on Banach spaces

b:

NGUYEN VAN THU (Wrocław)

Abstract. In the present paper we define multiply self-decomposable probability measures on a Banach space and give a general form of their characteristic functionals.

1. Introduction. This paper is concerned with probability measures defined on Borel subsets of a real separable Banach space X. For a probability measure μ on X, the characteristic functional $\hat{\mu}$ is defined on the dual space X^* by the formula

$$\hat{\mu}(y) = \int\limits_X e^{i\langle y,x\rangle} \mu(dx) \qquad (y \in X^*),$$

where $\langle \cdot, \cdot \rangle$ denotes the dual pairing between X and X^* .

Recall that a probability measure μ on X is self-decomposable if for every number c in (0,1) there exists a probability measure μ_c on X such that

(1.1)
$$\hat{\mu}(y) = \hat{\mu}(cy)\hat{\mu}_c(y) \quad (y \in X^*).$$

osition 1.9, [3]), the set $L_{\infty}(X)$ is non-empty.

The problem of describing the class of characteristic functionals of self-decomposable probability measures has been completely solved by Urbanik [8]. In the same paper the author has obtained a general form of characteristic functionals even for a larger class of probability measures, namely, for Levy's measures on X.

We now introduce a concept of multiply self-decomposable probability measures on Banach spaces. Let $L_1(X)$ denote the class of all self-decomposable probability measures on X. For every integer n>1, let $L_n(X)$ denote the class of all measures μ in $L_1(X)$ such that for every number o in (0,1) the component μ_c in (1.1) belongs to $L_{n-1}(X)$. Every measure in $L_n(X)$ will be called n-times self-decomposable. Further, every measure in $L_\infty(X) := \bigcap_{n=1}^\infty L_n(X)$ will be called completely self-decomposable. Since every stable measure on X is completely self-decomposable (Prop-

163

2. A characterization of multiply self-decomposable probability measures on X. It is well known ([2], [6]) that every infinitely divisible probability measure μ on X has a unique representation

Nguyen Van Thu

$$\mu = \varrho * \tilde{e}(M),$$

where ϱ is a symmetric Gaussian measure and $\tilde{e}(M)$ a generalized Poisson measure on X. In terms of characteristic functionals we have the formulas

(2.2)
$$\hat{\varrho}(y) = \exp(-\frac{1}{2}\langle y, Ry \rangle) \quad (y \in X^*),$$

where R is a covariance operator and

(2.3)
$$\hat{\tilde{e}}(M)(y) = \exp\left(i\langle y, x_0 \rangle + \int\limits_X k(x, y) M(dx)\right)$$

for certain $x_0 \in X$. The kernel k is defined by the formula

$$k(y,x) = e^{i\langle y,x\rangle} - 1 - i\langle y,x\rangle 1_{W}(x),$$

where 1_W denotes the indicator of a compact subset W of X. Moreover, the measure M, being a generalized Poisson exponent, has a finite mass outside every neighbourhood of 0 in X. Let L(M) denote the set of all generalized Poisson exponents on X. Recall that M(X) is a cone and if $M \in M(X)$ and $M \geqslant N \geqslant 0$, then $N, M-N \in M(X)$.

Given a measure $\mu \in L_n(X)$ (n = 1, 2, ...) and a system of numbers c_1, c_2, \ldots, c_n in (0,1), there exist, by the definition of the set $L_n(X)$, probability measures $\mu_{o,o_2...o_k}$ (k=1,2,...,n) such that for any $y \in X^*$

$$\hat{\mu}_{c_1c_2...c_{k-1}}(y) = \hat{\mu}_{c_1c_2...c_{k-1}}(c_k y) \hat{\mu}_{c_1c_2...c_k}(y),$$

where, for $k=1, \mu_{c_1c_2...c_{k-1}}$ is defined simply as μ . By virtue of Theorem 2.6, [3], it follows that for any c_1, c_2, \ldots, c_n in (0, 1) all measures $\mu_{c_1c_2...c_k}(k=1,2,...,n)$ are infinitely divisible. Let M and $M_{c_1c_2...c_k}$ $(k=1,2,\ldots,n)$ denote the generalized Poisson exponents corresponding to the measures μ and $\mu_{c_1c_2...c_k}$, respectively. From (2.4) we get the formula

$$M_{C_1}(E) = M(E) - M(c_1^{-1}E)$$

for every Borel subset E of X such that $0 \notin \overline{E}$. By easy induction we have the equation

$$(2.5) \quad M_{c_1c_2...c_n}(E) = M(E) + \sum_{k=1}^n (-1)^k \sum_{\substack{i_1,i_2,...,i_k=1\\ \text{distinct}}}^n M(c_{i_1}^{-1}c_{i_2}^{-1}...c_{i_k}^{-1}E)$$

for every Borel subset E of X such that $0 \notin \overline{E}$. Consequently, the righthand side of (2.5) is non-negative.

Conversely, if $M \in M(X)$ and for any c_1, c_2, \ldots, c_n in (0,1) the set function $M_{c_1c_2...c_n}$ defined by formula (2.5) is a non-negative measure, then all measures $M_{c_1c_2...c_k}$ (k=1,2,...,n) belong to M(X). Consequently, the generalized Poisson measure $\tilde{e}(M)$ is n-times self-decomposable. Since every symmetric Gaussian measure ρ on X is completely self-decomposable, we get the following

- 2.1. THEOREM. (i) $\mu \in L_n(X)$ $(n = 1, 2, ..., \infty)$ if and only if its generalized Poisson component $\tilde{e}(M)$ in (2.1) belongs to $L_n(X)$ respectively.
- (ii) $\tilde{e}(M) \in L_n(X)$ (n = 1, 2, ...) (resp. $\in L_{\infty}(X)$) if and only if for any numbers c_1, c_2, \ldots, c_n in (0,1) (resp. for any numbers c_1, c_2, \ldots, c_n in (0,1) and for every $n=1,2,\ldots$) the set function $M_{c_1c_2\ldots c_m}$ defined by formula (2.5) is a non-negative measure on X.
- 3. A reduction of the problem. In [8] Urbanik has introduced a concept of weight functions on a real separable Banach space X. Roughly speaking, a weight function on X is every real-valued continuous function Φ on X such that
 - (a) $\Phi(0) = 0$ and $\Phi(x) > 0$ for all $x \neq 0$,
 - (b) $\Phi(x)$ is convergent to a positive limit as $||x|| \to \infty$,
 - (c) $\Phi(x) \leq a \|x\|^2$ for a certain positive constant a and for all $x \in X$,
 - (d) $\int \Phi(x) M(dx) < \infty$ for every $M \in M(X)$,
- (e) if $M_n \in M(X)$, $\tilde{e}(M_n) \to \mu$ and $\int \Phi(x) M_n(dx) \to 0$, then $\mu = \delta_x$ for a certain $x \in X$, where δ_x denotes the unit mass at x.

In the sequel a weight function Φ on X is said to satisfy condition (*) if for every $x \in X$ there exist positive numbers s_x and a_x such that for every number r in $(0, \varepsilon_x)$

$$\Phi(rx) \geqslant \alpha_x r^2.$$

It is well known that if X is a Hilbert space, then as a weight function we can take $\Phi(x) = \frac{||x||^2}{1 + ||x||^2}$ ([5], Chapter VI, Theorem 4.10) which, of course, satisfies condition (*). Moreover, from Urbanik's construction for a weight function on X ([8], Proposition 5.2) we have

3.1. Proposition. For every X there exists a weight function on Xsatisfying condition (*).

Now by the fact that $\int\limits_{\kappa}^{\infty}e^{at}dt<\infty$ if and only if a<0 and by conditions (c) and (*), one can easily prove the following proposition:

3.2. PROPOSITION. Let Φ be a weight function on X satisfying condition (*). Then for every $x \in X$ the integral $\int_{-\infty}^{\infty} \Phi(e^{-t}x)e^{at}dt$ is finite if and only if 0 < a < 2.

Given a subset E of X, we put $\tau(E) = \{tx: x \in E, t > 0\}$. It is clear that the set $\tau(E)$ is invariant in the sense that $\tau(\tau(E)) = \tau(E)$.

3.3. LEMMA ([8], Lemma 5.4). For every $M \in M(X)$ there exists a sequence $\{E_k\}$ of compact subsets of X such that $0 \notin E_k$ (k = 1, 2, ...), $\tau(E_k) \cap \tau(E_j) = \emptyset$ if $k \neq j$ (k, j = 1, 2, ...) and $M = \sum_{k=1}^{\infty} M_k$, where M_k is the restriction of M to $\tau(E_k)$.

Let U be an invariant Borel set in X. Then, by virtue of Theorem 2.1, for every generalized Poisson exponent M corresponding to an n-times (resp. completely) self-decomposable probability measure on X, the restriction of M to U, denoted by $M|_{U}$, is also a generalized Poisson exponent corresponding to an n-times (resp. completely) self-decomposable probability measure on X. Hence and by Lemma 3.3 we get the following lemma:

3.4. LEMMA. Let M be a generalized Poisson exponent corresponding to a n-times (resp. completely) self-decomposable probability measure on X. Then there exists a decomposition $M = \sum_{k=1}^{\infty} M_k$, where every M_k $(k=1,2,\ldots)$ is a generalized Poisson exponent corresponding to a n-times (resp. completely) self-decomposable probability measure on X, M_k are concentrated on disjoint sets $\tau(E_k)$, $0 \notin E_k$ and E_k are compact.

This lemma reduces our problem of examining measures $M \in M(X)$ corresponding to n-times (resp. completely) self-decomposable probability measures on X to the case of measures concentrated on $\tau(E)$, where E is compact and $0 \notin E$. We denote this class by $G_n(E)$ $(n=1,2,\ldots,\infty)$. Following Urbanik [8] we shall find a suitable compactification of $\tau(E)$ and determine the extreme points of a certain convex set formed by probability measures on this compactification.

Accordingly, let $[-\infty, \infty]$ be the usual compactification of the real line $(-\infty, \infty)$, E a compact subset of X such that $0 \notin E$ and let S be the unit sphere in X. It is evident that the set $\overline{\tau}(E) := (\tau(E) \cap S) \times [-\infty, \infty]$ endowed with the product topology is compact. Further, each element of $\tau(E)$ can be represented in a unique form $e^{-t}x$, where $x \in \tau(E) \cap S$ and t is a real number. Thus the mapping $e^{-t}x \to (x, t)$ is an embedding of $\tau(E)$ into a dense subset of $\overline{\tau}(E)$. In other words, $\overline{\tau}(E)$ is a compactification of $\tau(E)$. In what follows we shall identify elements $e^{-t}x$ of $\tau(E)$, where $\|x\| = 1$, and elements (x, t) of $\overline{\tau}(E)$. Further, for every c > 0 and (x, t) in $\overline{\tau}(E)$ we put $c(x, t) = (x, t - \log c)$. The norm $\|\cdot\|$ can be extended from

 $\tau(E)$ onto $\bar{\tau}(E)$ by continuity, i.e. we put $\|(x, \infty)\| = 0$ and $\|(x, -\infty)\| = \infty$ for all $x \in \tau(E) \cap S$.

Let Φ be a weight function on X. Since for any $r_1 > r_2 > 0$ the set $\{x \in \overline{\tau}(E) \colon r_1 \geqslant \|x\| \geqslant r_2\}$ is compact and by condition (b) it follows that Φ is bounded from below on every set $\{x \in \tau(E) \colon \|x\| \geqslant r\}$ with r > 0. Further, Φ can be extended to $\overline{\tau}(E)$ by assuming $\Phi((x, \infty)) = 0$ and $\Phi((x, -\infty)) = \lim_{\|x\| \to \infty} \Phi(z)$. Let N be a finite Borel measure on $\overline{\tau}(E)$. Put

$$M_N(U) = \int_U \frac{N(du)}{\varPhi(du)}$$

for every subset U of $\bar{\tau}(E)$ with the property $\inf\{\|u\|: u \in U\} > 0$. This formula defines a σ -finite measure M_N on $\{u \in \bar{\tau}(E): \|u\| > 0\}$.

Let $H_n(E)$ $(n=1,2,\ldots)$ denote the class of all finite measures N on $\tau(E)$ for which the corresponding measures M_N fulfil the condition

$$(3.2) \hspace{1cm} M_N(F) + \sum_{k=1}^n {(-1)^k \sum_{\substack{i_1, i_2, \dots, i_k = 1 \\ 2i \text{ with } o_i}}^n M_N(c_{i_1}^{-1} c_{i_2}^{-1} \dots c_{i_k}^{-1} F)} \geqslant 0$$

for all $c_1, c_2, \ldots, c_n \in (0,1)$, and for every subset E of the set $\{u \in \overline{\tau}E : \|u\| > 0\}$. Define $H_\infty(E) = \bigcap_{n=1}^\infty H_n(E)$. Let $I_n(E)$ $(n=1,2,\ldots,\infty)$ denote the subset of $H_n(E)$ $(n=1,2,\ldots,\infty)$ consisting of probability measures. It is evident that the sets $I_n(E)$ $(n=1,2,\ldots,\infty)$ are convex and compact. Let us consider a measure M from $G_n(E)$ $(n=1,2,\ldots,\infty)$ as a measure on $\overline{\tau}(E)$. Set

$$N^{M}(U) = \int_{\mathcal{U}} \Phi(u) M(du)$$

for all Borel subset U of $\overline{\tau}(E)$. It is evident that $M \in G_n(E)$ $(n=1,2,\ldots,\infty)$ if and only if $N^M \in H_n(E)$ respectively. Further, for any Borel subset E_1 of $\tau(E) \cap S$ the sets $\tau(E_1)$, $\{(x,-\infty)\colon x \in E_1\}$ and $\{(x,\infty)\colon x \in E_1\}$ are invariant. Consequently, if $N \in H_n(E)$ $(n=1,2,\ldots,\infty)$ its restriction to any of these sets is again in $H_n(E)$ respectively. This implies that every extreme point of $I_n(E)$ $(n=1,2,\ldots,\infty)$ must be concentrated on orbits of elements of $\overline{\tau}(E)$, i.e. on one of the following sets: $\tau(\{x\})$, $\{(x,-\infty)\}$, $\{(x,\infty)\}$, where $x \in \tau(E) \cap S$. Obviously, all measures δ_s $(z \in \overline{\tau}(E) \setminus \tau(E))$ are extreme points of $I_n(E)$ $(n=1,2,\ldots,\infty)$. Then the problem of examining measures $M \in G_n(E)$ is reduced to finding extreme points of sets $I_n(E)$ $(n=1,2,\ldots,\infty)$ concentrated on $\tau(\{x\})$ $(x \in \tau(E) \cap S)$.

4. Multiply monotone functions on the real line. Let g be a left-continuous function on the real line. Then it is called n-times monotone

Multiply self-decomposable probability measures

(n = 1, 2, ...) if the following conditions are satisfied:

$$\lim_{t\to -\infty} g(x) = 0$$

and

(β) for any $t_1, t_2, ..., t_n > 0$ and $a, b \in (-\infty, \infty)$ with a < b we have the inequality

where Δ is the difference operator defined inductively as follows:

$$(t_1, t_2, ..., t_k > 0 \text{ and } -\infty < s < \infty).$$

Further, if for every n = 1, 2, ... a function g is n-times monotone, then it is called *completely monotone*.

It is evident that every *n*-times (n = 1, 2, ...) monotone function is convex, non-negative and monotone non-decreasing. Hence and by an easy induction one can prove the following propositions:

4.1. PROPOSITION. Let g be a n-times monotone function (n = 1, 2, ...) on the real line. Then there is a unique non-negative left-continuous monotone non-decreasing function q such that for every $t \in (-\infty, \infty)$

$$g(t) = \int_{-\infty}^{t} \int_{-\infty}^{u_{n-1}} \int_{-\infty}^{u_{n-2}} \dots \int_{-\infty}^{u_1} q(u) du du_1 du_2 \dots du_{n-1}.$$

4.2. Proposition. Let g be a completely monotone function on the real line. Then there is a unique completely monotone function q such that for every $t \in (-\infty, \infty)$

$$g(t) = \int_{-\infty}^{t} q(u) du.$$

5. The Urbanik representation for n-times self-decomposable probability measures on X. Consider a compact subset E of X such that $0 \notin E$ and an arbitrary probability measure N concentrated on $\tau(\{x\})$, where x is a fixed point of $\tau(E) \cap S$. Let us fix $n = 1, 2, \ldots$ It is clear that $N \in I_n(E)$ if and only if

$$(5.1) M_N(U) + \sum_{k=1}^n (-1)^k \sum_{\substack{i_1, i_2, \dots, i_k = 1 \\ \text{distinct}}}^n M_N(c_{i_1}^{-1} c_{i_2}^{-1} \dots c_{i_k}^{-1} U) \geqslant 0$$

for all $c_1, c_2, \ldots, c_n \in (0, 1)$ and all sets U of the form $U = \{(x, t) : a \leq t < b\}$ $\{-\infty < a < b < \infty\}$. Setting, for $N \in I_n(E)$,

(5.2)
$$g_N(b) = M_N(\{(x, t): t < b\})$$

we infer that for any $t_1, t_2, \ldots, t_n > 0$

$$(5.3) \quad \underset{t_1,t_2,\ldots,t_n}{\mathcal{\Delta}} g_N(b) = M_N(V) + \sum_{k=1}^n (-1)^k \sum_{\substack{i_1,i_2,\ldots,i_k=1\\ i_1+i_2+\dots i_k=1}}^n M_N(c_{i_1}^{-1}c_{i_2}^{-1}\dots c_{i_k}^{-1}V),$$

where $c_k = e^{-t_k}$ (k = 1, 2, ..., n) and V is a set of the form $V = \{(x, t): t < b\}$. Hence and by (5.1) for any sets U of the form $U = \{(x, t): a \le t < b\}$ and for $c_k = e^{-t_k}$ (k = 1, 2, ..., n) we have

$$\begin{split} & \underset{t_1,t_2,...,t_n}{\varDelta} g_N(b) - \underset{t_1,t_2,...,t_n}{\varDelta} g_N(a) \\ & = M_N(U) + \sum_{k=1}^n (-1)^k \sum_{\substack{i_1,i_2,...,i_k=1\\ \text{distinct}}}^n M_N(c_{i_1}^{-1}c_{i_2}^{-1}\dots c_{i_k}^{-1}U) \geqslant 0 \end{split}$$

which implies that the function g_N is *n*-times monotone. By Proposition 4.1 there exists a unique non-negative left-continuous monotone non-decreasing function g_N such that for every $t \in (-\infty, \infty)$

$$(5.4) g_N(t) = \int_{-\infty}^t \int_{-\infty}^{u_{n-1}} \int_{-\infty}^{u_{n-2}} \dots \int_{-\infty}^{u_1} q_N(u) du du_1 du_2 \dots du_{n-1}.$$

Moreover, by (3.3), (5.2) and (5.4), we get the formula

(5.5)
$$N(\{(x,t): a \leqslant t < b\}) = \int_a^b \Phi((x,t)) g_N^*(t) dt,$$

where the function g_N^* is defined by

(5.6)
$$g_N^*(t) = \int_{-\infty}^t \int_{-\infty}^{u_{n-2}} \dots \int_{-\infty}^{u_1} q_N(u) \, du \, du_1 \dots du_{n-2}.$$

Consequently, we have

(5.7)
$$\int_{-\infty}^{\infty} \Phi\left((x,t)\right) g_N^*(t) dt = 1.$$

Conversely, every non-negative monotone non-decreasing left-continuous function q_N with property (5.7) determines, by formulas (5.5) and (5.6), a probability measure N concentrated on $\tau(\{x\})$. Moreover, the corresponding function g_N is n-times monotone which shows that $N \in I_n(E)$. Hence we conclude that a measure $N \in I_n(E)$ is an extreme point of $I_n(E)$ if and only if the corresponding function q_N cannot be

decomposed in to a non-trivial convex combination of two functions q_{N_1} and q_{N_2} $(N_1, N_2 \in I_n(E))$. But this is possible only in the case $q_N(t) = 0$ if $t \leq t_0$ and $q_N(t) = c$ if $t > t_0$ for some constants t_0 and c. By (5.5) and (5.6) we get the formula

(5.8)
$$N\left(\{(x,t)\colon a\leqslant t< b\}\right) = c\int_{a}^{b} \Phi\left((x,t)\right)(t-t_0)_{+}^{n-1}dt,$$

where for a real number λ we write $\lambda_+ = \max(\lambda, 0)$. The constant c is determined by (5.7) and (5.8). Namely,

(5.9)
$$c^{-1} = \int_{-\infty}^{\infty} \Phi((x,t)) (t-t_0)_+^{n-1} dt.$$

We note that by condition (c) the last integral is finite for every n = 1, 2, ...Thus we have proved that the extreme points of $I_n(E)$ concentrated on sets $\tau(\{x\})$ are of the form (5.8).

Conversely, let N be a probability measure on $\tau(E)$ defined by formula (5.8), where $x \in \tau(E) \cap S$ and the constant c is given by (5.9). Then the corresponding measure M_N is of the form

$$M_N(\{(x,t)\colon a\leqslant t < b\}) = c\int\limits_a^b (t-t_0)_+^{n-1} dt$$

and consequently, the measure M_N satisfies condition (5.1). This implies that every measure N defined by formula (5.8) is in $I_n(E)$ and then it is an extreme point of $I_n(E)$

Let z be an arbitrary element of $\tau(E)$. Substituting $x=\frac{z}{\|z\|}$ and $t_0=\log\frac{1}{\|z\|}$ into formulas (5.8) and (5.9) we get all extreme points $N_z^{(n)}$ of $I_n(E)$ concentrated on $\tau(E)$ as follows:

$$(5.10) \hspace{1cm} N_z^{(n)}(U) \, = \, c_n(z) \int\limits_z^\infty 1_U(e^{-t}z) \varPhi \, (e^{-t}z) t^{n-1} \, dt \, ,$$

where 1_U denotes the indicator of a subset U of $\bar{\tau}(E)$ and

(5.11)
$$c_n^{-1}(z) = \int_0^\infty \Phi(e^{-t}z)t^{n-1}dt.$$

Now putting $N_z^{(n)} = \delta_z$ for $z \in \overline{\tau}(E) \setminus \tau(E)$ we get the following lemma: 5.1. Lemma. The set $\{N_z^{(n)}: z \in \overline{\tau}(E)\}$ is identical with the set of all extreme points of $I_n(E)$ and the mapping $z \to N_z^{(n)}$ is a homeomorphism between $\overline{\tau}(E)$ and the set of extreme points of $I_n(E)$.

Once the extreme points of $I_n(E)$ are found we can apply a well-known Krein-Milman-Choquet Theorem ([6], Chapter 3). Since each element of $H_n(E)$ is of the form cN_1 , where $N_1 \in I_n(E)$ and c > 0, we then get the following proposition:

5.2. Proposition. A measure N belongs to $H_n(E)$ if and only if there exists a finite Borel measure m on $\overline{\tau}(E)$ such that

$$\int_{\overline{\tau}(E)} f(x) N(dx) = \int_{\overline{\tau}(E)} \int_{\overline{\tau}(E)} f(u) N_z(du) m(dz)$$

for every continuous function f on $\bar{\tau}(E)$. If N is concentrated on $\tau(E)$, then m does the same.

From this proposition and by (3.1) and (5.10) we get, after some computation, the following corollary:

5.3. COROLLARY. Let M be a measure from M(X) concentrated on $\tau(E)$. Then $M \in G_n(E)$ $(n=1,2,\ldots)$, if and only if there exists a finite measure m on $\tau(E)$ such that

$$\int_{\tau(E)} f(x) M(dx) = \int_{\tau(E)} c_n(z) \int_0^\infty f(e^{-t}z) t^{n-1} dt m(dz)$$

for every M-integrable function f on $\tau(E)$. The function $c_n(z)$ is given by formula (5.11).

We now turn to the consideration of arbitrary measures $M \in M(X)$ corresponding to a n-times self-decomposable probability measure μ on X. By Lemma 3.4 there exists a decomposition $M = \sum_{k=1}^{\infty} M_k$, where $M_k \in M(X)$ are restrictions of M to disjoint sets $\tau(E_k)$, $0 \notin E_k$ and E_k are compact. Then we have $M_k \in G_n(E_k)$ $(k = 1, 2, \ldots)$. Let m_k denote a finite measure on $\tau(E_k)$ corresponding to M_k in the representation given by Corollary 5.3. Then

$$\int\limits_X f(x) M(dx) = \sum_{k=1}^{\infty} \int\limits_{\tau(E_k)} c_n(z) \int\limits_0^{\infty} f(e^{-t}z) t^{n-1} dt \, m_k(dz)$$

for every M-integrable function f. Substituting $f = \Phi$ into this formula, we get the equation

$$\int\limits_X \Phi(x) M(dx) = \sum_{k=1}^\infty m_k \left(\tau(E_k) \right).$$

Consequently, setting $m = \sum_{k=1}^{\infty} m_k$, we get a finite measure on X satisfying

the equation

(5.12)
$$\int_{X} f(x)M(dx) = \int_{X} c_{n}(z) \int_{0}^{\infty} f(e^{-t}z)t^{n-1}dt \, m(dz)$$

for every M-integrable function f on X. Moreover, $m(\{0\}) = 0$. Putting,

(5.13)
$$K_n(x, y) = c_n(x) \int_0^\infty K(e^{-t}x, y) t^{n-1} dt,$$

where the function a_n is given by (5.11) and the kernel K is given by (2.3), we get the formula

$$\int\limits_X K(x,y)M(dx) = \int\limits_X K_n(x,y)m(dx)$$

which, by (2.2) and (2.3), yields the following theorem:

5.4. THEOREM. Let Φ be an arbitrary weight function on X. A probability measure μ on X is n-times self-decomposable $(n=1,2,\ldots)$ if and only if there exist a finite measure m on X vanishing at 0 and a covariance operator R and an element $x_0 \in X$ such that

(5.14)
$$\hat{\mu}(y) = \exp(i\langle y, x_0 \rangle - \frac{1}{2}\langle y, Ry \rangle + \int_{Y} K_n(x, y) m(dx)$$

for all $y \in X^*$. The kernel K_n is defined by formula (5.13).

6. The Urbanik representation for completely self-decomposable probability measures on X. Consider a compact subset E of X such that $0 \notin E$ and an arbitrary probability measure N concentrated on $\tau(\{x\})$, where x is a fixed point of $\tau(E) \cap S$. It is clear that $N \in I_{\infty}(E)$ if and only if for every $n=1,2,\ldots$ equation (5.1) holds. Hence and by (5.3) the function g_N defined by means of formula (5.2) is completely monotone. By Proposition 4.2 it follows that there exists a unique completely monotone function p_N on the real line such that

(6.1)
$$g_N(t) = \int_{-\infty}^t p_N(u) du \quad (-\infty < t < \infty).$$

which together with (3.3) and (5.2) implies the formula

$$(6.2) N\left(\left\{(x,t)\colon a\leqslant t< b\right\}\right) = \int_a^b \Phi\left((x,t)\right) p_N(t) dt.$$

Consequently, we have

(6.3)
$$\int_{-\infty}^{\infty} \Phi((x,t)) p_N(t) dt = 1.$$

Conversely, every completely monotone function p_N on the real line with property (6.3) determines, according to formula (6.2), a probability measure N concentrated on $\tau(\{x\})$. It is evident that $N \in I_{\infty}(E)$. Hence we conclude that a measure $N \in I_{\infty}(E)$ concentrated on $\tau(\{x\})$ is an extreme point of $I_{\infty}(E)$ if and only if the corresponding function p_N cannot be decomposed into a non-trivial convex combination of two functions p_{N_1} and p_{N_2} $(N_1, N_2 \in I_n(E))$. Given t > 0 and a function p with such a property define two auxiliary functions p_1 and p_2 as follows:

$$p_1(u) = \frac{p(u) + p(u-t)}{1+c}$$

and

$$p_2(u) = \frac{p(u) - p(u-t)}{1-c} \quad (-\infty < u < \infty),$$

where $c = \int_{-\infty}^{\infty} \Phi((x, t)) p(u - t) dt$. It is evident that for sufficiently large t we have 0 < c < 1 and then the functions p_1 and p_2 are both completely monotone. Moreover, they are normalized by condition (6.3). Now, for every $u \in (-\infty, \infty)$ we have the equation

$$p(u) = \frac{1}{2}(1+c)p_1(u) + \frac{1}{2}(1-c)p_2(u).$$

Consequently, for all $u \in (-\infty, \infty)$ and sufficiently large t > 0

$$p(u-t) = p(u) \int_{-\infty}^{\infty} \Phi((x,t)) p(u-t) dt$$

which, by a simple reason, implies that the function p is of the form

$$p(u) = \alpha e^{su}$$
 $(\alpha, s > 0; -\infty < u < \infty).$

Suppose that Φ is a weight function on X satisfying condition (*). Then, by Proposition 3.2, the integral

$$\int_{-\infty}^{\infty} \Phi((x,t)) p(t) dt = a \int_{-\infty}^{\infty} \Phi(e^{-t}x) e^{st} dt$$

is finite if and only if 0 < s < 2. In this case, by (6.3), the constant a is given by

(6.4)
$$a^{-1} = \int_{-\infty}^{\infty} \Phi(e^{-t}x)e^{st}dt.$$

Putting, for $z \in \tau(E)$ with 0 < ||z|| < 1,

(6.5)
$$N_{Z}(U) = c(z) \int_{-\infty}^{\infty} 1_{U} \left(\frac{z}{||z||} e^{-t} \right) \Phi\left(\frac{z}{||z||} e^{-t} \right) e^{2||z||t|} dt,$$

where I_U denotes the indicator of the subset U of $\bar{\tau}(E)$ and

(6.6)
$$c(z)^{-1} = \int_{-\infty}^{\infty} \Phi\left(\frac{z}{||z||} e^{-t}\right) e^{2||z||t} dt$$

we infer, by above arguments, that the set $\{N_z\colon z\in\tau(E)\text{ and }0<\|z\|<1\}$ contains all extreme points of the set $I_\infty(E)$ which are concentrated on $\tau(E)$. Our further aim is to prove that every measure $N_z(z\in\tau(E)\text{ and }0<\|z\|<1)$ defined by formula (6.5) is an extreme point of the set $I_\infty(E)$.

Accordingly, by (6.5) it follows that the measure N_z is concentrated on $\tau(\{z\})$. Further, putting $x = \frac{z}{\|z\|}$ we get the formula for the corresponding measure M_{N_z} of N_z :

$$M_{N_z}(\{(x,t): a \leqslant t < b\}) = c(z) \int_a^b e^{2||z||t} dt \quad (-\infty < a < b < \infty).$$

Consequently, $M_{N_z} \in G_\infty(E)$ and then the measure N_z defined by formula (6.5) is an extreme point of the set $I_\infty(E)$. Thus we have proved the following lemma:

6.1. LEMMA. The set $\{N_z\colon z\in\tau(E)\ \text{and}\ \|z\|<1\}$ is identical with the set of extreme points of the set $I_\infty(E)$ concentrated on $\tau(E)$ and the mapping $z\to N_z$ is a homeomorphism between $\{z\in\tau(E)\colon \|z\|<1\}$ and the set of extreme points of $I_\infty(E)$ concentrated on $\tau(E)$.

Denoting by $e(I_{\infty}(E))$ the set of all extreme points of $I_{\infty}(E)$ and taking into account the fact that each element of $H_{\infty}(E)$ is of the form eN_1 , where $N_1 \in I_{\infty}(E)$, we then get the following proposition:

6.2. Proposition. A measure N belongs to $H_{\infty}(E)$ if and only if there exists a finite Borel measure m on $e(I_{\infty}(E))$ such that

$$\int\limits_{\overline{\tau}(E)} f(x) \, N \left(dx \right) \, = \int\limits_{e(I_{\infty}(E))} \left(\int\limits_{\overline{\tau}(E)} f(u) \tau \left(du \right) \right) m \left(d\tau \right)$$

for every continuous function f on $\bar{\tau}(E)$. If N is concentrated on $\tau(E)$, then m is concentrated on the subset of $e(I_{\infty}(E))$ consisting of probability measures concentrated on the set $\tau(E)$.

Combining (3.1), (6.5), Lemma 6.1 and the last proposition we get the following corollary:

6.3. COROLLARY. Let M be a measure from M(X) concentrated on $\tau(E)$ and Φ be a weight function on X satisfying condition (*). Then $M \in G_{\infty}(E)$ if and only if there exists a finite measure m on the set $\{z \in \tau(E) \colon \|z\| < 1\}$ such that

$$\int\limits_{\tau(E)} f(x) M(dx) = \int\limits_{\{z \in \tau(E): \, ||z|| < 1\}} c(z) \int\limits_{-\infty}^{\infty} f\left(\frac{z}{||z||}e^{-t}\right) e^{2i||z||t} dt \, m(dz)$$

for every M-integrable function f on $\tau(E)$. The function c(z) is given by formula (6.6).

Consider an arbitrary measure $M \in M(X)$ corresponding to a completely self-decomposable probability measure on X. By Lemma 3.4 there exists a decomposition $M = \sum_{k=1}^{\infty} M_k$, where $M_k \in M(X)$ are restrictions of M to disjoint sets $\tau(E_k)$, $0 \notin E_k$ and E_k are compact. Then we have $M_k \in G_{\infty}(E_k)$ $(k=1,2,\ldots)$. Let m_k denote a finite measure on $\{z \in \tau(E_k): \|z\| < 1\}$ corresponding to M_k in the representation given by Corollary 6.3. Then, for every M-integrable function f

$$\int\limits_X f(x)M(dx) = \sum_{k=1}^{\infty} \int\limits_{\tau(E_k)\cap B} c(z) \int\limits_{-\infty}^{\infty} f\left(\frac{z}{||z||}e^{-t}\right) e^{2||z||t} dt m_k(dz),$$

where B denotes the open unit ball in X. Substituting $f = \Phi$ into the last formula, we get the equation

$$\int\limits_X f(x) M(dx) = \sum_{k=1}^\infty m_k \big(\tau(E_k) \cap B \big).$$

Consequently, setting $m = \sum_{k=1}^{\infty} m_k$ we get a finite measure on B satisfying the equation

(6.7)
$$\int_X f(x)M(dx) = \int_B c(z) \int_{-\infty}^{\infty} f\left(\frac{z}{\|z\|}e^{-t}\right) e^{2||z||t} dt m(dz)$$

which, by (6.6), can be written in the form

(6.8)
$$\int_{\mathbb{X}} f(x) M(dx) = \int_{B} \int_{0}^{\infty} f(sx, y) \frac{ds}{s^{2||x||+1}} \left[\int_{0}^{\infty} \Phi(tx) \frac{dt}{t^{2||x||+1}} \right]^{-1} m(dx).$$

Moreover, the measure m fulfils the condition $m(\{0\}) = 0$. Hence and by (2.2) and (2.3) we get the following theorem:

6.4. THEOREM. Let Φ be a weight function on X satisfying condition (*). A probability measure μ on X is completely self-decomposable if and only if there exist a finite measure m on the open unit ball B in X vanishing at 0 and a covariance operator R and on element $x_0 \in X$ such that

(6.9)
$$\hat{\mu}(y) = \exp\left\{i\langle y, x_0 \rangle - \frac{1}{2}\langle y, Ry \rangle + \int_{B} \int_{0}^{\infty} K(sx, y) \frac{ds}{s^{2||x||+1}} \left(\int_{0}^{\infty} \Phi(tx) \frac{dt}{t^{2||x||+1}} \right)^{-1} m(dx) \right\}$$

for all $y \in X^*$. The kernel K is given by (2.3).

6 - Studia Mathematica LXVI.2

7. The Hilbert space case. Let H be a real separable Hilbert space. Recall that a complex-valued function φ on H is an infinitely divisible characteristic functional if and only if it can be represented in the form

(7.1)
$$\varphi(y) = \exp(i\langle y, x_0 \rangle - \frac{1}{2}\langle Dy, y \rangle + \int\limits_H K(x, y) M(dx)$$

$$(y \in H)$$
, where $x_0 \in H$, $K(x, y) = e^{i\langle y, x \rangle} - 1 - \frac{i\langle y, x \rangle}{1 + \|x\|^2}$, D is an S -operator,

M is a generalized Poisson exponent. Taking $\Phi(x) = \frac{\|x\|^2}{1 + \|x\|^2}$ as a weight function on H satisfying condition (*) we get, by Theorems 5.4 and 6.4 and after some computation, the following theorems:

7.1. THEOREM. The class of all n-times self-decomposable $(n=1,2,\ldots)$ probability measures on H coincides with the class of probability measures μ on H for which characteristic functionals are of the form

$$\hat{\mu}(y) = \exp(i\langle y, x_0 \rangle - \frac{1}{2}\langle Dy, y \rangle + \int_{\mathcal{H}} Q_n(x, y) w(dx)$$

 $(y \in H)$, where x_0 and D are the same as in (7.1), w is a finite measure on H vanishing at 0 and

$$Q_n(x,y) = \left[\int_0^{||x||} \left(\log \frac{||x||}{t}\right)^{n-1} \frac{t \, dt}{1+t^2}\right]^{-1} \int_0^{\infty} K(e^{-s}x,y) s^{n-1} \, ds.$$

7.2. THEOREM. The class of all completely self-decomposable probability measures on H coincides with the class of probability measure μ on H for which characteristic functionals are of the form

$$\hat{\mu}(y) = \exp\left\{i\langle y, x_0
angle - rac{1}{2}\langle Dy, y
angle + \int\limits_{\mathcal{B}} \left(\int\limits_0^\infty K(sx,y) rac{ds}{s^{2||x||+1}}
ight) rac{\sin\pi \|x\|}{\|x\|^{2||x||}} m(dx)
ight\}$$

 $(y \in H)$, where K, x_0 and D are the same as in (7.1), m is a finite measure on the open unit ball B in H vanishing at 0.

References

- [1] G. Choquet, Le théorème de représentation intégrale dans les esembles convexes compact, Ann. Inst. Fourier 10 (1960), pp. 333-344.
- [2] E. Dettweiler, Grenswertsätze für Wahrscheinlichkeitsmasse auf B-adrikianschen Räumen, Thesis, Eberhard-Karls Universität zu Tübingen, 1974.
- [3] A. Kumar and B. M. Schreiber, Self-decomposable probability measures on Banach spaces, Studia Math. 53 (1975), pp. 55-71.
- [4] M. Loéve, Probability theory, New York 1950.

- [5] K. R. Parthasaraty, Probability measures on metric spaces, New York-London 1967.
- [6] A. Tortrat, Structure des lois indéfiniment divisibles dans un espace vectorial topologique (sépare) X, Symposium on Probability Methods in Analysis, Lecture Notes in Mathematics 31, Berlin, Heidelberg, New York 1967, pp. 299-328.
- [7] Sur la structure des lois indéfiniment divisibles dans les espaces vectoriels, Z. Wahr-scheinlichkeitstheorie verw. Gebiete 11 (1969), pp. 311-326.
- [8] K. Urbanik, Levy's probability measures on Banach spaces, Studia Math. 63 (1978), pp. 284-308.
- [9] R. E. Williamson, Multiply monotone functions and their Laplace transforms, Duke Math. J. 23 (1956), pp. 189-207.

INSTITUTE OF MATHEMATICS, WROCŁAW UNIVERSITY WROCŁAW, POLAND

and

INSTITUTE OF MATHEMATICS HANOI, VIETNAM

Received April 16, 1977

(1293)