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Multiply self-decomposable probability measures
on Banach spaces
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Abstract. In the present p:;per we define multiply self-decomposable probability
measures on & Banach space and give a general form of their characteristic functionals.

1. Introduction. This paper is concerned with probability measures
defined on Borel subsets of a real separable Banach space X. For a prob-
ability measure u on X, the characteristic functional g is defined on the
dual space X* by the formula

Bly) = [6vPpaz) (yeX™),
X

where (-, > denotes the dual pairing between X and X*.

Recall that a probability measure u on X is self-decomposable if
for every number ¢ in (0, 1) there exists a probabiliby measure uy, on X
such that

(1.1) By) = pleyli(y) (y e X7).

The problem of describing the class of characteristic functionals of
self-decomposable probability meagures has been completely solved by
Urbanik [8]. In the same paper the author has obtained a general form
of characteristic functionals even for a larger class of probability measures,
namely, for Levy’s measures on X.

We now introduce a concept of multiply self-decomposable probability
meagures on Banach spaces. Let I, (X) denote the class of all self-decom-
posable probability measures on X. For every integer n > 1, let L, (X)
denote the class of all measures g in L, (X) such that for every number ¢
in (0, 1) the component u, in (1.1) belongs to L, ,(X). Every measure
in L, (X) will be called n-times self-decomposable. Further, every measure

in Lo(X):= () L,(X) will be called completely self-decomposable.

n=1
Since every stable measure on X is completely self-decomposable (Prop-
osition 1.9, {3]), the set L, (X) is non-empty.

x
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2. A characterization of multiply self-decomposable probability mea=
suves on X. It is well known ([2], [6]) that every infinitely divisible prob-
ability measure g on X has a unique representation

(2.1) p = gré(M),

where g is a symmetric Gaussian measure and é(M) a generalized Poisson
measure on X. In terms of characteristic functionals we have the formulas

(2.2) oly) = exp(—3<y, By)) (yeXY),

where B is a covariance operator and

@3) - &) —esp(i<y, m>+ [k(e,y) M(ds)
» X

for certain z, € X. The kernel % is defined by the formula
k(y, z) = v 1 —j Y, #)ly (),

where 1, denotes the indicator of a compact subset W of X. Moreover,
the measure M, being a generalized Poisson exponent, has a finite mass
outside every neighbourhood of 0 in X. Let L(M) denote the set of all
generalized Poisson exponents on X. Recall that M (X) is a cone and if
MeM(X) and M>N>=0, then N, ¥ —N e M(X).

Given a measure x € L, (X) (n = 1,2, ...) and a gystem of numbers
C1y Gay ...y 6, In (0,1), there exist, by the definition of the set IL,(X),
probability measures toog.ey (B =1,2,...,n) such that for any y ex*

(2.4) I;clcz. ey (y) = ‘&0152"-% ~1 (ck'y) ﬁ”l”z- e ),

where, for k =1, oo, o, , 18 defined simply as u. By virtue of The-
orem 2.6, [3], it follows that for any e, ¢,,..., ¢, in (0,1) all measures
Bereg.ocp (B =1,2,...,n) are infinitely divisible. Let M and Moo,
(k =1,2,...,n) denote the generalized Poisson exponents corresponding

to the measures u and Hoye,...cpr Tespectively. From (2.4) we get the
formula

Mo (B) = M(B)— M (c;*B)

for every Borel subset B of X such that 0 ¢E. By easy induction we have
the equation
n n
2.8) Mog, o(B) = M(B)+ D/ (—1) > M(e'c;*... 05 E)
k=1 Aslgsnnnsip=1

distinct;

for every Borel subset B of X such that 0 ¢ Z. Consequently, the right-
hand side of (2.5) js non-negative.
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Conversely, if M e M(X) and for any ¢y, €, ..., ¢, in (0,1) the set
function M, ,, ., defined by formula (2.5) is a non-negative measure,
then all measures M, . (k=1,2,..., n) belong to M(X). Conse-
quently, the generalized Poisson measure é () is n-times self-decomposable.
Since every symmetric Gaussian measure ¢ on X is completely self-decom-
posable, we get the following

2.1, TEmOREM. (i) pe L, (X) (n =1,2,..., c0) if and only if its
generalized Poisson component €(M) in (2.1) belongs to L, (X) respectively.

(il e(M) e L, (X) (n=1,2,...) (resp. €L (X)) if and only if for
any nUMbErs €1, Goy ..., ¢, n (0,1) (resp. for any numbers ¢y, ¢y ..., 0,
in (0, 1) and for every m =1,2,...) the set fumction M,, . defined by
formula (2.5) is a non-negative measure on X.

3. A reduction of the problem. In [8] Urbanik has introduced a concept
of weight functions on a real separable Banach space X.Roughly speak-
ing, a weight function on X is every real-valued continuous function @
on X such that

(a) ©(0) =0 and P(x)> 0 for all # 0,

(b) @ (z) is convergent to a positive limit as |j#|| — oo,

(e) (=)< ez’ for a certain positive constant o and for all » e X,

(d) [¢(m)ﬂ[(dw)< co for every M e M(X),

(e) ?f M, e M(X), §(M,)»p and [ O(z)M,(dw)~0, then u =4,
for a certain x € X, where 4, denotes thi unit mass at 2.

In the sequel a weight function @ on X is said to satisfy condition (%)
if for every » € X there exist positive numbers &, and o, such that for every
number # in (0, s,)

(%) D(re) = a,rt.

It is well known that if X is a Hilbert space, then as a weight function
2 2
we can take @ (z) = —H-L
1+ [wlf _
of course, satisfies condition (). Moreover, from Urbanik’s construction
for a weight function on X ([8], Proposition 5.2) we have

([6], Chapter VI, Theorem 4.10) which,

3.1. PropoSITION. For every X there emists a weight fumction on X
satisfying condition (*). :

Now by the fact that [ e®di< co if and only if ¢ < 0 and by condi-
p .

tions (c) and (), one can easily prove the following proposition:
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3.2. PROPOSITION. Let @ be a weight function on X satisfying con-
dition (x). Then for every x € X the inleqral f O (e~ tm)e dt is finite if and
-0
only if 0< a<< 2.

Given a subset # of X, we put ©(B) = {tz: z € B, t> 0}. It is clear
that the set v(¥) is invariant in the sense that z(r(H)) = 7(E).

3.3. Lemya ([8], Lemma 5.4). For every M € M (X) there exisis a se-

quence {E,} of compact subsets of X such that 0 ¢H, (k=1,2,...),
T(E)nTt(By) =0 if k#j (k,j=1,2,...) and M = 3 M, where M,
k=1

18 the restriction of M to ©(EB,).

Let U be an invariant Borel set in X. Then, by virtue of Theorem 2.1,
for every generalized Poisson exponent M corresponding to an n-times
(resp. completely) self-decomposable probability measure on X, the
restriction of M to U, denoted by M|y, is also a generalized Poisson ex-
ponent corresponding to an n-times (resp. completely) self-decomposahble
probability measure on X. Hence and by Lemma 3.3 we get the following
lemma:

3.4. LEMMA." Zet I be a generalized Poisson exponent corresponding
to & n-times (resp. completely) self-decomposable probability measure on X.

Then there ewists a decomposition M = 3' M, , where every M, (k = 1,2,...)
k=1

is a generalized Poisson exponent corresponding to a n-times (resp. completely)

self-decomposable probability measure on X, M, are concentrated on disjoint

sets (W), 0 ¢ By and B, are compact.

This lemma reduces our problem of examining measures M e I (X )
corresponding to #-times (resp. completely) self-decomposable probability
measures on X to the case of measures concentrated on z(F), where F is
compact and 0 ¢ B. We denote this class by G, (#) (n =1,2, ..., ).
Following Urbanik [8] we shall find a suitable compactification of (H)
and determine the extreme points of a certain convex set formed by prob-
ability measures on this compactification.

Accordingly, let [ —oco, co] be the usual compactification of the real
line (—oo, oo), B a compact subset of X such that 0 ¢ B and let & be the
unit sphere in X. It is evident that the set z(E): ='(1(E)nS) X[ —o0,00]
endowed with the product topology is compact. Further, each element
of 7(E) can be represented in 2 unique form ¢~'», where x € 7(H)nS and ¢
is & real number. Thus the mapping ¢~*& — (z, 1) is an embedding of = (H)
into a dense subset of 7(X). In other words, T(E) is a compactification
of 7(H). In what follows we shall identify elements e~!z of T(H), where
lell =1, and elements (z,?) of z(E). Further, for every ¢> 0 and (z,t)
in z(#) we put ¢(»,1) = (x, t—loge). The norm [I]l can be extended from
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7(H) onto 7 (F) by continuity, i.e. we put ||(z, co)|| = 0 and |[(z, —oo)| = o=
for all xe<(H)nS.

Let @ be a weight function on X. Since for any r, > r, > 0 the set
{z e 2(B): v, = |lz| = rs} is compact and by condition (b) it follows that &
is bounded from below on every set {z € v(H): ||| > r} with ¢ > 0. Further,
© can be extended to z(¥) by assuming O((z, co)) = 0 and P((z, — o))
= lim &(z). Let N be a finite Borel meagure on 7 (). Put

lizl}-»c0

N(d
(3.1) My(U) = —5((7;)-)
u

for every subset U of #(F) with the property inf{|ju||: » € U} > 0. This
formula defines a o-finite measure My on {u e z(H): [u| > 0}.

Let H,(#) (n =1,2,...) denote the class of all finite measures N
on 7(E) for which the corresponding measures M, fulfil the condition

L3 L
(3.2) My(B)+ D (=17 3 Myleeg!... 5 F)> 0
k=1 ialgeeerif=1
distinet
for all ¢, 65, ...,¢,€(0,1), and for every subset F of the set {uczE:

o3
]l > 0}, Define H (B) = () H,(B). Let I, (H) (»n=1,2,..., o)
ne=1
denote the subset of H,(H) (n =1,2,..., co) consisting of probability
measures. It is evident that the sets I,,(H) (n =1, 2, ..., co)are convex
and compact. Let us congider a measure M from &, (F) (n =1,2,..., )
as a measure on z(H). Set

(3.3) NM(U) = [&(u) M (du)
! U

for all Borel subset U of 7 (H). It is evident that M € G,,(E) (n = 1,2,..., )
it and only if N™ e H, (H) respectively. Further, for any Borel subset B,
of (NS the sets 7(Hy), {(#, —oo): weH,) and {(x, ): @€ F,) are
invariant. Consequently, if N eH,(B) (» =1,2,..., co) its restriction
to any of these sets is again in H,(H) respectively. This implies that every
extreme point of I,(B) (n =1, 2,..., co) must be concentrated on orbits
of elements of #(H), i.e. on one of the following sets: =({&}), {(w, — o)},
{(%, )}, where z ez (H)n&. Obviously, all measures 8, (# € 7(H)\v(H))
are extreme points of I,(B) (n =1,2,..., c0). Then the problem of
examining meagures M €@, (H) is reduced to finding extreme points of
sets I,(B) (n =1,2,..., oo) concentrated on v({z}) (v e7(H)NA).

4. Multiply monotone functions on the real line. Let g be a left-con-
tinuous function on the real line. Then it i called n-times monolone



166 Nguyen Van Thu

n =1,2,...) if the following conditions are satisfied:

{ee) Iim g(z) =0
f—>—00
and
{g) for any t,,%,,...,%,>0 and a, b e (—oo0, co) with & < b we have

the inequality
4 gz 4 gla),

tutaseensty E1alayeeesln
where 4 is the difference operator defined inductively as
tlgaent,
follows: ! "
4 (9(s)—gls—1)), k=2,
A s) = [ DT Y
oty g(9)—g(s—1), k=1

(f1y sy .oy T, >0 and —oo<< §<C oo

Further, if for every n = 1,2, ... a function ¢ is n-times monotone,
then it is called completely monoione.

It is evident that every n-times (n =1,2,...) monotone function
is convex, non-negative and monotone non-decreasing. Hence and by an
eagy induction one can prove the following propositions:

4.1. PROPOSITION. Let g be a n-times monotone function (n = 1,2,...)
on the real line. Then there is a unigque non-negative left-continuous monotone
non-decreasing fwn,ctio'n q such that for every te(— oo, co)

Up ~1 Up—~

gt) = f f f fg(u)dudulduﬁ N/

4.2. ProrosITioN. Let g be a completely monotone function on the
real Uine. Then there is a wuwique completely monotone function q such that
Jor every te(—oo, o)

&
gty = [ glu)du

5. The Urbanik representation for n-times self-decomposable prob-
ability measures on X, Consider a compact subset E of X such that 0 ¢ B
and an arbitrary probability measure N concentrated on = ({z}), where z

is a fized point of 7(B)NS. Let usfix n =1, 2, ... It is clear that & eI, (B)
if and only if

(1)  My(D)+ D) (—1)* 2 MN(c,lo-*. G300
k=1

$3519,ee osiz=1
digtinet
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forall ¢, €3, ..., 6, €(0, 1) and allsets U of theform U = {(z,1): a<<i< b}
(—oo<a<bhb< 00), Betting, for N el,(B),
(5.2) g (8) = My({(@,): 1< b))

we infer that for any #,,4,, ...,%, >0

n n

(5.3) 4 gulb) = JIIN(V)—|—Z(—1)k 2 My(eglen . o5 V),

Eplasr il k=1 Tsigreenaip=1

distinet:

where ¢, = ¢ %% (k =1,2,...,%) and V is a set of the form V = {(, ):
t < b}. Hence and by (5.1) for any sets U of the form U = {(z,t): a <t << b}
and for e, = ¢ (k =1,2,...,n) we have

4 gyb)— A4 gyla)

flgseeaty tidgseseidy
n k2
= MU Z ~DF Y Mylere . 05 U) =0

113995 rige=1
distinet
which implies that the function gy is n-times monotone. By Proposition 4.1
there exists a unique non-negative left-continuous monotone non-de-
creasing function gy such that for every ¢ e (— oo, co)

boUp .y Uy o u
(5.4) oty = [ | 1 s flgN(u)duduldug...dun_l

Moreover, by (3.3), (5.2) and (5.4), we get the formula

b
(5.5) N{(z,t): a<t<bl) = [ &, ) gx0)dt,
a
where the function gy is defined by
t Uy
{5.6) =[] f () Bty ... Aty
Consequently, we have
(8.7) [ &=, ) ght)@ = 1.

Conversely, every non-negative monotone non-decreaging left-con-
tinuous function ¢, with property’ (5.7) determines, by formulas (5.5)
and (5.6), a probability measure N concentrated on z({z}). Moreover,
the corresponding function g, is n-times monotone which shows that
N eI,(E). Hence we conclude that a measure N e L,(F) is an extreme
point of I, (F) if and only if the corresponding function g, cannot be
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decomposed in o a non-irivial convex eombination of two functions gy,
and gy, (Ny, N, € I,(E)). Bub this is possible only in the case gy(f) =0
if t < tyand gy () = ¢if t > £, for some constants {, and ¢. By (5.5) and (5.6)
we get the formuls

b
(5.8) Nz, 0): a<t< b)) = j ((, 1)) (E— )22,

where for a real number A we write 1, = max(4, 0). The constant ¢ is
determined by (5.7) and (5.8). Namely,
(5.9) ¢t = [ B, )ity dr

— o

e note that by condition (¢) the last integral is finite foreveryn = 1,2, ...
Thus we have proved that the extreme points of I,(Z) concentrated on
sets z({w}) are of the form (5.8). '

Conversely, let ¥ be a probability measure on (%) defined by formula
(5.8), where x € 7(Z)NS and the constant ¢ is given by (5.9). Then the
eorresponding measure A3, is of the form

b
My({(z,1): a<t<B}) =o [ (t—t,)i at

and consequently, the measure M, satisfies condition (5.1). This implies
that every measure N defined by formula (5.8) is in I, (B) and then it
iy an extreme point of I, (E)

Let z be an arbitrary element of t(F). Substituting o= and

llell

1
g W into formulas (5.8) and (5.9) we get all extreme points N ™

of 7,,(E) concentrated on 7(E) as follows:

1y = lo

0
(5.10) NO(T) = ¢,(2) [ 1p(e7'2) Blea) i @,
0
where 1;; denotes the indicator of a subset U of z(E) and
e
(5.11) THe) = [ Detrtas.
0
Now putting N& = §, for z € 7(H)\z(E) we get the following lemma:
5.1. LEnMA. The set {NO: zex(E)} is identical with the set of all

extreme points of I,(E) and the mapping z — NP is q homeomorphism
between 7 (B) and the set of extreme points of I,,(E).
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Once the extreme points of I, (H) are found we can apply a well-
known Krein—Milman~Choquet Theorem ([6], Chapter 3). Since each
element of H, (7)) is of the form ¢N,, where ¥, € I,(E) and ¢ > 0, we then
get the following proposition:

5.2. PROPOSITION. A measure N belongs to H,(H) if and only if there
ewtsts a finite Borel measure m on 7(H) such that

J @ N do) = [ [ )N (du)m(de)

IE) HE) (1)

for every continuous function f on 7(E). If N is concentrated on 1 (E), then m
does the same.

From this proposition and by (3.1) and (5.10) we get, after some
computation, the following corollary:

5.3. COROLLARY. Let M be a measure from M (X) concentrated on v(B).
Then M e @, (H) (n =1,2,...), if and only if there exists a finite measure m
on v (H) such that

ff(w)M(doo) = fo fmf (e7tz) " L dtm (de)

(k) (E)

Jfor every M-integrable fumction f om v(H). The function c,(2) is given by
formula (5.11).

We now turn to the consideration of arbitrary measures M e M (X)
corresponding to a n-times self-decomposable plobabilitv measure u

on X. By Lemma 3.4 there exists a decomposition M = 2 M, , where

M, e M(X) are restrietions of M to disjoint sets v(Hy), 0 ¢Ek and B, are
compaet. Then we have M, e @, (B,) (k =1, 2, ...). Let m, denote a finite
measure on v (#,) corresponding to M, in the 1epresenta.'b10n given by Corol-
lary 5.3. Then

[ f(@) M (dz) = 5;‘ [ enl2) ff(e“‘z)t"'ldtmk(dz)
X k=1 (L)) 0 '

for every M-integrable function f. Substituting f = & into this formula,
we get the equation

[ & (@) M (dn) = ka (+(By).

X k=1

Consequently, setting m = > m;, we get a finite measure on X satisfying
k=1 L
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the equation
(5.12) [ fl@)M (o) = [,z f fletz2) = dtm(dz)
X X

for every M-integrable function f on X. Moreover, m ({0}) = 0.

Putting,
(5.13) K, (z,y) = o,(a) [ K(e ‘v, y)t*'ds,

0

where the funection ¢, is given by (5.11) and the kernel K is given by (2.3),
we gebt the formula

[E(2,9)M(d0) = [ E,(z,y)m(dz)
c x
which, by (2.2) and (2.3), yields the following theorem:

5.4, THEOREM. Let @ be an arbitrary weight function on X. A probab-
ility measure w on X is m-times self-decomposable (n = 1,2, ...) if and
only if there exist a finite measure m on X vanishing at 0 and a covariance
operator B and an element %, € X such that

(614)  ily) = exp(i<y, my — <y, Ry>+ [ K, (@, y)m(dw)
X
for all y € X*. The kernel K, is defined by formula (5.13).

6. The TUrbanik representation for completely self-decomposable
probability measures on X. Consider & compact subset B of X such that
0 ¢ ¥ and an arbitrary probability measure ¥ concentrated on z({#}), where
@ i3 a fixed point of »(E)NS. It is clear that N e I (B) if and only if for
every % =1, 2, ... equation (5.1) holds. Hence and by (5.3) the function g,
defined by means of formula (5.2) is completely monotone. By Prop-
osition 4.2 it follows that there exists a nunique completely monotone fune-
tion py on the real line such that

12

(6.1) gn(t) = pr(u)du (—oo< i< o).
-0

which together with (3.3) and (5.2) imp]ies the formula

b
(6.9) N ({(@,1): a<t< b)) = [ (@, 1)) pu(t)dt

Consequently, we have

oo

(6.3) f &((z, t)) py(t)dt = 1.

—oco
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Conversely, every completely monotone function p, on the real
line with property (6.3) determines, according to formula (6.2), a prob-
ability measure N concentrated on v({x}). It is evident that N e I (B).
Hence we conclude that a measure N e I (E) concentrated on =({z}) is
an extreme point of I (H) if and only if the corresponding function py
cannot be decomposed into a mnon-trivial convex combination of two
functions Py, and py, (Ny, Ny el (#). Given > 0 and a function p
with such & property define two auxiliary functions p; and p, as follows:

p(w)+p(u—1)

pr(u) = 1to

and
p{u)—p(u—1)

Do) = 1T ¢

(—oo<C %< o),

=
where ¢ = [ @ ((z, t))p (v —1)dt. Tt is evident that for sufficiently large ¢

we have 0 < ¢< 1 and then the functions p, and p, are both completely
monotone. Moreover, they are normalized by condition (6.3). Now, for
every u € (—oo, oo) we have the equation

p(w) = 31+ 0)p;(w)+ (1 —0)pa(u).
Consequently, for all # &(— oo, o) and sufficiently large £> 0

plu—t) =p(w) [ (@, 1)plu—t)dt

which, by & simple reason, implies that the function p is of the form
pw) = ae®™  (a,8>0; —o< u< o).

Suppose that @ is a weight function on X satisfying condition (). Then, by
Proposition 3.2, the integral

o

[ (@, D)p@)dt = o fds Ye*l dt

— 00 —00

ig finite if and only if 0 < s < 2. In this case, by (6.3), the constant a is
given by

(6.4) f & (e ta) e .

Putting, for z e v(H) with 0< ||¢| < 1,

o

(6.5) Nz(U) =e(?) flv (Tzﬂe—‘) (||z|| & )ez'f””‘ t,
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where I; denotes the indieator of the subset lf of 7(¥) and

(6.6) elz)! = f@(T:I_ig—t) e2lilt g

we infer, by above arguments, that the set {N_: z € (&) and 0 < llkll < 1}
contains all extreme points of the set I (F) which are concentrated on T{E).
Our further aim is to prove that every measure N, (z e 7{E)and 0 < [z < 1)
defined by formula (6.5) is an extreme point of the set I..(B).

Accordingly, by (6.5) it follows that the measure N, is concentrated

on 7({z}). Further, putting » = —H—:W we get the formula for the correspond-

ing measure My, of N,:
b
MN,,({(% B a<i<<bl) = c(z)fe-g”z“tdt (—oo<a<b< o0).

Counsequently, M, €@, (E) and then the measure N, defined by formula
(6.5) is an extreme point of the set I (E). Thus we have proved the follow-
ing lemma: )

6.1. LmmMA. The set {N,: zev(B) and ||| < 1} is identical with the
set of extreme poinis of the set I,(H) concentrated on 7(B) and the mapping
2—~ N, s .a homeomorphism between {#e7(B): |kl <1} and the set of
extreme points of I,(E) concenirated on ().

Denoting by ¢ (Iw(E)) the seb of all extreme points of I (H) and taking
into account the fact that each element of H,,(B) is of the form ¢,
where N, € I,(H), we then get the following proposition:

6.2. PROPOSITION. A measure N belongs to H,(B) if and only if there
ewists a finite Borel measure m on e:(I,,o (B)) such that

Ji@ s = [ ( [ f(u)-z(du))m(dr)
«E) (IoolE) 3(x)

Jor every continuous function f on T(E). If N is concentrated on 7(H), then m
is concentrated on the subset of e(Im(E)) consisting of probability measures
concentrated on the set 7 (F).

Combining (3.1), (6.5), Lemma 6.1 and the last proposition we get
the following corollary: '

6.3. COROLLARY. Let M be a measure Sfrom M(X) concentraied on {H)
and @ be a weight function on X satisfying condition (). Then M eG(B)

if and only if there exists a finite measure m on the set {zer(B): |p|< 1}
such that ’

[ s an) =

«E) {zer(B): liz}]<1}

Q| p ~ ’
¢(2) _l f(Me ‘) e G (dz)
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for every M-integrable fumction f on v(E). The function ¢(?) s given by
formula (6.6).

Consider an arbitrary measure M ¢ M (X) corresponding to a com-
pletely self-decomposable probability measure on X. By Lemma 3.4 there
exists a decomposition M = Y M, where M, e M(X) are restrictions

k

=]
of M to disjoint sets v(H,), 0 ¢ F), and H, are compact. Then we have
M eG(H,) (B =1,2,...). Let m;, denote a-finite meagure on {z ev(H,):
o}l < 1} corresponding to M, in the representation given by Corollary 6.3.
Then, for every JM-integrable function f

[ ornas) = 3
X

k=1 w(EBpnB

f o(2) j f(»”:—“- e“‘) ANt Gom,, (dz)

where .B denotes the open unit ball in X. Substibuting f = @ into the
last formula, we get the egquation

[ (@) M (dm) = D mi(v(B)NB).
X k=1

Consequently, setting m = 3 m,, we get a finite measure on B satisfying
k=1

the equation

, o0 _
7 M(dx) = - “) P Giom (de
o0 Jrwatan = [ow [i{ge) mama
which, by (6.6), can be written in the form

-1

08 [ romtas) = [ [ s, [ ot grv] " mian.
X B 0 0 N

Moreover, the measure m fulfils the condition m({0}) = 0. Hence and
by (2.2) and (2.3) we get the following theorem:

6.4. THROREM. Let D be a weight function on X satisfying condition ().
A probability measure p on X is completely self-decomposable if and only
if there ewist a fimite measure m on the open unit ball B in X vanishing at 0
and a covariance operator B and on element m, ¢ X such that

(6.9) ily) = exp {m/, o> — 3y, By> -+

4 as ([ a |\
—I—ffK(sw,y) ST U»@(t”) tznzn+1) m(d‘”)}
B 0
for all y & X*, The kernel K is given by (2.3).
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7. The Hilbert space case. Let H be a real separable Hilbert space.
Recall that a complex-valued function ¢ on H is an infinitely divisible
characteristic functional if and only if it can be represented in the form

(7.1) o(y) = exp(iy, o> —3<Dy, 1) + [ K (v, y) M (dv)
H
YT ?2({1/, vy i 8- pator
(y € H), where 2, H, E(z,y) = ¢ —1—m,D1san operator,
' . ol
M is a generalized Poisson exponent. Taking @(x) =_i%|i-—m;|[—2

as a weight function on H satisfying condition (*) we get, by The-
orems 5.4 and 6.4 and after some computation, the following theorems:

7.1. TeEOREM. The class of all n-times self-decomposable (n =1,2,...)
probability measures on H coincides with the class of probability measures u
on H for which characteristic functionals are of the form

ly) = exp i<y, 50> —3<DY, )+ [ Qulw, y)w(da)
H

(4 € H), where x, and D are the same as in (7.1), w is a finite measure on H
vanishing at 0 and

Izl

=1 i -1 &
@i, = [ (log-"f—”) | [ Ee e pea.
0 0

7.2. THEOREM. The class of all completely self-decomposable probability
measures on H coincides with the class of probability measure u on H for which
characteristic functionals are of the form

ds ) sinT ||z)]

) = exp {i<y, 0~ 400, 9>+ [ ([ Klo2,9) s ) Sl o)
B 0

(y e H), where K, 2, and D aré the same as in (7.1), m is a finite measure
on the open unit ball B in H vanishing at 0.
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