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1. Introduction. Let F,(4) be the set of all k-place functions on
an algebra 4. If we define pointwise operations on F,(A4) corresponding
to the operations of A, then F,(A) becomes an algebra of the same type
as A. The elements of the subalgebra P,(A4) of F,(A) generated by the
projections and the constant functions will be called %-place polynomial
functions on A (cf. [9]). If a function fe F,(A) has the property that
for every subset M <= A* consisting of at most ¢ elements (¢ € N) there exists
a polynomial function p € P;(A4) such that f and p coincide on M, then
f is called a t-local polynomial function. A function which is ¢-loecal for any
integer ¢t > 1 will be called a local polynomial function. It is easy to see
that, for a given ¢, the set of all ¢-local polynomial functions and also the
set of all local polynomial functions is a subalgebra of F;(A). Denoting
these algebras by IL,P,(A) and LP,(A), respectively, and denoting by
0,(4) the algebra of those functions of F,(4) which are compatible with
all congruences on A4, we obtain the following chain of subalgebras of
F,(4), called the chain of (k-place) local polynomial functions on A:

Fi(4) 2 C4(4) 2 LyPy(4) 2 LPy(4) 2 ... 2 LP(4) 2 Pi(4).

Now one can ask which members of this chain coincide for a given
algebra A.

If all members coincide, i.e., if F;(4) = P,(4), then ‘A is called
k-polynomially complete; if, however, F,(A) = LP,(A), then A is called
k-locally polynomially complete. It C,(A) = P,(4), then A is called k-affine
complete (cf. [12]), and if C,(A) = LP,(A), then A is called k-locally
affine complete.

The problem of equality of certain members in the chain of local
polynomial functions has been treated in several papers. In particular,
polynomially complete and affine complete algebras and interpolation
of functions on algebras by polynomial functions have been studied,
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e.g., by Rédei and Szele, Foster, Pixley, Gratzer, Werner and other authors
(see, for example, the Remarks and Comments to Chapter I in [9]).
Recently, the chain of local polynomial functions on Abelian groups has
been investigated extensively (cf. [7] and [8]).

In this paper we study first some properties of the chain of local
polynomial functions on an arbitrary algebra A. Then we consider the
chain of local polynomial functions for the case where A is a lattice. In
this case L,P,(A) = LP,(A), and we show that there exist (unbounded)
1-affinc complete lattices (1) and lattices which are 1-locally affine complete
but not affine complete. Moreover, we provide examples of lattices for
which, on the one hand, the equality holds at the remaining positions
in the chain of local polynomial functions and it does not hold on the
other hand.

2. Local polynomial functions on universal algebras. Since, clearly,
F (A) =C,(4) iff 4 is simple, we first ask for conditions under which
Ci(A) equals L,P,(A).

As Werner has shown in [11], a variety 8 has permutable con-
gruences iff for any A e B the diagonal subalgebras (in the sense of Baker
and Pixley [1]) of A x A are just the congruences of A. Since L,P,(4),
by [8], is the set of those functions which are compatible with all com-
patible and reflexive 2-place relations, i.e., the set of functions which are
compatible with all diagonal subalgebras of 4 X 4, we can conclude

THEOREM 1. If a variety B has permutable congruences, then C(A)
= L,P,(4) for all A € DB.

It is an open question how far this result can be sharpened. The
strongest version would be: 0, (4) = L,P,(4) iff A has permutable con-
gruences. That this fails to be true in either direction we will see later
on by Theorems 8 and 9.

Now we consider direct produects of algebras. For this purpose we
use a mapping described in [10]. Let 4 = B x C be the direct product
of the algebras B and C. Then, for any ¢ € 0,(4), there exist uniquely
determined ¢ € 0y (B) and ¢ € 0, (C) such that

‘P((bu €1)y (b2y €3)y «n vy (byy ck)) = (Q(bn bay .oy by)y a(C1y 0oy - ey ck))

for all ((by, 6,), (b2y €5)y «.-, (by, &) € A*. Moreover, u: ¢—(g, o) is a mono-
morphism of C,(4) into C,(B) x Cx(C).

THEOREM 2. Let B and C be algebras and let A = B x C. If the mono-
morphism pu: C,(4)— C,(B) X C,(C) induces an tisomorphism of P,(A)
onto P, (B) X P,(0), then-it also induces an tsomorphism of L,P,(A) onto

(!) Examples of bounded affine complete lattices have been already given by
Gritzer [5].
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L,P.(B) X L,P,(C) for any t>2 and an isomorphism of LP,(A) onto
LP,(B) x LP,(C).
Proof. Let ¢ € L,P,(A) and t > 2; then ¢ € C;,(4). Given ¢ elements

(9, ), (B9, ), ..., (b, ) e A*¥ (s =1,2,...,1),
there exists a p € P, (4) such that
@ ((69, o), (89, &), ...y (B, &) = 2 (B, ), (B, &), ..., (B, )
for ¢ =1,2,...,t. Consequently,
(e (@) b, ..., BY), o (e, off, ..., o))
= (P1(b§‘)’ bg‘)y veey bg))’ Pz("(l‘)i ogt)’ very G;:))) ’
where (p,, p;) € P,(B) X P;(C). Hence
pp = (e, 0) € LPy(B) X L,P,(C).
Conversely, let (¢;, ¢,;) € LPy(B) X L;P,(C). We define ¢ € F;(4) by

‘P((bu 01)y (bay €a)y «. vy (b, ok)) = (?’1(b1’ bay eoey br)y @a(Cry G2y ooy ck))

for all ((by, ¢1), (Bay Cs)y ..., (byy ;) € A*. Since u is a surjective mapping
of P,(A) onto P,(B) X P,(C), it is easy to see that for any subset M < 4*
consisting of ¢ elements there always exists a p € P, (4) such that p equals
¢ on M. Clearly, up = (¢1, @s)-

If p e LP;(A) and up = (p, o), then ¢ € L,P,(A) for any ¢ > 2 and,
therefore, (¢, 0) € L, P, (B) X L,P,(C) for all t>2; this implies that
o € LP,(B) and o € LP,(C). Conversely, if (o, 6) € LP,(B) X LP,(C), then
(o) 0) € L P, (B) X Ly P, (C) for all t=2. From this we conclude that
u (o, 0) e L,P,(A) for all t>2, and that means x~!(o, o) € LP,(4).

We denote the chain of %-place local polynomial functions on an
algebra 4 by Q,(4). The members L,P,(4), LP;(A) and P,(4) of 2,(4)
will be called P-elements.

COROLLARY 1. If u induces an isomorphism of P, (A) onto P, (B) X P,(C),
then two P-clements of 2,(A) coincide iff the corresponding P-elements of
Q. (B) and 2,(C) coincide.

Proof. If the P-elements 44 > MA of 2,(4) coincide and 4B, M B,
AC, MC are the corresponding P-elements of ,(B) and £,(C), then
ABx AC = MB x MC and, therefore, AB = MB and AC = M(C. Con-
versely, if AB = MB and AC = M(, then AB x AC = MB x MC, whence
A4 = MA.

Remark. The hypothesis of Corollary 1 is satisfied especially for
all direct products of rings with identity and for all direct products of
groups of relatively prime orders.
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COROLLARY 2. If A i8 an algebra of a variety which has permutable
congruences and u i3 anm isomorphism of P, (A) onto P,(B) X P,(C), then
A i8 k- (locally) affine complete iff both B and C are k- (locally) affine
complete.

THEOREM 3. If two members of a chain 2,(A) coincide, then so do
also the corresponding members of the chain 2,_,(4) (k= 2).

Proof. Let 4, =2 M, be two elements of Q2,(4) which coincide, let
Ay_,y M,_, be the corresponding elements of 2, _,(4), and let ¢ € 4,,_,.
We define p € F,,(4) by
Y(Byy Doy oovy D) = @(Byy Bgy ooy By_y)

for all (v,, z,,...,,) € A%
As one can easily see by checking all possible cases for 4,_,, y belongs
to A,. Therefore y € M;. Since

P(Byy Bay ooey Byy) = P(Byy Zay eevy By @),

a discussion of all possible cases for M, shows immediately that ¢ € M,_,.

COROLLARY 3. If for any algebra A two members of ,(A) are distinct,
80 are also the corresponding elements in any chain 2,(A) such that r > k.

THEOREM 4. If & 18 an epimorphism of an algebra A onto an algebra
B, then

(‘P(”)f) (9a,, aqy ...y Bay) = df(ay, ayy ..., ay)

defines a homomorphism ¢(9): O, (A4) - Cr(B). This homomorphism maps
P, (4) onto P,(B) and any other P-element of 2,(A) into the corresponding
P-element of $,.(B).

Proof. ¢(9) is well defined. Indeed, let da; = &b, for i =1, 2, ..., k.
Then a; = b; (mod Ker#), whence

J(ayy @gy ..y @) = f(by, sy ...y b) (modKerd),
which implies
f (@19 @ay ...y @) = Bf(by,y by ...y by).
@(®) is compatible. Indeed, let ® be a congruence on B and let
a; = ﬁ‘ (mod.@), a; = '0“( and ﬂ‘ = ‘0b‘o
Then a; = b; (mod#~'6), whence
f(@1y @ay ooy @) =f(byy bay .00y by) (m0dd'0).
Therefore

I (ary Gay ooy @) = Of(byy byy ...y by) (m0d6),
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which shows that
(‘P(”)f)(au Ugyorey @) = (‘P(")f)(ﬂn Bsy ...y B) (modB).

That ¢(¥#) is a homomorphism one can easily see.
If feP,(A), then there exists a word w(e, #,, ®,,...,a;) in the
constants ¢; and the indeterminates x,, @, ..., x; such that

J(ayy agy ..y &) = w(cyy 8y Gy ..., ).
Hence
f(ay, gy ..., @) = w(do;, day, ba,, ..., da,),
thus

(‘P(ﬁf)(”%r Bagy ..., day) = w(do;, da,, da,, ..., da),

which implies ¢ (8)f € Py(B).
If, on the other hand, we have y € P,(B), then there exists a word
w(d;, ®y, Tgy ..., 2;) such that

W(byy bay ooy by) = W(dyy byy bgy .oy by).

Replacing the constants d; in w by inverse images under 4 we obtain
a word representing & function of P,(4), which is mapped on y by ¢(H).

Now let f € L,P,(4) and #dq,, da,, ..., #a; € BX. (For short we denote
the k-tuples (a,, as, ..., a;) by single vector symbols.) a,, ag, ..., q, are
elements of A*, thus f(a)) = p(q;), where p e P,(4) and j =1,2,...,1.
Hence

(@(8)f) (Ba)) = Bf(a;) = Op(a) = (p(0)p)(day),
where ¢(9)p € P,(B), thus ¢(8)f € L,P,(B).
Finally, if f € LP,(4), then f € L, P,(A) for all ¢, thus ¢(?)f € L, P, (B)
for all ¢, and hence ¢(3)f € LP,(B).

Remark. ¢(#) is an epimorphism in the case of P,, but for the other
P-elements of Q,(A4) this is not true in general.

Oounterexamples. 1. Take A = Z,%x Z,,, B = Z, and # a projection
of A (Z, — a cyclic group of order n, p — a prime). By Theorem 1,
C.(A) = L,P,(A) and C,(B) = L,P,(B). Moreover, as proved in [10],
Cr(A) = P (A). Since C,(B) = F,(B) and (apart from p =2 and k¥ = 1)
F,(B) o Pi(B) (cf., e.g., [9]), we obtain

@(8)Cx(4) = ¢(8)P,(4) = Py(B) < Oy(B),

which shows that ¢(#), in general, is not surjective for C; and L,P,.
2. Take

4 = (szzp,xzp, x...)xzpm, B = (przp,xzp,x...)
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and & the projection of A onto B. By Theorem 2 in [8], LP,(4) = P,(4)
and LP,(B) # P,(B), whence

¢(8)LP(4) = ¢(9)P,(4) = P, (B) = LP(B).
Thus ¢(#) is, in general, not surjective for LP,.

3. Local polynomial functions on lattices.

THEOREM 5. Let L be an arbilrary lattice. Then L,P, (L) = LP(L)
Jor all t> 2.

Proof (cf. [1], the proof of the equivalence theorem). Let f € L,P,(L)
and x,, %, ..., %, € L*. Then there exist polynomial functions p, ¢, 7 e P, (L)
such that

fz) =p(x) (t=1,2,...,1),

flx) =aq(x) (2 =2,38,...,8+1)
and
fxg) =r(x) (=1,3,4,...,t+1).

We define a polynomial function g € P, (L) by
g(x) = ((p(x)Va(x) nr(x)u(p(x)ng(x).

As one can immediately see, g(x;) = f(x;) for¢ =1,2,...,¢+1. Thus
f € Ly Py (L).

Remark. As Gritzer has proved in [4], C,(L) = P,(L) for any
Boolean algebra L.

THEOREM 6. Let A = B x (. Then, for arbitrary lattices B and C,
the monomorphism un defined in Theorem 2 is an isomorphism of C,(A)
onto O (B) X C,(C) and induces an isomorphism of LP,(A) onto LP,(B) x
x LP,(0).

If B and C are distributive lattices both having more than one element,
then uP,(A) = P,(B) X P,(C) if and only if both B and C are bounded.

COROLLARY 4. The lattice A = B x C is8 locally affine complete if and
only if B and C are; LP;(A) = P,(A) holds only if LP,(B) = P,(B) and
LP,(C) = P,(0), hence A 13 k-affine complete only if B and C are.

Proof. The first statement is obvious, the second one follows imme-
diately if we observe that

uP(4) € Py(B) x P, (0)

(cf. [9], Proposition 3.41).

Proof of Theorem 6. Let B and O be arbitrary lattices. Then,
by [3], every congruence of 4 is the direct product of a congruence of
B and a congruence of 0. By [10] this implies that x is an isomorphism
of 0, (4) oato C,(B) x C,(0). This proves the first statement of the theorem.
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To prove the second statement we must only show that
#(L:P(4)) = LyPy(B) x Ly Py (0).

By the proof of Theorem 2, u is a monomorphism of L,P,(4) into
L,P,(B) X LyP,(C), thus we have to show that u is surjective.
Let

(91) @2) € LyPy(B) X LyP,(C) and ¢ = u~ (g1, @a).

Moreover, let ((b, o), (3, o), ..., (b, o)) for i = 1,2 be arbi-
trary elements of A*. If we put

@P 00, ..., 8) =¥ and (o, ..., off) = ¥,
then
(5%, o), (8, ), ..., (B, ¢f) = (p1(8Y), @a(c?)) = (p1(BYD), pa(cV)),

where (p,, pa) € Py (B) X P,(0).
Let

a =P, (b(l))upl(bm)’ B, = pl(b(l))npl(b(z))i
a; = Pa(cM)Upy(c?), By = Pa(cV)Npy(c®)

and let (b, ¢) be an arbitrary element of B x C. Moreover, let ¥ denote
the vector (z,, x,, ..., 2;) and let w,(d,, x) and w,(f,, x) be words in the
constants d, e B and f, € 0, which represent the polynomial functions
p:(x) and p,(x), respectively.

Now we replace every d, in w, by the pair (d,, ¢) and every f, in w,
by the pair (b, f,) (b and ¢ being fixed). We consider the polynomial
function p € P;(A4) which is represented by the word

(w03((d, ©), )N (a1, Ba))V(we((B, £,)y £ (B1y as))-
This polynomial function satisfies
p((B, 69), (B, &), ..., (o, o)
= ((B:(6™) N ay) U (741 B), (80 Bo) U(Pe(cP) N )
= (£2(6¥), pa(cV) (6 =1,2),

where y,, 4, are elements of B, C, respectively. Thus there exists a p € P;(4)
such that

?’((b(l"r 0‘1”)7 (bgi)t ")y, (bg)v 0;:)))
= P((b(l‘), 0(1‘))’ 9, o), ..., (b9, o;:))) (¢t =1,2).
Therefore ¢ € L, P, (4).
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Now, let B and O be distributive lattices of order greater than 1.
Without loss of generality we assume that C does not have a lower bound.
Moreover, let b be a constant function of P,(B) such that b« 0 if B has
a lower bound, and let # be the identity mapping. Suppose that there
exists a function r e P,(4) such that ur = (b, #).. Then r is « or takes
the form

((bn ol)mv)u(bz, ¢z), where (by, ¢;) = (b, 03), (bs) €2) U, (by, 01)ND

(cf. [6]). Since O does not have a lower bound, r cannot be of the first
or of the second form, thus b,nx =b or # = b for all » € B, which is
obviously a contradiction. Therefore, 4 does not induce an isomorphism
of P,(4) onto P,(B) x P,(C).

To show that u also does not induce an isomorphism of P,(A4) onto
P.(B)xP,(C) for k> 1, we define a mapping 7, of P,(L) into P,(L)
(for an arbitrary lattice L) by

(v29) (1) = @(@1) @1y o0vy @)

Denoting the monomorphism z of 0,(4) into 0, (B)x C,(C) by s,
we consider the following diagram:

P, (B x 0) —%—» P, (B) X P,(0)

*BxC TBX*C

#1

P,(BX 0)——>P,(B) X P,(C)

Since 7, is always an epimorphism and the diagram turns out to be
commutative, surjectivity of u, would imply that u, is surjective.

Conversely, if the distributive lattices B and C are both bounded,
then u is always an isomorphism of P,(4) onto P,(B) X P,(C), since,
by [2], this is true for an arbitrary bounded lattice.

THEOREM 7. Let L be a bounded distributive lattice. Then LP, (L) = P, (L)
Jor any k. There also exist unbounded distributive lattices L such that LP,(L)
= P, (L).

Proof. Let L be a distributive lattice with 0 and 1. As the normal
form system for the polynomial functions of P,(L) in [9] shows, any
p € P, (L) is uniquely determined by its values at the 2* places (¢,, fay ..., %),
where i, = 0 or 1. Hence we conclude that LP,(L) = P,(L). The second
statement follows from the

LEMMA. Let K be an arbitrary chain. Then LP,(K) = P,(K).

Proof. Let ¢ € LP,(K) and ¢ # x; then there exists an element
a € K such that p(a) = b # a. Without loss of generality we assume that
a <b. Suppose that y € K and y < b; then, by ¢ e LP,(K), there exists
a p € P,(K) such that p(x) = ¢(x) for ¢ = a and # = y. By [6], p is of
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the form (anz)UB (a>B), or anm, or fUx, or . From p(a) = b one can
eagily see that either p = (anz)Ud (a=>b) or p = 2Ud, whence ¢(y)
= p(y) = b for any y < b. If now ¢(x) = = for all > b, then ¢ = 2xUDb
€ P,(K). Otherwise, there exists ¢ > b such that ¢(6) = d # ¢. Suppose
that ¢ < d. Then, by the preceding argument, ¢(z) = d for all z < d,
thus ¢(b) =d, a contradiction. Thus ¢ > d. Dualizing the preceding
argument we see that ¢(z) = dforanys>d. If d < b, then d = ¢(d) = b,
thus ¢(2) = b for any x, and hence ¢ = b e P,(K). If, however, d > b
and b < y < d, then, by the preceding argument, ¢(y) # y would either
imply ¢(b) #b or ¢(d) # d, a contradiction. Thus ¢(») =b if z<5b,
o) =2 if b<2<d, and ¢(v) =d if 2> d. Therefore

¢ = (dna)Vb e P,(K).
By the Lemma and Theorem 6 we can easily construct examples of

lattices L such that LP,(L) # P,(L) for all k. Let L be the direct product of
two unbounded chains K, and K,. Then

#(LPy (K, x K,)) = LP,(K,) x LP,(K,) = P,(K,) X P,(K,),
but, on the other hand,
4 (P (K, x K,)) # Py(K,) x Py(Ky).
Thus LP,(K, x K,) # P,(K, X K,) and, by Corollary 3,
LP,(K,x K,;) # P,(K,x K,;) for all k>1.

THEOREM 8. If a laitice L has an atom, then 0, (L) # LP,(L).

Proof. By Corollary 3 we have to prove the theorem only if ¥ = 1.

Let a be an atom of L and let 0 denote the zero of L. We define
a function fe F,(L) by f(») =0 for x> a and by f(z) = a otherwise.

If @ is a congruence of L such that (0, a) € O, then, obviously, (z, y) € ®
implies (f(), f (y)) € ©. Let, therefore, ® be a congruence such that
(0, a) ¢ 6.

Let (0, #) € ©. Then » > a would imply (0, a) € @, whence f(2) = a
and, therefore, (f(0), f(#)) = (a, a) € 6.

Now let (a, ) €e ® and # % 0. If & were incomparable with », then
we would have anx = 0, which would imply that a, and 0 belong
to the same @-class, a contradiction. Thus > a and, consequently,
(f(a), f(2)) = (0, 0) 6.

Finally, let (z,y) € ® and z,y # 0, 2, y # a. We consider two cases.
If « > a, then also y > a, since (x, y¥) € © implies

(#Nna,yna) = (a,yna) e b;

thus ( f(z), f(y)) = (0, 0) € @. If, however, = is incomparable with a, so
is y and, therefore, (f(x), f(¥)) = (a, a) € 6.
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Thus («, y) € © for any congruence @ implies (f(w), f(y)) € ©, which
means that fe C,(4). Since f is no order endomorphism, f ¢ L,P,(L).

Theorem 8 gives us a large class of lattices L such that O, (L) % LP,(L).
Another class of lattices of this kind is the class of subdirectly irreducible
lattices L (of order greater than 1). Such a lattice always contains two
elements u, v such that « # v and (u, v) € © for all congruences @ greater
than the 0-congruence. Without loss of generality take v > v. We define
a function fe F,(L) by f(u) =9, f(v) =u and f(z) == for & # u,o.
Then f e C,(L) but f ¢ OF,(L), which implies that f ¢ LP,(L).

Corollary 4 provides now some more lattices that are not (locally)
affine complete.

THEOREM 9. A chain K 18 1-affine complete if and only if it does not
contain @& prime tnterval (2).

Proof. Suppose that K contains a prime interval [a, b]. Then the
mapping defined by f(z) = a for all x> b and by f(x) =b for all x < a
is in C,(K), which can easily be proved by the argument of Theorem 8.
Since f is not order-preserving, f ¢ P,(K).

Now, let us assume that K does not contain a prime interval and
that ¢ € C4(K). First we show that b < ¢(b) implies ¢(x) = ¢(b) for all
z < ¢(b) and ¢(x) < « for all » > ¢(b). By the way of contradiction sup-
pose that b < ¢(b) and = < ¢(b), but ¢p(z) # ¢(d). Then we can find a con-
gruence of K such that # and b are congruent, but ¢(z) and ¢(b) are not.
Similarly we obtain a contradiction from b < ¢(b), # > ¢(b) and ¢(z) > @.
Dualizing this result we infer that a > ¢(a) implies ¢(x) = ¢(a) for all
z > @(a) and ¢(2) > z for all x < p(a).

Suppose now that ¢ is not the identity mapping. Then without loss
of generality we can assume that there exists an element b € K such that
b< o). If p(x) = « for all 2> ¢(b), then

¢ = 2Up(b) € P, (K).

Otherwise, there exists an a> ¢(b) such that ¢(a) # a, whence
¢(a) < a. Thus ¢(x) = ¢(a) for all x > ¢(a) and ¢(x) > = for all » < ¢(a).
If ¢(a) < ¢@(b), then, choosing ¢ such that ¢(a) < c¢ < @(b), we obtain
¢(¢) = ¢(a) = @(b), a contradiction. If, however, ¢(a)=> ¢(b) and ¢(b)
<z < ¢(a), then ¢(x) <2 and ¢(x) > 2, whence ¢(r) = x. Thus

¢ = (2Up(d))Np(a) e P,(K),

which completes the proof.

As a consequence of Theorem 9 and Corollary 4 we infer that a direct
product of two unbounded chains K, and K, which do not contain prime

(3) For finite K of. [6].
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intervals is 1-locally affine complete. Since, as we have seen previously,
LP,(K, x K,) # P,(K, X K,),

we have found a class of lattices that are 1-locally affine complete but
not 1-affine complete.

Another consequence of Theorem 9 is that the identity C,(4)
= L,P,(A) for an algebra A does not imply that A has permutable con-
gruences. On the other hand, Theorem 8 shows that, conversely, if an
algebra A has permutable congruences, then this does not imply C,(4)
= L, P,(A). Thus we see that the strongest version of Theorem 1 we have
mentioned fails to be true in either direction.
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