ANNALES
POLONICI MATHEMATICI
XXXVI (1979)

A functional differential equation in a Banach space

by BoGDAN RZEPECKI (Poznan)

Abstract. In this paper we first give theorems on the existence of e-approximate
solutions for the problem z’ = Fzx, x(t;) = z, in the case of F being an operator of
Volterra type, acting in the space of all continuous functions from an interval

I = [ty, 1)+ a] to a Banach space E. The results extend those of tho previous works [5]
and [6].

Let h: I - (— o0, ©) be a continuous funetion such that h(t) <t for tel;
write m = min{h(t): t eI}. Let ¢: [m,¢,] > E be a continuous function; write
K = max{llp(t) —@(ty)ll: te[m,2]}. Let r > 0andlet B = {x € E: [z — ()l < K+ 7}
In Section II we present some results on the existence of a solution of the cquation
a = ft, a:(h(t))) satisfying the condition z(¢) = @ (t) for ¢ € [m, o], where f: IX B~
is a bounded continuous function.

Let (E, ||-]) be an arbitrary Banach space and let I = [{,,t + a],
J = [ty, to+h], where 0 < h < a. Denote by C(I) the space of all contin-
uous functions from an interval I to E, with the usual supremum norm
II[]ll. For X c E, let X = {x e C(I): #[I] = X}, where x[I] denotes
the image of the set I by the function z.

The results of this paper extend those of the previous works [5] and [6].

L Let B, ={zek: [z—z| <b}. By (PC) we shall denote the
problem of finding a solution of the equation
@' (t) = (Fa) ()
satisfying the condition
z(ty) = @y,

F being an operator from BIO to C(I), and the derivative being understood
in the strong scnse.

We introduce the following definitions:

1. Let ¢ be a positive number. A continuous function u: I — F is

said to be an e-approximate solution of the problem (PC) on the interval J,
if it satisfies the following conditions:

(i) u(t) e B;, for t e J and u(t) = w(t,+h) for t € [t+h, {+al;
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(ii) » has the right-hand dcrivative Dtwu(t) for ¢e[t,, {,+k) and
¢
u(t) = zy+ [DTu(s)ds for ted;
to

(iii) |DTu(t) —(Fu)(t)| < e for te[ty,t,+h).

2. We call an Fuler polygonal line for (PC) on J any function w: I -~ E
of the form
g:(t) for telt,_,, ], ¢ =1,2,...,n;

gty +0) Tfor telty+h,t,+al,
where t, <1, <...<t, =t +h and

u(t) =

go(t) =w, fortel,
9% (%) for te[t,_), 4], kF =1,2,...,7;
gin(t) = gj(tj)+(t_tj)(ng)(tj) for t e [ty 82115

g; () + (44 —tj)(ng)(tj) for te [tir1stota]
(j =0,1,...,n—1).

- We shall give sufficient conditions for the existence of e-approximate
solutions in the case of # being an operator of Volterra type; F is said
to be of Volterra type if for @, », B, , the equality z,(¢) = »,(¢) for t < s,
implies (F2,)(s,) = (F,)(s,).

THEOREM 1. Let F be an operator bounded and continuous on E’xu and
le¢ h < min(a, M~'b), where M = sup{|||Fxz|||: = eﬁ,o}. Assume, more-
over, that

1° F is of Volterra type,

2° there exists a subset H of B, such that

2o+ (t—t)-conv (U{(Fr)[J1: 2 H})) «c H for all ted
and such that all the functions belonging to F [ F] are equicontinuous, where
F ={weCl): a(ty =y, x[I] < H, o) —z(s)l| < Mt—s| for t,s e I}.

Then for any ¢ > 0 there exists an Euler polygonal line w: I — H which
is an e-approvimate solution of (PC) on J.

Proof. Let ¢ > 0 be fixed. Since all the functions belonging to
{Fz: » € #} are equicontinuous, there exists a number Jé > 0 such that
(Ey)(s;) — (Fy)(sy)]l < & for [s;,—s8,] < 0 and y € . Now we divide the
interval J into » parts: {, <f, <...<t, =%, +h Iin such a way that
max|t,_,—1,] < 4.

Let us define the mappings ¢,, g5, ..., ¢, and % as in Definition 2.
From assumptions 2° and 1° it follows that v € & and (Fg¢;)(t;) = (Fu)(¢;)
for+=0,1,...,n—1.
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Let 0 <i<mn—1and te[t,,,); then

Tult) = DT gy, (1) = (Fg)(2),

i—1%41 '
mo—l—fD“ 8)ds —m0+2 [ Dru(s)ds + [ D*u(s)ds
k=0 tg i

= @+ Z (terr — 1) (Fga) () + (8 — ) (Fg,) ()

k=0
= ;- (t =10 Fg;) () = w(l)
and
IDT u(t) — (Fu) (@)l = 1(Fg;)(4;) — (Fu) (@) = (LFw)(t,) — (Fu)(t)]] < e,
which concludes the proof.

TrEOREM 2. Let F be an operator continuous and bounded on Bzo
and let M = sup{|||Fz|||: xe on}. Each of the conditions which follow
tmplies assumption 2° of Theorem 1:

(a) There exists a constant k > 0 such that

w{U{(F2)[I]: e X}) < k-pu(X)(Y)

for every subset X of B, and h < min(a, M7'b), h-k <1.
(b) The operator F maps the set

{weC): a(t) =2, x[I] = B, , la(t)—z(s)| < Mlt—s|, t,s e I}

into a set of equicontinuous functions and h = min(a, M~'b).

Proof. Condition (b) implies 2° from Theorem 1 for H = B, . Mod-
ifying the proof of Dane§ (cf. [7], Theorem 2, p. 797), one can prove that
condition (a) implies assumption 2°.

Remark. A function : I — E is said to be a solution of the problem
(PC) on the interval J, if it is a differentiable function on J such that
z(t) = % and z(t) e B, for ted, x(t) ==, +h) for telty+h t+a]
and »'(t) = (Fz)(t) for ted.

Let the opcrator F be continuous and bounded on B and let
M = sup{|||Fxl||: =€ B, } Let us denote by S the set of a,ll solutions
of the problem (PC) for J Each of the conditions given below implies
that 8 is a non-empty and compact subset of C(I) ([5]):

1. Condition (a) from Theorem 2 is satisfied.

2. The operator F maps every subset of on consisting of equicon-
tinuous functions into a set of equicontinuous functions and there exists

(1) u denotes the measure of non-compactness due to Kuratowski (cf. [4], p. 318,
[2], [3], [5]) (for a bounded set X < I u(X) denotes the infimmum of all » > 0 such
that there 1s a finite cover of X by balls of radius 7).
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an integrable funetion p: I — [0, co) such that
n({(Fx)(t): v e &) <p@)} u({z@®): vez}), tel,

for an arbitrary subset Z of f?% consisting of equicontinuous functions
and A = min(a, M 'b).

IL. In this section we present some results on the existence of a solu-
tion for the Cauchy problem with lagged argument. However, we would
like to emphasize that for a general differential-functional equation of

Volterra type ([1], p. 127), the procedure suggested below can be carried
out without any essential modifications.

Let h: I - (—oco, c0) be a continuous function such that A(f) <t
for every te I, let m = min{k(t): ¢t € I} and let ¢: [m, {,] > ¥ be a con-
tinuous function. Put

B={xecE: [x—o{)|I<K+7r}, wherer>0
and
K = max{lg(t) —g(t)l: t e [m, ]}

By (+) we shall denote the problem of finding the solution of the
equation

(1) = f(t, 2(h (1))
satisfying the condition
z(t) = p(t) for te[m,1,],
where f: I X B— E is a bounded continuous function and
L = sup{|lf(t, )lI: (t,x) e I x B}.

By an integral of equation (+) in the interval J we understand
a function »: [m,t,+h]— E which satisfies this equation in J and (¢)
= @(t) for all te[m, t,].

Let ¢ be a positive number. A continuous function u: [m, ty+h]— E
is said to be an s-approximate solution of problem () on the interval J
if it satisfies the following conditions:

(3) u(@) = () for te[m,1,];
(jj) » has the right-hand derivative D' wu(t) for ¢ e [ty,%,+h) and

t
u(t) = @) + fD“'u(.s')ds for ted;
t

G33) 1D u(®) —f(t, w(r@))| < & for t € [t to+ ).
We introduce the following conditions:

(C.1) There exists a subset H of B such that

1° fl,xg is a uniformly continuous function;
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2° there cxists an 1/n-approximate solution # of problem (+) on
interval J such that u[J] < H.

(C.2) There exists an integrable function p: I — [0, oo) such that
pl{f(t,2): e X}) < p(t)-p(X) for every t e I and every subset X of B.

(C.3) There exists a constant & >> 0 such that u(f[I x X1) <k u(X) (%)
for every subset X of B.

By 8, (n =1,2,...)wedenote the set of all 1/n-approximate solutions
which are as in condition (C.1).

e obtain the following theorems:

1. Let condition (C.1) be satisfied for each n = 1 and let 1im u(8S,) = 0.

n—>o0

Then there exists an integral of (+) in J.

2. FEach of the conditions given below implies }lin; w(8,) =0:

(a) Condition 2° from (C.1) is satisfied for every m > 1 and condition
(C.3) is satisfied and h-k < 1.

(b) Condition (C.1) is satisfied for H = B and n =1,2,... and
condition (C.2) is satisfied.

3. Let h<min(a, LY (K +r)) and let condition 1° from (C.1) be
satisfied and let

p(tye H for te[m,t,],

p(t,) +(t—1t) conv(f[J xH]) =« H for ted.

Then for any € > 0 there exists an c-approximate solution u, of (+) on J
such that w,(t) e H for te[m,t,+h] and

(1) = pty) + (t—t)-f(t;, w(h (1)) +

+Z(tj—-k - tj—k—l)'f(tj—k—lr u’a(h(tj—k—l)))
k=0

Jorte[t,t 41, j =0,1,...,n—1, where t, <t < ...<t, =t,+h is some
partition of the interval J.
4. If condition 1° from (C.1) 4s satisfied for H =B and h =
min (e, L~ (K +7)), then the set B satisfies the assumptions of Theorem 3.
If condition (C.3) is satisfied and if h<<min(a, L=(K+7)), h-k<1,
then there exwisis a compact set H satisfying the assumptions of Theorem 3.
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