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In the language of partial differential equations, Liouville’s theorem
states that all bounded differentiable functions w: C — C such that L,
= 0, where L, is the Cauchy-Riemann operator in the complex plane,
are constants. The standard one-variable proof remains valid for bounded
differentiable functions #: C" — C solving the overdetermined system
of differential equations L;u =0 (1 <j < n), where each L, is the Cauchy-
Riemann operator in the j-th complex variable. Liouville’s theorem can
thus be considered as a statement about bounded classical solutions to
systems of homogeneous first-order differential equations of a particular
type.

DZuraev [4] examines single first-order linear differential equations
Lu = 0, where u: R® — C, and shows that under certain conditions any
smooth » that is bounded on R® and satisfies the homogeneous equation
Lu = 0 is constant. He also shows that Hans Lewy’s famous operator
on R? has an infinite number of linearly independent bounded solutions
to the homogeneous equation.

Despite the fact that all of the operators in DZuraev’s main theorem
are solvable in the sense of Nirenberg and Treves [9] and despite his one
counterexample (Lewy’s), the dichotomy is not solvability versus
non-solvability, as DZuraev also shows that adding any of an infinite
number of operators of order zero (i.e. multiplications) of a certain sort
to the non-solvable Lewy operator yields an operator satisfying the Liou-
ville theorem ; nor do all solvable operators satisfy DZuraev’s hypotheses.
There are many other non-solvable operators for which one could add
appropriate zeroth-order terms and show Liouville’s validity for the per-
turbed operator. Indeed, if one could find a zeroth-order term to add to
the operator so that performing a coordinate change would convert the
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equation into ou/0z —zu = 0, where z denotes the complex conjugate of
the complex variable 2, in suitable new coordinates, or a system of such
equations, then one finds that the only bounded solution %(z,z,t) of
this equation in R® is » = 0, verifying Liouville’s theorem for the per-
turbed Lewy operator. In addition, in R® = {(z,, #,, #;)} the solvable
operator :

0 0

+im—

M =
0z, o,

has many smooth bounded non-constant solutions to the homogeneous
equation Mu = 0, particularly any bounded smooth function of z, alone,
showing that Liouville’s theorem does not hold for this solvable operator.

One must thus look for alternate means to investigate the general
validity of Liouville’s theorem for first-order linear differential operators.
Since many [1] but by no means all [8] such operators can be expressed
as the induced Cauchy-Riemann operators on some real k-dimensional
manifold X* « C™ for some k,n > 2, and since we have seen that the
Liouville theorem is generally stated for holomorphic functions in C%,
it is perhaps appropriate to examine the problem in this framework.
Also, without loss of generality we will assume that ¥ = 2n —1, so that
we are dealing with a real hypersurface X «— C", since our proofs easily
extend to lower dimensions.

Suppose that one considers a C™ real hypersurface X which separates
C" (n > 1) into two parts X+ and X~. Then one can ask whether or not
all bounded C® CR-functions (functions satisfying the induced Cauchy-
Riemann equations on X) must be constants. For X being a tube hyper-
surface in C" over a two-sided hypersurface I" in R", Hill [6] and Carlson
and Hill [3] have proved that X has the Liouville property for its CR-func-
tions if and only if the convex hull of I"in R" is R" itself (or, equivalently,
the convex hull of X in C" is C" itself, or all CR-functions on X extend
to holomorphic functions on C").

We wish to study this problem for general real hypersurfaces X in
C". If all C* CR-functions on X extend to holomorphic functions on C",
then we will show that X has the Liouville property for its CR-functions.
However, if there exists a complex hyperplane in C* which is bounded
away from X, we will see that X does not have the Liouville property.
From the last two statements one might conjecture that, in order for X
to have the Liouville property, all CR-functions on X must extend to
holomorphic functions on C". However, using the Fatou [5] and Bieber-
bach [2] example, we will show that this is not the case. In fact, there
exists a hypersurface Y in C” such that all CR-functions on Y extend
to holomorphic functions on an open subset V of C" (and to no larger
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open set) with C" —V # @, and all bounded CR-functions on ¥ must be
constants. _

Let X be a C™ real hypersurface in C* (n > 1), and denote by odx
the Cauchy-Riemann operator induced on X by the complex structure

of C". A C™-function for X is a CR-function on X if dxf = 0 on X.

Definition. The real hypersurface X in C" (n» > 1) has the Liou-
ville property if all bounded CR-functions on X are constants.

Our first result can be used to give many examples of real hypersur-
faces in C" which have the Liouville property.

PROPOSITION 1. Suppose that X is a real hypersurface in C™ which
has the property that all CR-functions on X extend to holomorphic functions
on all of C". Then X has the Liouville property.

Proof. Let f be a CR-function on X such that |f(2)| < M < oo for
all points z € X. Since f extends to a holomorphic function f on C* with

A

fIX =f, we have | f(z)l < M for all ze C" (the extension theory pre-
serves bounds — see [3]). From the Liouville theorem on C" we infer that

f, and hence f, is a constant.

Suppose that X is a real hypersurface in C", and that there exist
a complex hyperplane (real codimension 2) 4 in C" and an ¢ > 0 such that
the Euclidean distance in C™ between X and A is greater than e. If 4 is
defined as the zero set of the linear holomorphic function ¢(2), then 1/¢(2)
is a bounded CR-funetion on X which is not a constant, and X does not
have the Liouville property. This leads us to consider necessary conditions
for a real hypersurface X in C” to have the Liouville property.

PROPOSITION 2. If a real hypersurface X in C™ has the Liouville prop-
erty, then there exists a dense subset of the set of complex hyperplanes in
C" which intersect X.

Proof. Let A be a complex hyperplane in C". Given any ¢ > 0, there
exists a point p € 4 such that the distance between p and the intersection
of X with the 2-dimensional normal tangent space to A at p is less than ¢/2.
Otherwise, we would have a contradiction to the statement preceding
this proposition. Now consider all translates of A in these normal directions
and translated by a distance of less than ¢. Certainly, at least one of these
must intersect X.

An important case, in which X does not have the Liouville property,
is when it can be foliated by a 1l-parameter family of complex hyper-
planes in C" so that X = R x C*"!, In this instance one has the Liouville
property for each complex hyperplane, but not for all of X; for example,
any bounded non-constant C*-function of the real parameters alone,
constant in the complex variables, violates the Liouville property. Of
course, such an X does not satisfy the necessary conditions of Proposition 2.
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Now we come to the main result of this paper, a real hypersurface ¥
in C™ which has the Liouville property, but whose envelope of holomorphy
a8 defined in [3] is not all of C". To construct such a Y we shall need the
following result of Fatou [5] and Bieberbach [2] (stated for C?, but easily
extended to C").

THEOREM 1. There exists a biholomorphic map
pg: C* > C"

such that C"— B(C™) # 9.

Hence there exists an open subset of C™ which i8 not in the image set
B(C™).

THEOREM 2. There exists a hypersurface Y im C™ which has the Liou-
ville property, but whose set of CR-functions extends to holomorphic functions
on an open subset V of C™ (and to no larger open set) with C*—V # @.

Proof. Let X be a real hypersurface in C" such that all CR-functions
on X extend to holomorphic functions on C" (e.g., a tube hypersurface
in C™ whose convex hull is all of C"). Let Y = g(X) and set V = §(C").
Now Y < V and, since § is a biholomorphic map of C" into C*, V is a
domain of holomorphy in C". Suppose that f is a CR-function on Y such
that |f(2)] < M < oo for all z e Y. Then fo B is a CR-function on X such
that |fo B(2)| < M for all ze X. By Proposition 1, fo g is a constant,
and hence f is a constant. Moreover, f extends to a holomorphic function
on V. Since V is a domain of holomorphy, there exists some f which extends
to no larger set than V (see [7]).
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