FASC. 1

CONCRETE METHODS FOR SUMMING ALMOST PERIODIC FUNCTIONS AND THEIR RELATION TO UNIFORM DISTRIBUTION OF SEMIGROUP ACTIONS

BY

F. P. GREENLEAF (NEW YORK)

1. Introduction. Let G be a second contable locally compact group, AP(G) the bounded, continuous Bohr almost periodic functions on G, and M the unique invariant mean on AP. If $\delta \colon G \to \Omega$ is the canonical homomorphism into the Bohr compactification, we obtain an isometric isomorphism $\delta^* \colon C(\Omega) \to AP(G)$ by $\delta^* f(g) = f(\delta(g))$ which identifies M as normalized Haar measure m_{Ω} on Ω ,

$$\langle M, \delta^* f \rangle = \int_{\Omega} f(w) dm_{\Omega}(w).$$

Since G is second countable, there exist summing sequences $\{U_n\}$ of sets in G such that averages over these sets converge in the sup norm,

$$\lim_{n\to\infty}\frac{1}{|U_n|}\int\limits_{U_n}R_gfdg=M(f)\cdot 1\quad \text{ for all } f\in AP(G),$$

where $R_g f(x) = f(xg)$, and |U| is right Haar measure. The existence of such sequences has long been known if G is amenable; then sequences of Følner sets (see [12], Section 3.6) provide obvious candidates for the summing sequences. For general G, Davis [7] has shown that there is always a net of sets in G that sums the almost periodic functions, and one can actually show that there is a sequence if G is second countable.

The problem of constructing such summing sequences still exists. For amenable G some constructions for Følner sequences have been given in [13]. Davis [7] gave a construction for discrete countable G; starting with the class of all finite subsets in G, he shows that one can systematically find a sequence of finite sets which sum almost periodic functions. However, this construction totally ignores the algebraic structure of G;

one has the feeling that there are much more natural choices of a summing sequence which take the structural features of G into account.

We will show how to find explicit, natural summing sequences in $G = F_2$, the discrete free group on two generators a and b. What we say extends to n generators. One might expect the sets of elements in F_2 with length at most n,

$$S_n = \{x_1^{i_1} \cdot \ldots \cdot x_k^{i_k} : 0 \leqslant k \leqslant n, i_j = \pm 1, x_j = a \text{ or } b\},$$

to form a summing sequence in F_2 . This is not so. As we will see, the almost periodic functions on F_2 can be summed by taking slightly more complicated sets $U_n = S_n \cup aS_n$ or $S_n \cup bS_n$ (n = 1, 2, ...). The free groups make an interesting test case, since they are decidedly non-amenable, and since they yield information about general finitely generated discrete groups.

In an elegant note [1], Arnold and Krylov deal with the uniform distribution of orbits in the 2-sphere S^2 under the action of free subgroups of SO(3). They studied the action

$$SO(3) \times L^2(S^2) \to L^2(S^2)$$

using certain special properties of spherical harmonics such as the lack of non-trivial 1-dimensional representations in the irreducible decomposition of $L^2(S^2)$. The main point of the present note is to show that their methods can be generalized to deal with the action

$$Q \times L^2(Q) \to L^2(Q)$$
,

 Ω being the Bohr compactification of F_2 , and to solve the summability problem for F_2 . This done, we observe that uniform distribution questions concerning the action $F_2 \times \Omega \to \Omega$ can readily be translated into summability questions for $AP(F_2) \cong C(\Omega)$. Furthermore, this action is "universal" in a sense: all uniform distribution questions concerning any "almost periodic" action of F_2 on a compact space X can be read out as corollaries. In particular, we quickly obtain the original uniform distribution results of [1], where $X = S^2$, or later results by Avez [4], [5], where X is a compact connected Riemannian manifold on which F_2 acts by isometries. We also get results concerning actions on homogeneous spaces. Almost periodic actions correspond to equicontinuous actions on compact uniform spaces, as explained in [3]. We also note that the methods of Arnold and Krylov have been exploited in other directions in the work by Guivarc'h (see [14] and [15], Section 5).

Finally, in spite of the fact that our analysis of the universal action $F_2 \times \Omega \to \Omega$ relies heavily on group theoretic methods, we are able to solve the uniform distribution problem for almost periodic actions $F_2^+ \times X \to X$ of a free semigroup F_2^+ on two generators (see Section 3).

2. Explicit choices of summing sequences in $F = F_2$ (the free group). Similar arguments work for F_n being the free group on n generators. Introduce the following sets:

$$egin{aligned} E_n &= \{x_1 \cdot \ldots \cdot x_n : x_i = a \ ext{or} \ b\}, \ F_n &= \{x_1 \cdot \ldots \cdot x_k : 1 \leqslant k \leqslant n, \, x_i = a \ ext{or} \ b\} = igcup_{j=1}^n E_j, \ R_n &= \{x_1^{i_1} \cdot \ldots \cdot x_n^{i_n} : x_j = a \ ext{or} \ b, \, i_j = \pm 1\}, \quad R_0 = \{e\}, \ S_n &= \{x_1^{i_1} \cdot \ldots \cdot x_k^{i_k} : 0 \leqslant k \leqslant n, \, x_j = a \ ext{or} \ b, \, i_j = \pm 1\} = igcup_{j=0}^n R_j. \end{aligned}$$
If $x = x_1^{i_1} \cdot \ldots \cdot x_n^{i_n} \ (i_j = \pm 1, \, x_i = a \ ext{or} \ b), \, \text{its signature}$
 $heta(x) = (-1)^{i_1 + \cdots + i_n}$

is a well-defined one-dimensional representation of G. If x is a reduced word, its length is just |x| = n; set |e| = 0. Thus, S_n denotes all x such that $|x| \le n$. For $g \in G$ we write $R_g f(x) = f(xg)$.

THEOREM. The averages

$$A_n f = \frac{1}{|U_n|} \sum_{g \in U_n} R_g f$$

 $(|U_n| \text{ is the cardinality of } U_n) \text{ converge to the constant function } M(f) \cdot 1$ in the sup norm for all $f \in AP(F_2)$ in the following situations:

(i) $A_nf \to M(f) \cdot 1$ in the Cesàro (C,1) sense if we take $U_n = E_n, F_n, R_n, \text{ or } S_n$.

(ii)
$$A_n f \rightarrow M(f) \cdot 1$$
 if we take

$$U_n = E_n \cup aE_n \cup \ldots \cup a^{n-1}E_n \quad or \quad U_n = E_n \cup bE_n \cup \ldots \cup b^{n-1}E_n.$$

(iii)
$$A_n f \to M(f) \cdot 1$$
 if we take $U_n = S_n \cup aS_n$ or $S_n \cup bS_n$.

None of the choices $U_n = E_n$, F_n , R_n , or S_n gives $A_n f \to M(f) \cdot 1$ for all $f \in AP(F_2)$.

Proof. Let $R_g f(x) = f(xg)$ be the right regular representation of the almost periodic compactification $\Omega = \Omega(F_2)$ on $L^2(\Omega) = \bigoplus \{H_i : i \in I\}$ which decomposes into finite-dimensional irreducible subspaces: $R \mid H_i = \pi_i$. Here π_i runs over all the irreducible unitary representations $\hat{\Omega}$, each $\pi \in \hat{\Omega}$ occurring $\dim(\pi)$ times. Let i = 0 correspond to the identity representation $\pi_0 = 1$, so $H_0 = C$ are constant functions. Let i = 1 correspond to $\pi_1 = \theta$, so $H_1 = C\theta$. Now $H_i \subseteq C(\Omega)$ for all i; if $\{\varphi_j\}$ is an approximate identity in $L^1(\Omega) \cap C(\Omega)$, then

$$\varphi_i * f \in C(\Omega) \cap H_i$$
 for $f \in H_i$, and $\|\varphi_i * f - f\| \to 0$.

Since the norms $\|\cdot\|_2$ and $\|\cdot\|_{\infty}$ are equivalent on the finite-dimensional spaces H_i , f is continuous. The algebraic linear span $\sum \{H_i : i \in I\}$ is a $\|\cdot\|_{\infty}$ -norm dense subalgebra of $C(\Omega)$ by Stone-Weierstrass. Let $A = R_a$, $B = R_b$, and $L = \frac{1}{2}(A+B)$. Then $|E_n| = 2^n$ and

$$rac{1}{|E_n|}\sum_{g\in E_n}R_gf=L^n(f).$$

By examining $L^n f$ for $f \in H_i$ we will show that averages (1) converge to $M(f) \cdot 1$ in the sup norm as in (i)-(iii). Since (1) decreases the norm, convergence holds for all $f \in C(\Omega)$. Since $\dim(H_i) < \infty$, we may replace the norm $\|\cdot\|_{\infty}$ by $\|\cdot\|_2$. The result is obvious if i = 0, otherwise M(f) = 0 and we want to show that

$$\left\| \frac{1}{|U_n|} \sum_{g \in U_n} R_g f \right\|_2 \to 0 \quad \text{for all } f \in H_i \ (i \neq 0).$$

This is not quite true if $U_n=E_n$, but let us see what does happen. Let μ_1,\ldots,μ_r be the eigenvalues of $L|H_i$. Now $|\mu_i|\leqslant 1$, and if $|\mu_i|<1$ for all i, then $||L^n||\to 0$ and we are done. Otherwise, there are eigenvalues with $|\mu|=1$; since H_i is complex, there is an eigenvector with $||f||_2=1$. Now $L^n(f)=\mu^n f$ for $n=0,1,2,\ldots$ The $||\cdot||_2$ -norm unit ball in H_i is uniformly convex, and

$$1 = \|f\|_2 = \|Lf\|_2 = \left\|\frac{1}{2}Af + \frac{1}{2}Bf\right\|_2 \quad \text{with } \|Af\|_2 = \|Bf\|_2 = 1,$$

so we must have $Af = Bf = \mu f$. Since H_i is irreducible, it must be onedimensional, $H_i = Cf$, and $L^n v = A^n v = B^n v = \mu^n v$ for all $v \in H_i$, $n \in \mathbb{Z}$. The corresponding representation π_i on H_i satisfies $\pi_i(a) = \pi_i(b)$ = μI ; thus π_i is obtained from a character a_i on \mathbb{Z} and factoring through

$$F_2 \xrightarrow{t} Z \xrightarrow{a_i} \operatorname{Hom}(H_i),$$

where t is the homomorphism determined by setting t(a) = t(b) = 1. Now $\ker(t)$ denotes all words with signature $\theta(w) = +1$, so we have $\ker(t) \supseteq [F_2, F_2]$. Since $i \neq 0$, we have $\mu \neq 1$; hence

$$T_{i_1} \ldots T_{i_n}(f) = \mu^n f$$
 if $T_{i_j} = A$ or B ,

so $L^n f = \mu^n f$ and the Cesàro means converge:

$$\frac{1}{n}(L+\ldots+L^n)f=\frac{1}{n}(\mu+\ldots+\mu^n)f\to 0 \quad \text{for all } f\in H_i.$$

Actually, convergence holds without taking Cesàro means on all H_i except those for which π_i is a one-dimensional representation such that $\pi_i(a) = \pi_i(b) = \mu \neq 1$, for example $\pi_i = \theta$.

Averages formed with $U_n = F_n$ are at least as well behaved as those for E_n , but simple computations show that they also assign divergent sums to the troublesome characters:

$$\frac{1}{|F_n|} \sum_{g \in F_n} R_g f = \frac{2\mu + \ldots + (2\mu)^n}{2 + \ldots + 2^n} = \frac{(2\mu)^n - 1}{2^n - 1} \frac{\mu}{2\mu - 1}.$$

By taking summing sets $U_n = E_n \cup aE_n \cup \ldots \cup a^{n-1}E_n$ we get convergence without Cesàro means for all H_i . Let I' be the indices corresponding to the troublesome characters, $I'' = I' \cup \{0\}$. If $i \notin I''$, then

$$\left\|\sum_{x\in a^k E_n} R_x f\right\|_2 = \left\|A^k \sum_{x\in E_n} R_x f\right\|_2 \leqslant \left\|\sum_{x\in E_n} R_x f\right\|_2.$$

Since $|U_n|=n|E_n|$, averages (1) converge to zero for $f\in H_i$. But if $i\in I'$, we have $R_af=R_bf=\mu f$ ($\mu\neq 1$) and the average over U_n has the norm

$$\left\| \frac{1}{n} \mu^n (1 + \mu + \ldots + \mu^{n-1}) f \right\|_{2} \to 0.$$

Note. Averages formed with E_n , F_n , or U_n as above involve only positive powers of the generators, hence they can be used to study actions of free semigroups with two generators (see Section 3). Results concerning R_n and S_n apply only to group actions.

Convergence of the averages for R_n and S_n does not follow directly from what we know about E_n and F_n . They are handled using a basic idea from [1]. Write

$$T = \frac{1}{4} (A + B + A^{-1} + B^{-1}).$$

Let

(2)
$$T_0 = I, T_1 = T, T_2 = \frac{4}{3}T_1^2 - \frac{1}{3}I, ..., T_{n+1} = \frac{4}{3}T_1T_n - \frac{1}{3}T_{n-1}, ...$$

These operators are self-adjoint since T is, and commute pairwise; moreover, $||T_n|| \le 1$ on L^2 for n = 0, 1, 2, ..., so $|\mu| \le 1$ for any eigenvalue of any T_n . These operators are defined so that

$$T_n f = \frac{1}{|R_n|} \sum_{x \in R_n} R_x f \quad (n = 1, 2, ...)$$

as one can check by induction. Formulas (2) force certain restraints on the eigenvalues μ_1, \ldots, μ_r of T on a space H_i ($i \neq 0$). In fact, the eigenvalues μ'_i of T_2 on H_i satisfy

$$|\mu'_j| = \left| \frac{4}{3} \, \mu_j^2 - \frac{1}{3} \right| \leqslant 1 \quad \text{with } |\mu_j| \leqslant 1.$$

This forces $|\mu_j| < 1$ unless we happen to have $\mu_j = \pm 1$. As before, if $|\mu_j| < 1$ for all j, we get $||T_n f||_2 \to 0$ for all $f \in H_i$ and are done. Suppose that $\mu = +1$ occurs as an eigenvalue. Take an eigenfunction $||f||_2 = 1$. By uniform convexity the formula

$$f = T_1 f = \frac{1}{4} (Af + Bf + A^{-1}f + B^{-1}f)$$

insures that $Af = Bf = A^{-1}f = B^{-1}f = f$. Hence $A^nf = B^nf = f$ for all $n \in \mathbb{Z}$ and $T_{i_1} \dots T_{i_n}f = f$ if we take $T_{i_j} \in \{A, B, A^{-1}, B^{-1}\}$. Thus, $R_g f = f$ for all $g \in F_2$, hence for all $g \in \Omega$, so f = const and $H_i = H_0 = C \cdot 1$, a case we have already dealt with. The other possibility is that $\mu = -1$ occurs, $T_1 f = -f$. Again, by uniform convexity we have $A^n f = B^n f = (-1)^n f$ for all $n \in \mathbb{Z}$, so $H_i = Cf$ and on H_i we have $\pi_i(a^{\pm 1}) = -I = \pi_i(b^{\pm 1})$. Thus i = 1, $\pi_i = \theta$. Now direct calculations show that the averages over R_n and S_n do not converge for this character, though they converge to $M(f) \cdot 1$ on all H_i orthogonal to H_1 . In fact,

$$\frac{1}{|R_n|}\sum_{x\in R_n}R_xf=(-1)^nf\quad \text{ for } f\in H_1.$$

Furthermore, $S_n = R_n \cup R_{n-1}$ for $n = 2, 3, \ldots$ and $R_n \cap R_{n-1} = \emptyset$ since words in R_n after reduction can only have lengths $n, n-2, \ldots$, while words in R_{n-1} have lengths of opposite parity. After some calculation we see that

$$|S_n| = 4 \cdot 3^{n-1} + 4 \cdot 3^{n-2} + \dots + 4 + 1 = 2 \cdot 3^n - 1$$

and

$$rac{|R_n|}{|S_n|}
ightarrow rac{3}{4}, \qquad rac{|R_{n-1}|}{|S_n|}
ightarrow rac{1}{4},$$

so that

$$\frac{1}{|S_n|} \sum_{x \in S_n} R_x = (-1)^n \frac{|R_n| - |R_{n-1}|}{|S_n|} \approx \frac{(-1)^n}{2}$$

on H_1 . To get convergence without taking Cesàro means, it suffices to take slightly different summing sets $U_n = R_n \cup aR_n$ or $S_n \cup aS_n$; note that $R_n \cap aR_n = \emptyset$. Thus the proof is complete.

- 3. Application to uniform distribution problems. Suppose that S is a semigroup with two generators consisting of homeomorphisms on a compact space X, such that
 - (i) there is an invariant measure ν on X, so

$$\langle v, R_s f \rangle = \langle v, f \rangle$$
 for all $s \in S, f \in C(X)$;

- (ii) there is a point $p \in X$ with dense orbit;
- (iii) the action is almost periodic: for all $f \in C(X)$ the orbit $\{R_s f : s \in S\}$ is relatively compact in the norm $\|\cdot\|_{\infty}$.

Note. Other authors [3] consider the notion of almost periodic orbits $q \cdot S$ in a transformation group: the liftback $j_q^*f(s) = f(q \cdot s) = R_s f(q)$ is almost periodic on S in the sense that right translates $\{R_s(j^*f): s \in S\}$ form a relatively compact set in $(l^{\infty}(S), \|\cdot\|_{\infty})$ for any $f \in C(X)$. However, the existence of one dense almost periodic orbit implies (iii) since the liftback $j^*: C(X) \to l^{\infty}(S)$ is an isometry commuting with action of S. On the other hand, given (ii) and (iii) we conclude that all orbits are dense and almost periodic. Indeed, only density needs a proof. If $Y = (q \cdot S)^- \neq X$, then there is an $f \in C(X)$ such that $f \mid Y = 0$, f(p) = 1. There is also a net such that $p \cdot s_i \to q$; taking a subnet we get $||R_{s_i}f - h||_{\infty} \to 0$ for some h. Obviously,

$$h(p) = \lim f(p \cdot s_i) = f(q) = 0.$$

Since $Y \cdot S \subseteq Y$, we get $h(p \cdot s) = f(q \cdot s) = 0$, so $h \mid p \cdot S = 0$ and h = 0, which is impossible since $||R_s f||_{\infty} = 1$ for all s.

Let $\{U_n\}$ be any sequence which sums the almost periodic functions on F_2 such that

$$U_n \subseteq F_2^+ = \{x_1 \cdot \ldots \cdot x_k \colon k \geqslant 0, x_i = a \text{ or } b\}.$$

There is a natural surjective homomorphism $j: F_2^+ \to S$; form the associated weighted averages of translates in C(X):

(3)
$$B_n f = \frac{1}{|U_n|} \sum_{s \in j(U_n)} \operatorname{card} \{x \in U_n \colon j(x) = s\} \cdot R_s f.$$

Clearly, the weights are determined only by the relations among the generators in S, independent of any concrete action of S on some space X. For any action $S \times X \to X$ satisfying (i)-(iii) we will show that all orbits are uniformly distributed in the sense that

(4)
$$B_n f \to \left(\int_X f d\nu\right) \cdot 1_X$$
 in the sup norm

for all $f \in C(X)$. If S is a free semigroup, the weights are trivial and we get the usual averages

$$B_n f = \frac{1}{|U_n|} \sum_{s \in j(U_n)} R_s f.$$

Once (4) is known for continuous functions, there are many standard extensions to larger classes of functions by monotone limit arguments.

For example, if W is a Borel set with $\nu(\text{bdry }W)=0$, and if S acts freely, then (4) applies to the characteristic function $f=\chi_W$ to give

$$u(W) = \lim_{n \to \infty} \frac{\operatorname{card} \left\{ s \in j(U_n) : q \cdot s \in W \right\}}{\operatorname{card} \left\{ j(U_n) \right\}}.$$

This holds for any point $q \in X$ since all orbits are dense, as noted above.

Condition (iii) is not unreasonably strong: it holds for all equicontinuous actions on a compact uniform space. These include the following examples mentioned in the literature:

- (i) X compact metric, S a semigroup of isometries preserving some finite measure ν .
- (ii) X a compact Riemannian manifold, S a semigroup of isometries, v the usual measure.
- (iii) X a homogeneous space: $X = H \setminus G$, where G is a compact group in which F_2^+ is homomorphically imbedded so that $H \cdot S$ is dense in G, v the unique G-invariant measure, p = He.

The results of Avez [4] are covered by (i) and (ii), and those of Arnold and Krylov [1] by (iii). In (ii) we place no conditions on the Betti numbers of X as in Avez' corrected notes [5] and [4], since we use a somewhat different family of sets to form our averages, the sets U_n defined in Theorem 1 (ii). His notes concentrate exclusively on the following choice of summing sets (for freely acting S):

$$j(U_n) = \{s_1 \cdot \ldots \cdot s_n \colon s_i = a \text{ or } b\}.$$

These sets, as we have seen, cannot be expected to sum all functions. Cohomological conditions on X essentially prevent the occurrence of the troublesome functions (the presence of troublesome characters) in the liftback $j^*(C(X)) \subseteq AP(F_2)$.

Proof of the uniform distribution (4). Since $S \subseteq \text{Hom}(X)$ is the group of homeomorphisms, we may discuss the group S' generated by S within Hom(X).

Note. S' might not be free even if S is; the affine group of the real line is solvable, but contains free semigroups on two generators.

We first remark that the semigroup orbit $\{R_sf\colon s\in S\}$ is relatively compact in C(X) if and only if the full orbit $\{R_sf\colon s\in S'\}$ is. We prove this as a lemma at the end. The map $j\colon F_2^+\to S$ extends to a surjective homomorphism $j\colon F_2\to S'$. Using the dense orbit $p\cdot S$ we lift functions back to F_2 by $j^*f(g)=f(p\cdot j(g))$, an isometry between norms

 $\|\cdot\|_{\infty}$ which commutes with actions as follows:

$$C(X) \xrightarrow{j^*} AP(F_2)$$

$$\downarrow_{R_{j(g)}} \qquad \qquad \downarrow_{R_g}$$

$$C(X) \xrightarrow{j^*} AP(F_2)$$

If $U_n \subseteq F_2^+$ is any summing sequence for $AP(F_2)$, form the averages

(5)
$$A_n f = \frac{1}{|U_n|} \sum_{x \in U_n} R_x f \quad \text{for } f \in AP(F_2);$$

then $A_n f \to M(f) \cdot 1$ in sup norm. But

$$A_n(j^*(f)) = j^*(B_n(f))$$
 for all $f \in C(X)$,

where $B_n f$ are averages (3). In particular, 1 lies in the closed subspace $j^*(C(X))$ and $B_n f$ converges in norm to a function h such that $j^*(h) = \text{const.}$ Obviously, $h = c \cdot 1_X$ due to density of the orbit, but, in fact,

$$c = \int_X f d\nu,$$

since

$$\int B_n f d\nu = \int f d\nu \quad \text{for all } n.$$

Hence we have (4).

It remains to prove that relative compactness for the orbit $f \cdot S$ implies that of the full orbit $f \cdot S'$. We follow now some standard ideas of Glicksberg and de Leeuw [10], [12] concerning almost periodic semigroups of transformations in a Banach space (see also [6]). Let B = C(X) and $\mathscr{I}(B)$ be the (not necessarily invertible) isometries. Multiplication of operators is jointly continuous on bounded sets in the strong operator topology. Now $f \cdot S$ is relatively compact in C(X) for all f if and only if the strong operator closure of $\{R_s \colon s \in S\}$ is compact in $(\mathscr{I}(B), (so))$, and similarly for the full orbits $f \cdot S'$. Let M be the (so)-closure of $\{R_s \colon s \in S\}$, an (so) compact semigroup. We want to show that M' being the (so)-closure of $\{R_s \colon s \in S'\}$ is compact; we do it by showing that $M' \subseteq M$. For fixed $s \in S$ it suffices to show that $R_{s^{-1}} = R_s^{-1}$ lies in H = (so) closure of the iterates $\{R_s^k \colon k = 1, 2, \ldots\} \subseteq M$. Write $R = R_s$. Note that the R^k have an accumulation point $R \in R$; thus if $R_s \in R$, so and an integer $R_s \in R$ are given, then there exist $R_s \in R$ and $R_s \in R$ such that

$$\|R^lf_i-Tf_i\|<\varepsilon\quad\text{ and }\quad\|R^kf_i-Tf_i\|<\varepsilon,$$

which implies that

$$\|f_i - R^{l-k}f_i\| = \|R^lf_i - R^kf_i\| < 2\varepsilon$$
 for all i .

Thus the identity I is also an accumulation point of $\{R^k\}$. Take any subnet $\{R^{k(\delta)}\}$ such that $R^{k(\delta)} \to I$. Now $R^{k(\delta)-1}$ lies in the compact set H, so by taking a subnet we may insure that

$$R^{k(\zeta)} \to I$$
 and $R^{k(\zeta)-1} \to A$

(A being some element in H). Since the \mathbb{R}^k commute, joint continuity of multiplication gives

$$R \cdot A = A \cdot R = I = \lim \{R^{k(\zeta)} : \zeta\},\$$

i.e. $A = R_s^{-1} \in H$ as desired.

As it is well known, any action satisfying (ii) and (iii) is uniquely ergodic: formula (4), valid for any invariant measure ν on X, leads to the conclusion that $\nu(f) = M(j^*f)$ for all $f \in C(X)$.

4. Remarks on weakly almost periodic actions. Ergodic properties of weakly almost periodic functions W(G), the continuous bounded functions f on G such that $\{R_g f\colon g\in G\}$ is weakly relatively compact, were first studied by Eberlein [9]. Although there is a unique (two-sided) invariant mean M on W(G) for all G, as explained in [12], Section 3.1, virtually nothing is known about the nature of summing sequences $\{U_n\}\subseteq G$ such that

(6)
$$\frac{1}{|U_n|} \int_{U_n} f(g) dg \to M(f) \quad \text{for all } f \in W(G),$$

except when G is amenable and the usual Følner sequences do the job. Davis [8] proved the existence of a net of relatively compact open sets for which this is true, but it seems to be unknown whether there is always a sequence of summing sets if G is second countable (or even finitely generated, discrete). Indeed, nothing seems to be known about $G = F_2$.

Information about summing sequences would lead directly to uniform distribution theorems for dense, weakly almost periodic orbits under actions of second countable G on compact metric spaces X: dense orbits $p \cdot G$ such that all functions $f \in C(X)$ lift back to weakly almost periodic functions on G. This property, discussed in [3], is connected with distality of the action. Much as in Section 3, we would be able to conclude that if v is any normalized invariant measure on X, then $p \cdot G$ is uniformly distributed in the sense that

(7)
$$\frac{1}{|U_n|} \int_{U_n} f(p \cdot g) dg \to \int_X f dv = M(j^*f) \quad \text{for all } f \in C(X).$$

In particular, the action $G \times X \to X$ is uniquely ergodic if there exists one dense weakly almost periodic orbit. To prove (7) we first note that the liftback $j^* \colon C(X) \to W(G)$ maps C(X) isometrically into a closed subspace Y, and the adjoint j^{**} maps $W(G)^*$ onto $M(X) = C(X)^*$. Thus it is easy to see that the weak orbit closure $O_f = \{R_g f \colon g \in G\}^-$ is weakly compact in C(X), as is its weak (i.e. norm) closed convex hull C_f . The averages

$$A_n f = \frac{1}{|U_n|} \int_{U_n} R_g f dg$$
 for $f \in C(X)$

lie in C_f since they can be written as norm limits of convex "Riemann sums" of translates. Now C_f is weak sequentially compact by the Eberlein-Šmulian theorem. If h is any weak sequential accumulation point, some subsequence $A_{n(k)}f$ converges weakly, hence pointwise, to h. But h must be constant on X, since at points in the orbit we have

$$h(p \cdot g) = \lim_{k} A_{n(k)} f(p \cdot g) = \lim_{k} \frac{1}{|U_{n(k)}|} \int_{U_{n(k)}} (j^{*}f)(gs) ds$$

$$= \lim_{n} \frac{1}{|U_{n}|} \int_{U_{n}} L_{g}(j^{*}f) ds = M(L_{g}(j^{*}f)) = M(j^{*}f).$$

The value of the constant c must actually be $\int_X f dv$ by the dominated convergence theorem:

$$c = \int\limits_X h \, dv = \lim\limits_k \int\limits_X A_{n(k)} f(x) \, dv$$

$$= \lim\limits_k \frac{1}{|U_{n(k)}|} \int\limits_{U_{n(k)}} \left[\int\limits_X f(x \cdot g) \, dv \right] dg = \int\limits_X f dv.$$

This holds for every weak sequential limit point h in C_f : the limit point is unique and

$$A_n f o h = \left(\int\limits_{\mathbf{v}} f d\mathbf{v}\right) \cdot \mathbf{1}$$

weakly, hence pointwise. At x = p we get (7).

It is interesting to compare these uniform distribution theorems with the results on actions of nilpotent groups presented in [2]. The Auslander and Brezin results require entirely new methods, since the actions they study, where $X = \Gamma \setminus N$ for a discrete co-compact subgroup in a nilpotent Lie group N, are not even weakly almost periodic. Perhaps the future will reveal a theory of uniform distribution of group actions powerful enough to subsum all of these results. For a recent survey of diverse results and definitions of uniform distribution see [17].

REFERENCES

- [1] В. И. Арнольди А. Л. Крылов, Равномерное распределение точек на сфере и некоторые эргодические свойства решений линейных обыкновенных дифференциальных уравнений в комплексной области, Доклады Акадомии наук СССР 148 (1963), р. 9-12.
- [2] L. Auslander and J. Brezin, *Uniform distribution in solvmanifolds*, Advances in Mathematics 7 (1971), p. 111-144.
- [3] L. Auslander and F. Hahn, Real functions coming from flows on compact spaces and concepts of almost periodicity, Transactions of the American Mathematical Society 106 (1963), p. 415-426.
- [4] A. Avez, Une généralisation du théorème d'équipartition de Weyl, Bulletin de la Classe des Sciences, Académie Royale de Belgique, 53 (1967), p. 1000-1006.
- [5] Lecture notes on uniform distribution of semigroup actions, unpublished notes kindly communicated to me by the author.
- [6] R. Burckel, Weakly almost periodic functions on semigroups, New York 1970.
- [7] H. Davis, On the mean value of Haar measurable almost periodic functions, Duke Mathematical Journal 34 (1967), p. 201-214.
- [8] Generalized almost periodicity in groups, Transactions of the American Mathematical Society (to appear).
- [9] W. F. Eberlein, Abstract ergodic theorems and weak almost periodic functions, ibidem 67 (1949), p. 217-240.
- [10] I. Glicksberg and K. de Leeuw, Applications of almost periodic compactifications, Acta Mathematica 105 (1961), p. 63-97.
- [11] Almost periodic functions on semigroups, ibidem 105 (1961), p. 99-140.
- [12] F. P. Greenleaf, Invariant means on topological groups, Van Nostrand Mathematical Studies Series 16, New York 1969 (paperback).
- [13] Ergodic theorems and construction of summing sequences in amenable locally compact groups, Communications on Pure and Applied Mathematics 26 (1973), p. 29-46.
- [14] Y. Guivarc'h, Un théorème de von Neumann, Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, Série A, 268 (1969), p. 1020-1023.
- [15] Croissance polynomiale et périodes des fonctions harmoniques, Bulletin de la Société Mathématique de France 101 (1973), p. 333-379.
- [16] E. Hewitt and K. Ross, Abstract harmonic analysis, Vol. I, Heidelberg 1963.
- [17] H. Rindler, Gleichverteilte Folgen in lokalkompakten Gruppen (to appear).

COURANT INSTITUTE OF MATHEMATICAL SCIENCES NEW YORK UNIVERSITY, NEW YORK

Reçu par la Rédaction le 27. 9. 1976