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Uniform distribution of third order linear recurrence
' sequences

by

Mervin J. KvigeT and WoriaMm A, WeBE (Pullman, Wagh.)

1. Introduction. Let {u,} be defined by
1) Uy == Oy Uy g+ O Uy oy, .+ %, _, Tor nzw

and Wy, Uy, «..y Uy_y Given, WHere g, Uy, ooy Uy gy Ggy @y eny Gy, are all
integers and a, 0. This is called a linear recurrence of order w.

A sequence iz said to be wuwiformly distributed wmodulo m, written
u.d. mod m, provided each residue modulo m appears with an asymptotie
density of 1/m.

Uniform distribution of recurrence sequences was first considered
in the special case of the Fibonacei numbers. Kuipers and Shiue [2] showed
that 5 is the only prime for which the Fibonacei numbers are uniformly
distributed, and Niederreiter [6] showed that they are uniformly distrib-
uted modbs* for k> 1. Kuipers and Shiue [3] obtained sufficient
conditions for a general second order recurrence to be uniformly distrib-
uted mod p*. This question was completely settled when both necessary
and sufficient conditions were obtained independently by Bumby [1],
Nathanson [5], Long and Webb [7]. ‘

In this paper we consider wniform distribution of higher order se-
quenceg, The principal resulf, Theorem 3, gives necesgary and sufficient
conditions for a third order recurrence sequence {w,} to be uniformly
distributed module M, where M iz divisible only by primes p > 5.

2. General results om wmiform distribution. The sequence {u,} is
periodic moduloe m for every m and is purely periodic mod m provided
(m, a,) = 1. It follows that {u,} is n.d. mod m if and only if each residue
modulo m appears equally often in every period modulo m. Notice that
in this paper, a period will not necessarily mean a least period.

The recurrence given in (1) has corresponding characteristic poly-
nomial

o) = 2° — @ 2" — g, — L —a,
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and discriminant

@) D= [ J(a;—a)

i<y

where «a,, ag, ...
the rationals Q.

The discriminant D can be defined in terms of the coefficients of
e(w) and thus is the same when ¢{%) is considered over other fields. In
particular, ¢(w) factors completely in some finite extension of the finite
field GF(p) and the roots of ¢(w) over GF(p) sre distinet if and only if
1D,

THEOREM 1. If p+ D, then {u,} is not w.d. mod p.

Proof. Let p+ D, then the roots 7y, 1y, ..., 7, of ¢(z) over GF(p)
are distinet and thns

, 0y, are the (not necessarily distinet) roots of ¢(x) over

Wy, = cl?1+am +otern formzl

for gsome congtants o, 6,,..., ¢, in GF(p”"). Sinece the non-zero elements
of GF(p’) form a eyclic group of order p’—1, each non-zero root r of
¢(x} satisties -1 g, Therefore, {u,} has a period mod p of length p”—1.

If {u,} were u.d. mod p, every period would have a length a multiple
of p, which contradiets {u,} having a period of length p’—1.

3. Linear recurrences of order three. Assume now that {u,} is third
order with chamctenstlc polynomial

e(x) = 2* — a4, 8° — 00— 0y,

Let @ = —(a}+3as)/3, b = — (20} 9a,a,--27a,)/27, then the discrimi-
nant (2) of e(x) is '

D = —27b% 408,

Liet; P be a prime greater than 3 such that p|D. The polynomial ¢{ux)
has fwo equal roots over the field GF(p) and since it is a cubic, it nrust
have all three roots in GF(p).

1t follows  that ¢(w) = (@—ry)i(w—r,) where »,,r,eGF(p) and
possibly 7y = r,. TFurthermore, mince c{r) = o'(ry) = 0, we have »

= (@, ~95/2a)/8 and r, = (ay+-9b/a)/3 provided p + a. If 2P|, then gince

»|.D, we also have p|b. Thus ¢(x--a,/3) = w3-+az-b = g’ (mod p) and

. it follows that r,. = 7, = a,/3 in this case. We will uge 7, and r, to denote
the roats of e(x) over GTF(p) throughout the paper.

TaBoREM 2. Let p be o prime greater tham 3. The sequence {u,} is u.d.

iom

s s i
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mod p if and only if »|D and one of the following holds:

(i) pra  and  prry[werira =y (r1--15) U],
(it) play  pllueri —2usry ], P+ v [Brivg—4dr uy+u,],
(iii) pla, pir [“07'% — 21+ u,],
1w 0 |2 1 0 Uy
by I Py Uy Ty | —dug|ry 1 U
TP U 47} i 290w,

and (%) = —1, where (%) i8 the Legendre symbol.

Furthermore, the sequence has a period mod p of length p(p —1). And
for primes satisfying (i) or (il) and for cach fixed value of d, the subsequence
{¥p_yrat 48 a nontrivial arithmetic progression mod p.

Proof. Suppose {u,} is v.d. mod p, then by Theorem 1, p|D and

‘o(®) = (w—ry)*(2-—7r,) mod p.

Oase 1: vy 557,. As was mentioned earlier, r, = #, ‘it and only if
p £ a. Since ¢(2) hag one repeated root over GF (p) it follows that in GF (p)

Uy, = (By+ban) o7 - byry

where 3,, b,, b, are constants in GF(p). We claim this is u.d. mod p if
and only if » b, = 0 mod p, which will give (i).

If r.b, = 0 mod p, then {u,} has period of length p—1 and could -
not be u.d. mod p.

Therefore, assume r, b, s£ 0 (mod p), then {w,} has @ period of length
p(p~1). Write n = d4 (p —1}%, with 1 < d < p—1. For each fixed value
of d,

Uy = [by+byd+by(p —1) BIr{ -+ byry

forms a nontrivial arithmetic progression mod p and thus {«,}is u.d. mod p.
Oage 2: v, =#,. In this cage p|e and the sequence mod p satisfies

n T (ﬁl""ﬁz% -+ ﬁB”a)"JlL

for congtants f, fs, f in GF(p).

Since {u,} is w.d. mod p, +, = 0 mod p. Olearly #(p—1) is a period,

Suppose first that f; == 0mod p, then as in Cage 1 the sequence
{w,} I8 w.d. mod p it and only if B, = 0 mod p. Solving for 2, and 5
gives (ii), '

Now suppose Sy 2 0 mod p. Since {u,} it w.d. mod p, 0 must appear
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in the sequence and thus the quadratic

Bi+ Bum+ fym®

must factor mod p. Sinee this quadratic has period p mod p, the residue
0 +will appear too often in each period unless the quadratic is actually
a porfect square. Therefore, we have pla, p+ 20y, and By fon - fynt is
a perfect square modp and these are the respeetive conditions given
in (1if). _

If (r/p) = +1, only square regidues would appear in {u,}, so
{(r./p) = ~1. An easy count shows that if (r/p) = -1, then {u,} s
w.d. mod p.

“For a fixed sequence {u,}, we will refer to those primes of Theorem 2
* satisfying (i), (ii), or (iii) as type I, type II, or type III, respectively.

TaroreEM 3. Let M be divisible only by primes grealer than 5. The
sequence {u,} 18 w.d. mod M if and only if M = M, or Myq, where M,
is divisible only by powers of primes of type I or type 1L and g s any type
IIT prime.

The remainder of the paper ig devoted to the proof of Theorem 3.

Note that Theorem 2 fails to hold for the primes 2 and 3, while the
prime 5 is exclizded from Theorem 3 beeause of our use of Lemmas 2 and
4 below. Because a complete discussion of these primes appears to require
many cases, this has been postponed to a later paper.

4, Preliminary lemmas and notation. Let M be the modulus. We may
assume the sequence {u,} is purely periodic mod M by possibly deleting
a finite number of initial terms. Also, by altering the coefficients of o(w)
by multiples of M, the roots of ¢(«) over { may be assumed digtinct, and
80 D # 0. Neither of these assumptions has any effect on uniform distri-
bution mod M. '

Let '

K =Q(ay, ag, a3),

where a,, as, o3 are the roots of ¢(x). The field K might be of the first,

second, third, or sixth degree over §. Lot Q) denote the integers of K
and let

(») = (ma cee P
be the factorization of (p) into prime ideals of Q.
If p is any of the primes dividing p above, then
Qlp e GF(p)

for some integer f and efg = [K:Q] However, since p|D, the roots of
¢{w) over GF(p) lie in GF (p). Therefore,

Z[ayy a5y a5]fp o2 GF(p).

icm
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We will be considering the sequence {u,} a3 elements in Z{a;, ay, @]
and study it modulo powers of p instead of powers of p. The following
lemma gives the relationship between these two approaches.

Luvys 1. For elements a,b eZ, the congruences

o =bmodp” and a = bmod ph-U+

are equivalent.

Proot. If @ —b e p*, then certainly & —b e p®™, which is stronger than
gtated result.

Conversely, every clement of Z i3 contained in a power of p° because
of the factorization of p. Therefore, if a—b e p*» U+, then a—b ¢ p® snd
thus a—bep”

Lemma 2. If p 2 1+e acZlay, ay, o] @ $P: then

0" = 1 mod -1+

Proof. Since a e Z[ay, a5, @), @ ¢ p, there is an integer, @, prime to
P, such that a—a ep.
The proof is by indnction on k. For & =1,

a?™! = a?! =1 modp.
Let "™ = g+1, where fep® "+, then
2 (B41)? = P4 pB8+1 = 1 mod pT

provided p? e p®*+', This holds for p = 1+e.

Lt ord, (f) denote the highest power of p containing f.

Levma 3. If ¢ = 6, then r; = r, and ord, (a,— o) 3= 2 for each i # j.

Proof. SBince ¢ = 6, [K:Q] = 6and p is the only prime of K dividing p.

Suppose r, #r,, then for gome numbering of the roots ay, o, oy,
we have aqg—a, €p and (o — ) (e, —a,) ¢ p. However, the Galois group
G (K [Q) contains an automorphism o which cyelically permutes the roots
a;—+a,->ag. Since p is the only prime in K above p, ap = p. Therefore,
o(ag~~ay) = a; —ay € p. Thiz contradiction shows that », = ry.

Suppoese the roots of ¢(z) are numbered so that

ord,, (ag — ag) = ord, (o, — ;) 2 ord; (a; — ag},

then using o again shows that these must all be equal.

Let ¢ = ord,(ay—ay), T =@Q(ay}, P =p L Since e(p/p) —6 then
e(B/p) = [L:Q] = 3 Sinee

Dprgloy) = (ay—ag)(a; —aq) € B
([4], p. 62} and P = p?, it follows that
2‘t = Ord(almaz)(al'—aa) ,2 ‘i

Therefore, ¢ 2 and (&, — a;) e p® for each i #* j.
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Imviva 4. Let p be o prime ond n = mmod p*~' for any h> 2. If
A(j) is any number satisgfying either

(1) 63 and A( i) ep?
or
(i) e<< 6 and A(j) ep¥,

then
[(;:) (k )]A () & pel= 1

for all § > 0O and k<p, and for allg)- 0 and k<_7(p——1)/
Prooif. Since n =m mod p"~

[ m
ordm[(k)— (k )] 2 (h—1)—ord, k!
If % < p, ord, k! = 0 and with A(j) e p?

or.%[(;*) - (7":”)]4(3') > e(h—1)-+j > e(h—1)+1

for j > 0.
Now, for all %

| k %
ord, k! = Z[—-] < e
Hence, if ord, 4(j) > 4,

ord, [(;:)— (;f)]ﬁl(j) > e{h—1)— pi itz e(h—-1)

by either (i) or (ii).

The following property is fundamental for the uniform distribution

of these sequences. Given a prime p and integer h 3= 0, lot B{p*) =
The prime p satisfies property h for the sequence {w,} provided:

(i) {u,} has a period of length @ (p"*~*) mod p"*,

(ii) it n = m mod ®(p"*) and u, == w,, mod p", then n = mmod GD( ).
Every prime is said to satisfy property 0

Theorem 2 shows that type I and ty'pe IT primes satisgfy property 1,

whereas from the proof of Theorem 2 it can be seen that type ITI primes
do not satisty property 1. ' '

Lmvya 6. Let p satisfy property h for 0 << h < H, then {u,} is u.d.
mod p" with period @ (p*) for all such h. '

P (p —~1).

cm

Uniform distribwlion of third order lindar recurrence eequences 13

Proof. The proof is by induction on k. The result is frivially true
for h = 0.

Now assume {u,}isu. d. mod p" ' and has a period oflength (p —1)p™~L
Thus, in any period of this length, each residue appears exactly p—1
times.

Given an integer g, let ny{g), ¢ = 1, 2, ...,p—-l be those p —1 values
of n mod (p—1)p™~! for which u, = g mod p"~

Fix & and let n,m e [k, k-+(p—1)p"—1] and Uy, 22 Uy = g mod p".
Then n = n, and m = s, mod (p—1)p"*, for some values of4,j. Butifi —-j,
then # == m mod (p—1)p"* ! and by 00]1(11th11 (i) n = mmod( -1)p",
which implies # = m.

Hence there is ab most one n for which u, = g mod p” and » = my
mod {p—1)p*?, and 8o at mogt p—1 values of n for which u, = g mod Pt
Binee this is true for each g, it follows that there are exactly p—1 such
n for each g and each resudue appears equally often. Thus, {u,}is u. d mod Pt
and has period {p—1)p"

LemyA 6. If p > 5 Satisﬁes property 1, then it satisfies property h for
all h=1,

Lemma 6 is the principal tool needed to prove Theorem 3. The next
two sections are devoted to the proofs of these two results.

5. Proof of Lemma 6. The case when h = 1 I8 trivial, so we will now
complete the proof by induetion on h. Since ¢(w) has distinet roots, the
sequence {u,} has general berm u, = ¢;af+ 6oz +06y0y, where ¢, ¢, €,
are tmiquely determined by

o1+t = U,
ay €y 0gCy+ @30 = Uy,
2e, -+ a3 eyt 036y = Uy,
Let VD = (aa—-az)(as—al)(azmal). Then we can solve for the o, and
rewrite u, in the form wu, = w4,0,(n)—u;0y{n)-+u;C, (n), where
I/1"5-00 (n) = (ap0f — agag) af - (o oy — @, 03) oy + (@, —aj o) of,
VDO (n) = (dj—ad)af -+ (of ~ i) o + (G — ) of
VDO, () = (o~ ag) a¥ + (o — o) o + (0 =~ ) 3.

By the induction hypothesis, p satisfies properties 1 through h—1.
Therefore, by Lemma 3, {u,} is wid. mod p*~' with period ®(p =1y, Thig
implies part (i} of the definition of property k. Alse, ¢(») has a repeated
root mod p, and two cases arise depending on whether ry =7, OT ¥, = ¥,
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Case T. Suppose. exactly two of the roots are congruent mod p, then
we have a, — a, & p for some prime p|p and we will write @, = a, @z = a-+ 4,
ag = B, where dep, e—p ¢p, and a ¢ p, since r; 7% 0 mod p. Therefore,
VD = (f—a—8)(B—a)d and
VDG, (n) = (a+ O)F(f—a—d)a"—af(f—a)(a+ 8" +a(a+8) 68"
= ap(f—a)a”— afda”+ 68(f—a—0d)a"+ala--8) 88" —
—~oB(f—a) }j(;“) a8,
FE

from expanding {e-}-4)*. This simplifies to

VDO, (n) = 8f(f—2a— 8)a"+ da(a+ 8)p" —ap(f— a)Z(;b)an—f &

=1
Similarly,
VDO, (n) = (.8. a")(2ad -+ 8% —(f* — a) 2( ) a1y,
‘ j=l
VDCy(n) = 8(f"—o™) —(f—a) E(”’_‘)an—d &
=1 J

To show that p satisfies part (ii) of the definition of property &, let
n =mmod (p—1)p"** and u, =u, modp* By Lemma 1, u, = u,
mod p*®-9+1 thereforc noting that WD = (f—a)(f—a—38) ép and
uging Lemma 2 to replace o™ by o*, we have the following congruences,
all modulo pA—n+1,

Uy, — Uy, =0 = uyaf{a—p) 2[(;”) - (;")]an-:ﬁ JYETI

=l

e

iy (a—f) g[(}”’) - (’;.’*)]aﬂ—:f o1,

Lemma 3 shows that e <
in the above sums for §j >

< 3 and then Lemmsa 4 shows that all terms
2 are in p*®=V+L go

0= uoaﬁ(c;_“ 8 [(;») _ (lmnaf“* (et ) [(411,) _ (Wl@)] iy
g (a— 5)[(?) - (T)] .

= (1 —m)(a— F) " [thg 0 — wg(a+ B) + ).

icm
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However, {u,} satisties (i) of Theorem 2, since it is w.d. mod p and ry # ry,
80 wpef—uy(at+f)+uy ¢p. It follows that n—m ep®® 1 apnd thus
»n = mmod p" by Lemma 1. Hence p satisfies property h.

Case IL. Suppose all three roots are congruent mod p. We note that
this condition and the fact that p satisfies property 1 implies p is of type IT.
We may assume without loss of generality that

ord, (a; — a;) < ord, (az— a;) < ovd,; (o — a;).

Suppose ord,(a,—o,) < ord,{e;—a;), then pince oz—oap = (ay—ay)—
— (ag—ay), ord, {0y —ap) = ord,{e, —a;) < ord,(a; —a,). This contradiction
shows that if we write @, = e, a3 =a+d,, @3 = a+ &, then ord,d,
= ord, & == 1. .

We have VD = (83— 8,) 836, and
VDO, (n) = (65— 83) (2a-1 8y 85) & — (2a + &) B (@ + &) +
-+ (Z2a~t- 8y) da (e )"

= (8= 84) 2a+ 0y + &) —(2a+a,)aaZ( ) a8+
I=0 -7

+(2a+as)622(j) o 8

3=0

= —{2a+ 6;) 5, E (?) oI 4 (2a4 ;) 8, Z(;l) o9 8

J=l Jz=l

= — (2(!-'— (53) 63 (;b) a""'l 52+ (2a+ 62) 52 (q],f) a““l.ﬁs +

+ D} mas a0+ o — o)

iz

= —na" " 8y 88y — )+ D (;”) 0" (208, 8 ( 8] — 6{71) +

J=2
+ 88 (817— 8.
Write A(j—1) for (8 — 8))/(8,~ 6,), then
Ci(n) = —ma™ 4 Z( ) o [2ad(§—2)+ 8,8, 4(5—3)].
. ' =z .
Similar caleulations give
Ca(n) = 2(?)a"‘f4(j—2)
J=2

and
Oo(n) = ala+ ) a+63)2(%J 1) “-1~«"A(3 -2).

F=2
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As in Case T, we uée these expressions to show that p satisfies (ii)
?
of the definition of property k.

Suppose n = m mod &(p"*) and u, = u,, mod p". We then have the

h—-1}4+1
following congruences mod p*@®~ 1+

e LT e A Y P
un"um§0Euoa(a"f‘dz)(a'l‘éa)Z[(%j )“‘( i )]a 4(j—2)

i=2

ol STl

« (204 (j—2) - b, 534(.7""-3)]}-{—

T

EET] ) . ‘
Using Lemmas 3 and 4, all terms in the sums are congruent to 0
exceﬁ% those for j = 2. Hence .

e ey | R AR
e {0 w2

-Again a ¢ p, since {u,} is u.d. mod p, s0
0 = yqat [(w2m3n+2)—(m2—3m+2)]-u1{2a[(%2—n)—~(m2—m)]}+

+ 204y (. —m) - wp [(0% — ) — (mA-—m)]
or
(3) .
Tt will follow that % = m mod p**~ D+, provided

nAm—8)ugot—~2(n+m—2)uy a--(nt+m~—1)u ] ép-

0 él(nmﬁ) [(n+m—3)u0a2—2(%+m_Z)zzla—l—(n+m~—1)u2].

'

However, » = m modyp, so it suffices to show
| (20 3 )y0® —2(2m —2)uya - (20 — 1)y P
for any n. Thiz may be rewritien as
20 (1w a2 — 20y @ - Ug) — (SUpa® — 4o+ 20y) €D
Since p safisfies condition (ﬁ) of Theorem 2,
(oat—2uya+u)ep and  (Suja®—4ua-t+u,) Ep

and this is the desired result. Hence p sabisfies property h.

icm
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6. Conclusion of the proof of Theorem 3. Using Lenimas 5 and 6,
we now have that {u,} is n.d. mod " for all b= 1 when pisa type I or
type IT prime.

Suppose now that p is a type III prime, then {w,} i3 u.d. mod p with
period p(p—1). We show that {#,} 18 not u.d. mod p* for any &> 1.
It suffices to prove it for h = 2. _

Let » = mmod p(p—1), so Uy, =, mod p. The caleulations uged
in Case IT of Section 5, namely (3) show that '

—_ == J— 1
Uy — U, = (1 —m) T mod pot,
‘where

L= 20 (g o — Duy a4 u,) — (3% a® — duq a +u,).

Since p is type ITI, u, 0% — 20y g oy ¢p and there is an » for which
T ep. For this fixed value of n, '

Yy — Uy, = (ﬂ"—'m)T = ( mod p6+1

for each m = n mod p(p—1). Thus, w, = u,, mod p2 by Lemma 1 and
the residue w, appears mod p* with a frequency. greater than 1 /p2 Tt
follows that {u,} is not u.d. mod P2

Now suppose M iz any integer not divisible by 2, 3, or 5 for which
{w,} is n.d. If p* divides M , then {w,} is also w.d. mod p* so M 4 neces-
sarily the product of powers of type I or type IT primes times 3 product
of first powers of some type IIT primes. In fact, two distinet type IIT
primes cannot divide M. Suppose ¢, g, are these two primes and look
at {u,} mod ¢,¢;. The proof of Theorem 2 showed that U} = (yom+n) ot

P
mod g, for some residues Y1 %; and 7, mod ¢; and (—‘—) = —1. Therefore,
U, 18 & square mod ¢; if and only if % iz even. It follows that the residue

B !

k does not appear in {u,} mod ¢1qa, it B sa,tisﬁes_(—g—)m +1, (—;-a—):—l,
) ’ b5 2

since otherwise n would be even by the first condition and odd by the

second. Such a residue obviously exists. Thus, M musgt be as described
in Theorem 3. To show that all such numbers do work, we prove the
following lemma,

. .
Loawa 7. Let N = []p;® where each p, is type 1, or iype II. Then
=1 ‘ k
{fu.} is wd. mod N with a period of N [] (p,—1). Each residue appears
fas] .
I (p;~1) times in any such period at subscripls which are half odd and,
half even. '
Let g be any type 11T prime and Naas above with q > p; for enoh ¢, Then
{u,} i8 u.d. mod Ny. :

2 — Acta Arithmetica XXXVLL
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Proof. By induction on k. For k =1, everything has been proved
except the statement on the subscripts. Such primes satisty property 1,
g0 each residue appears p—1 times in a period at subseripts which are
distinet mod p 1. Since p—1 is even, this gives the result.

So suppose the result ig true for & —1 and number the primes so
pp>p for 1 =1,2,..., k=1L

Write N = Nugp“'f a,nd p* =pk. Then for any R, wu, = R mod N,
it and only if n =mny, ..., ng mod $(N,), where @ = @(N,)/N,. Also,
w, = Kmod p“ if and only if n =my, ..., m,_, mod D(p".

We want to ghow that u, = R mod N, (p—1)Q times in the period
of length &) = P (N,)D(p").

It is possible to solve
# = n;mod &¢(N,),
#n = m; mod D (p°)

if and only if & = (D (N,), &(p°)} divides n,—
h=1, d = (B(N,), p"(p-1)) =

(4)

my. Since >p;fori =1,2,..
(P (), p—1), and so &|(p —1).

Fix n; and vary . The values of m,; form a complete residue system

mod p —1 by property 1 and thus n;,—m, is divigible by d a total of
—1
(p~1)/d times for this choice of n;. By varying »,, a total of Q(?—d—)

. phirg (fn,;, my) are found for which the system (4) has a solution. In each
cage, this solution is unique modulo LCM (D(N ), D(p®) = B(N )G (p°)/d
and thus leads to d solutions modulo @(N) = (15(1\7' 1B (3", Therefore, the

res1due B mod N a.ppears Q( )d = @(p —1) times. The fact on the

parity of the subsecripts follows since it held for N, by induction, », and
m; are the same parity, and each such pair »;, m, leads to d new solutions
of the same parity ags m;. Now suppose ¢ is a type III prime and N as
before. If we write p == ¢, then again we are led to the system (4) with
a = 1. Here, for (B,p) =1, %, = Emodp i and only if

n o= My, oy My tnod G(p)

' R . \ ‘
where the m, are all even if (?) = -1, odd otherwise, and each of the

possible (—?%:Lh) residues mod p—1 appears twiee The argument used

before works if altered slightly. Fixing #; and varying m, will work only
if n; = m; mod 2. This is true for one halt of the n; by result on subsgeripts

already proved For the /2 values of # which w111 work with the m,

‘ =14 . ; S
we have n; —m; divisible by 4 a total of 2 (%) times, since the residues

icm
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mod p—1 appear twice. So as before, we get Q{p—1) solutions fo (4)
in each period.

The residue zero mod p appears at subseripts ‘which form a complate
residue system mod p—1, so the proof it the same as for type I and IT
primes.

Lemma 7 essentially completes the proof of Theorem 3, except it
was agsumed that ¢ > p; for each 4. Let M be as in the hypothesis of
Theorem 3. Suppose p; < P, < ... < pk < g <P < ovo < P- By Lemma
7y {#,} is w.d. mod N, ¥ = p% ... p7g. This N can be used in the proot
of Lemma 7 for each of the primes p, 411 o+ Dy to prove that u, is u.d.
mod M, although the subscripts no longer sabisfy the same property.

It should be noted that there is a significant difference in the be-
havier of third order recurrent sequences as compared o second order
sequences. In the case of second order sequences, {w,} is w.d. mod ph i
and only if it is u.d. mod p, except for p =2 or 3. However, for third
order sequences and any prime p > 5, there is a sequence which is u.d,
mod p and not uw.d. mod p* for any h> 1.

In [5], it is proved that a second order recurrence is w.d. mod m for
every integer m if and only if the sequence is u.d. modulo every prime.
As a result of the difference between second order and third order se-
quences mentioned above, the corresponding theorem no longer holds.
In particular, the sequence {u,} satisfying

= duy, o+, ,4-6%,_,, w23

with 14, = 0, ul == 3, %, = 16 is uniformly distributed modulo every pr].me,

but is not u.d. mod 72

The methods used here should give at least parlua;l results on higher
order recurrences. However, the behavior of third order sequences seems
to indicate that any necessary and sufficient conditions for an arbitrary
nth order recurrent sequence to be uniformly distributed mod ", for
an # > 3 will be quite complex.
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On the greatest prime factor of (ae™-+b3")
by
T, N. Smorey (Bombay, India)

1. Suppose that fis a polynomial with rational coefficients and has
at least two distinet roots. Schinzel and Tijdeman [4] proved that the
equation y™ = f(x) (with =, y, m e Z, [y| > 1) implies that m iz bounded.
In [B], it is shown that the polynomial f can be replaced by & binary
form f(w, 2) (where f(1, 0) = 0) with at least two distinet linear factors,
with (z,2) = 1 and 2 composed solely of powers of primes from a fixed
set. In this paper, we prove a generalization of thiz resulf. The purpose
of this generalization is to strengthen Theorem 3 of [5] on the greatest
prime factor of {ax™+by"). All these results depend on Gelfond-Baker
theory of linear forms in logarithms.

2. For a real number ¢ between 0 and 1 and for an integer m greater
than 1, set

A = max (2 , 6XP (c ((logm) (loglog m))”z}) ,
B =max (2, ¢{(logm) (loglogm))”i").

Denote by S the set of all non zero integers composed of, primes not
exceeding B. Let f(», ¥} e Q[2, ¥] be a binary form of degree n with
J(1,0) # 0. Assume that f{x, 1} has at least two distinet roots. We define
the height of a rational number a/b, (o, b) = 1, as max(|al, [b]). Assume
that the maximum of the heights of the coefficients of f is not greater
than 4. Then we have: o '

TrmorEM. Let d-be a positive integer. Then there exist effectively com-
putable positive constants o, e; depending only on n and 4 such that the
equation

@ wa™ = f(, )

in infegers m, w, %, ¥, s with we 8, ye 8, (v, y) = d, g > 1 implies that

M < Oy



