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Putting % = 1,0, —1 in the expression for §,(n) above, we havo
the following particular cases:

- Spin—riotr),

=1

S (n) = n)

Bo(n) = X p(n—r)d(r),

S—-l (W;) =0 é\_J EL(, ?’,m:w) (W_‘)

The formula for S,{n} has appeared on page 218 in {1].
Now let S (n) denote the sum of all kth powerq of ml‘l the swrmmands
in all the parbitions of n into primes. Let oy(n) = X pf, where the p;

yl7

are primes and & is any integer,

TuEoREM 2. 8 (%) 2 q(n-—r Yar(v), where q(n) is the number of

partitions of n into primes.
The proof is similar to that of Theorem 1. Putting k¥ = 1, we have

" .
Siim) = ngln) = 2 g(n—r)oi(r);
by |
where ¢ (n) denotes the sum of all the prime divisors of .
Tinally we note that in Theorem 2, the primes may be replaced by
any subget of the natural numbers.
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Some remarks on Fermat’s conjecture

by

K. Inkerr (Turku) and A. J. VAN DER PoorRTEN (New South Wales)

In a rvecent note [7] (Theorem 1 cof. also [5]) it was shown: if p is
a fixed odd prime, then there exist at most finitely many triples of in-
tegers =, y, z which satisfy

(1) o'yt =27, (@,y,8) =1,

and y —x = &, where k is a fixed natural number.

Refinements of the effective methods of Baker now allow us to improve
the above result. Namely, we can prove:

THEOREM 1. All solutions in positive integers @, #, and odd primes p,
of the equation

@) o+ (pd-k {, k) =1

are bounded by effectively computable constants depending cmly on the posi-
tive integer k.

The new feature is that we now can bound the prime p in terms of 'k';
indeed, as we ghall see, in terms of the prime factors of k. We shall give

explicit bounds for p and establish some improvements of the above
theorem.

y>a>0,

)JJ . z;u.

1. Bounding the exponent. The fﬂllcwmg lemnm is convenient for
bounding pin (2).

Lunvia A, Let ay b, q be integers and let p be an odd prime. If b > a > 0,

P > lq] then there is an effectizely compumble absolute constant C > 0 such
that :

() L p%(a[b)?| > pcless,
(i} for eweh primel =
L—p(afp)?, > b OoseF,
The first result iy implied by Theorem 2 of van der Poorten and Lox-

ton [9] (or by Theorem 2 of Baker [4]) on noting that for « > % one has
log ! < 2|1 — w]. The second, I-adic, result is a special ease of Theorerm 2 of
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van der Poorten [10]. The cited veferences give ¢ explicibly, but make it
very large. In this special case, recent caleulations of the second author
show that the reader may suppose ¢ to be much smaller (certainly, ¢ = g2
would do in Lemma A). ‘ )

By Abel's well-known. formulae (ef. [6], p. 7 y wo may write as in.[7],
that (1) implies

I a—n =07, g—y =a” il ptay,

II. zg—a =p~'0", 02—y = o it ply,

oI 2—ax = b2 e—y = p? " Le? if plo
for positive integers a, b (and in case IT, p|b). Bince % is positive we have
b>a

Let Ly, ..., 1, be distinet positive primes (less than p). Weo shall
suppose that

(3) o= Tl 1o

for non-negative integers w,, ..., w, and some positive integer k, and
shall proceed to show that, given (2), » is hounded by a positive constant
depending only on % and I,, ..., L.

In case ITL we have (recalling that k = y—2)

: Bb? =1 —pP(a[b)?.
Tf I,k then I4b since («, k) = 1. Thus, on applying Lemma A(ii), we have
(4) i < pOllosal®
. Now applying Lemma A(i) we obtain 7
| E1B? = 1 —p? " Hajb)?| > b-C‘(logﬂa),

1gigm.

whence :
(5) k> pE-ClL+Hl ks by (lozjwl® __ (2 _Hw)l-C'(1+11-1-... 1) (log 1) ¥p .

Since ¢ —a == 27, this bounds p as asserted in this case.
In case JI we have

Pt = 1-p(afb)

émd, again, Lemma A(ii) implies the bounds (4). Similaxly, after applying
Lemma A(i) we obiain '
(6) Pl > bp—O(l-}-ll+...+lm)(iogp)3 — (p (zmﬁ))l--o(1+zl+...+z,,,,) (105;17)"’/13'

Since 2z = p~'b¥ > pP~1, this bounds p as asserted in this cage.
Finally, in case I we have
kP =1—(a/b),
and since I,fp, an elementary estimate implies already that

m
[[we<b—a.
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Here we have, of course, used I, < p .{1 S i s m) s0 that, . certainly,
1 (L;—1)%;. On the other hand . '
k= b —a? > p?7t,
80
(7) . by > 077 = (g—m)' P,
which bounds p in this case.
- In fact we have shown:

TuroreM 2. Let Iy, ..., L, be distinci positive primes less than p such

that Wil(y — @) (1< i< m). Then (1) smplies that

b3
(8) . (y —2) % > (g — m)1~r(10gp)3f(za—1}
-a/ [[*

where L = C(1+1;+ ... +1,), (and I = C if m = 0), and C is the constani
of Lemma A. ; ‘

Proof. The bound (6) obtained in case IT is the weakest bound for k;;
in, that case we have used p~' = (z —a) Y@ ¥, It ig plain that (5) and (7)
imply (8).

2. Further results, Once p is supposed bounded in (2) then Theorem 4
of [7] completes the proof of our Theorem 1; here we invoke a deep result
of Baker [1] on the solutions of the so-called hyperelliptic equation.

Other than for our appeal to 'the deep results which imply our
Lemma A, the argument of Section, 1 above uses only trivial facts eon-
cerning eventual solutions of (1). Of course we know a great deal more.
For example we readily prove: '

TEEOREM 3. If @, 2 satisfy (1) then

@ e—u > PP

Morcover, if p, @, 4, & with pfryz are solutions of (1) such that at least one
of the differences y—ux, e—a, z—y 48 less than (p° " M)?, where ¢, M are
positive constants, then all of p, 2, ¥, # are bounded by effeckively computable
constants depending only on e and M.

Proof. In the case ptwyz (the “first case of Fermat’s Theorem”)
cach of the integers a, b and ¢ (where ¢® = x4y} hag at least one prime

. factor =1 (mod2p® (cf. [6], p. 50, Satz XII). Now (9) iz immediate in

this case, by L. Morveover, ™ < aP=zg—y < (p*"*M)” and 20 p* < M whenece
p is bounded by M if indeed z—y < (p*~*M)’. Similarly p*? < ”, g0 we
have {9) in this ease, and Theorem 2 implies that p is bounded in terms of M
and ¢ if ¥ —2 < (p°*M)?. However, in this case, we can obtain a bound
on p divectly: namely, by b>p*> we have p*@~U<pP~! < (p™°M)P,
which yields p*~¥? < M, whence p** < M if p > 4/e.
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We return o the cage z—y < (p* °*M)", when ¢ and p are bounded.
By Abel’s formula 2y = ¢?4-b? —a? (and b|y), we have a” == (¢—b)?
(modb). But 0 < ¢—b < a (cf.-[6], p. T), 90 plainly a? > b and b is boun-
ded in terms of M and e It follows thad; @, 4, = are hounded appropriately,
confirming the second part of theorem (cf. [7], p- 252).

Generally o = z, y* =y, 2" = 2 (modp®) (see [6], p. B). Hence if pjx
(case 11T above) we have 2—a > g —¥Y = PP 1al (a, an integer), and. if ply
(case IT above) then z—& > p*'~ 1p2 . Pinally if ple (included in case I
above), then ¢ =gy =" e, But 2b>a-+b>c¢ 80 g~ ="
> (3p*~ Y7y > p¥ ag required, completing the proof of (9).

Using (9) we can appropriately restate the inequality (8), and honce
Theorem 1 (the notation being that of Theorem 2):

TanorREM 4. The equation (1) has no solutions with

J @ /leL < _,p"jﬂ(l - L(log pYH{p— 1.

gl

3. Remarks, For plyz the cage z-y =1 (and the so-called - Abcl’s
conjecture) is awaiting solution (see [T], p. 256). The results and ideas
given by van der Poorten, Schinzel, Shorey and Tijdeman in the papers [11],
[12], [13], [15] make one optimistic about the eapabilities of the methods
of Baker for coping with. this problem.

Tt has como recently o our attention that Stewart [14] has mrlcpcn-
dently established the following results, which partly overlap with our The-
orems 1, 2 and 3: Let @, y, 2, p be positive integers satisfying (1). If y -~
< Cy(z—a)—0V5) for gome positive number C,, then p is less than O,
a number which iy effectively computable in terms of . It p = 3, y — =

ig less than a positive number C,, then z, ¥, z and p folfill all o gimilar
condition.
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