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1. Introduction. Throughout thiz paper small latin letters shall
denote cither elements from a field F or rational integers, the context
should make it clear which is meant. Greek letters shall denote elements
which are algebraic over F. By £, we shall mean a primitive mth root of
unity. If p is a prime then p°|lm shall mean that p°im, P m.

(1.1) Let K be = field extension of F and let K* denote the multiplicative

| group of non-zero elements in K. For a € K, let o(a) denote the order

B,

of « in the quotient group, K*/F™.

We say that ™ —a is weakly normal if F(o) is the splitting field of
2™ —a, for every root a of 2™ — a. We say that o™ —a is drrefucible normal if
o™ — g 8 frreducible and normal.

Weakly and irreducible normal binemials have been characterized
over @ (Darbi [1], Bessel-Hagen [9], p. 302, and Mann and Vélez [5]),
and also over real fields (Gay [3]).

(1.2) Given F, set U(F)= {m: char Ftm and there exists an 4 & F* such
that o™ —a is weakly normal}l, O(F) = {m: charF4m, F(L,) = F('"),
where #" —b is irredueible over ¥ and rim}, I(F) = {m: char Ftm and
there exigts an ¢ € F such that 3™ --a is irreducible normal}.

In Section 2 we give a new proof of a theorem of Schinzel. The proof
is broken up into a scries of lemmas, lemmas which we shall use again in
Yeotion 3. Tn Rection 3 we study weakly and irreducible normal binomials
over arbitrary fields. We characterize those fields, whose characteristic
it not 2, which have the property that U(F) = C'(F). We then. specialize
to algebraic number fields and show that C(F) = I(F), for ¥ a finite
extension of Q.

Finally, in Section 4 we apply these results te answer a question
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raised by Henry B. Mann, namely, if # = @({,), then what are all of the
weakly and irreducible normal binomials over Q(Z,).

For convenience, we ghall gfate a theorem which will be used often
in our investigations.

(T:é) Let o{a) =mand sebn = max {I:1lm and ;e F(a)}, s = [P(a):F(L,)].

TEROREM 1.1. With o{a) =m ond. n, 8 defined as in (1.8), we have
that F(a®) = F(L,) and s|m. Further,if F(a) o K o F(L,), | = [Fla): k),
then K = F(d).

Proof. See Theorem 1 of [6]. =

The author would like to thank Henry B. Mann and David Gay for
many conversations concerning the subjoct matter of this paper.

2. Proof of Schinzel’'s theorem

Lemma 2.1. Let F be a field, m, n integers so that (m, n) == 1. If o=
== by, with by, by & I, then there ewists an element b € ¥ such that ¢ = ™,

Proof. St m--n = &, then (mn, k) = 1, Thus there arc integers o, y
such that 2% —ymn = 1. Set b = (b,b,)*/a¥, then p™* = q. m

- Levua 2.2. Let 4im, a'® ¢ F yet o* —a reducible over . If a 45 any
oot of ™ —a, then I (a™*) = F(a™®) = F(L,).
- Proof. Clearly ¢™* is a root of a* — a. Further, since o' ¢ F and o™?
is & root of 2% — &, we have that [F(a™?): F] = 2.

We shall now show that F(a™?) is the splitting field of #* —a. This
fact implies that F(a™) = F(d™?) = F(L,).

Since #* —a ig reducible and »2 — @ iy irreducible, we have that £, ¢ F
and —4da =¢', ceF. Thus —a = (¢*/2)4 50 (—a)? e F. But F(™?
= F(a'®), thus, since (—a)?, o' e ¥(a*®), we have that ¢, = F(a).
So F(a™) = F(L,).

To show that F(a™?) is the splitting field of o —a, all we have to
show is that (™) containg ome oot of #*—a. Now, gince — da = o,
we have that (—4a)"* e F. Bub (~da) = £,2"%¢"™ and £,2"% = 14¢
e F'(L,), thus o' e P(£,). Fence, F(£,) containg all of the roots of m4-~a:
yeb o™ is o root of o*~—a, 80 F(a™) = F(a™) = F(£,).

. Let K = F, we say that K hag the unique subjfield property if for
-every divisor 1 of [K: I'], there existy exactly one subtield, K = Iy, o I,
with [F,: F] = 1. :

Limava, 2.3, Let char M{'m, o™ —a drreducible over i, and _zﬁ(a‘thn)
= T (V™). If F(a'™) has the unique subficld property, then b™ == (o},
{t,m) =1,cel. ' '

Proof. We first prove this for the case m =pk, p a prime.
For &k = 1, see Theorem 59 of [4]. Thus, assume the lemma, is true for k

and let m = p**h So F(a#) = P ginco i*(aw"'“) hag the
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funiiqule subfield property, we have that B = o(aM, (1, p) = 1. Thus,
T P (@I TE U2 e P, then the theorem is proven. If not,
then F(c'?) = F(a'?), 8o ' = ¢, (a"?)1, (1,, p) = 1. Thus

/TN ic E+1 PR B
Lt cl(wl"p )tlm , 80 pHpF L cl(a”" + )t-rtlpk

and ({4-t,p% p) =1.
Bo the lemma is proven if w is a prime power. _

We now induct on the number of distinet prime factors in m. Write
m =18, (r, 8) =1,7 > 1,8 > L. Sinee "™ hag the unique subfield property,
we have that F(a'") = F(b¥"), F(a'®) = F(b"%). Hence, hy induction,
we have that b == o (a1, (t,,7) =1, B = g,(a'®)2, (f,,s) = 1.
There are integers @, ¥ 5o that ar+sy = 1; so (#/s) 4 (yfr) = 1jrs = 1/m.
Thug bm‘r — cilf(ﬂlfr.s)uﬂls, pEs — Gg(a'lf?'s)ztg?’, g0 B — c’{c@"(a.”m)mls*"“i", and
{yt,s-twhr,m) =1, m '

Let ¢har FYm and let w,, be the number of mth roots of unity contained
in B. S

Lavma 2.4. Let p be a prime and 2°° —a have abelian Galois group,
then a’v® = b*°, for some b & 7.

Proof, First of all, assurme that p = 2 and £, ¢ 7.

If ¢ = 1, the assertion is obvious. Thus assume that the asgertion
38 true for all & < e. Clearly, 2~ — 4 has abelian Galois group, so by
‘the induction hypothesis, we have that a? = bi"_l (since [, ¢ F, w,; = 2,
k= 1). If b, = b?, the induction is complete. Hence, assume that b, = b2,
for all b e F. Now, if a is a root of #*° —a, then o = £iea b1, for some 4,
and Fla,l,) = Fa, {,,). Thus F(h}") is an abelian extengion. If
a*—by is irreducible, then £, € F(b]*). If not, then by Lemma 2.2, ¢,
e F(b}"). Hence, in either case, F({,) = F(b}?), 5o B =8s, bel,
by Lemma 2.3. Thus b, = —b% 80 a® = (—5)* " = b*. Thus the the-
orem s true for p =2 and [, ¢ 7.

Now assume that either p is odd ox if p = 2 then £, = F.

Let e =1. I £, e ¥, then w, = p and o' =a®. I , ¢F, then a
must be a pth power, so @ 7 = a* = b”. ‘

Thus, we may assume that the aszertion is true for all k& < e. Assume
that a == b, where 1 < f< e. Then #* ' —b, has abelian Galois group
and by the induction hiypothesis, we have that b;"q = ! , where g = p*™7.
Thus (59" = (B7)"0 = 4" = ¢*. However wylu,, thus a’s* = ()"’
where! = (wﬁe)/(wq). ' '

Thus, we may assume that a ig not a pth power, henee #* — q is irre-
«ducible. (This can be obtained by a slight modification of Theorem 51
of [41) Let a be any root of #*°— a, then since 27° —¢ is normal and abe-
lian, we have that C,,e & F(a) and F(o®) =T (Cpe), by Theorem 1.1. How--
over, B (.{:We') has the unique subfield property (sinee its Galois group is
cyclic), Cp,, satisfies the irreducible binomial 2" — C’wﬂe, and § == wpe.
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Thus, by Lemma- 2.3, o = bé sy 50 (a EIP L L

thus « ot Bhe°,

THEOREM 2.1 (Schinzel [8]). The binomial ™ —a has abelion Galois

= b’m_.

Asgume  that o™ = b™, then

group iff ™

Proof. @ = Cfvmbm/w’”. Let K

= e, Lnneyy)s then K is an abelian extension of F since BBy,

and F({y,,) are both abelian. Since a == ¢ D
we have that K contains & root of a™ —a. Also L € A0, thus thoe s])llltmg
field of ™ —a i contained in K, so the Galois group is aboelian.
Assume that &™--a hag abelian Galois group and write m = || ik,
£

w Y L. i 1 Jw,
( me m.)m’

e
3

Then #*i — g has abelian GraJlms group, 80, by Lemma 2.4, a M e hEC
]i;owever, m liwyeiy 8O g = (b ‘}?’% for each 4. Thug by Lcmum 2.1,
o " =b" m

Lemma 2.5. Let ™ —a be irreducible normal with cyclic Galozs fFroup.
If 4im then {;eF.

Proof. Let « be aroot of 2™ — g, then o § ig a root of g —a. F urthor,

#*— ¢ i8 irreducible normal with cyclic Galois group, thus £, e F(a™")

= F(a').

Assume that ¢, ¢ #, then F(£,) = F(a'?); by Theorem 1.1, henee o'
= b, and &* = bl Now (") < P(l,, ). Thus [F (&, b): FJ
=='4 or 8. If the degree iz 8, then this field has Galois group 2,2, %,
and thiz contradiets fhe assumption that a subfield has cyclic group Z,.
Thus [F(Zy, b'7): ¥] = 4, and it must have Galois group Z, - Z,. However,
F (L, B = F(a'™), and this has cyclic Galoiz group, a contradiction.
ThusZ, e F. m

Lemma 2.6. Let p be prime, *° —a irveducible normal with abelian
Galois group. If p is odd or if p = 2 and [, e I, then the Galois qwowp is

“ayclic,

Proof. Since #°° — a js irreducible and has eyclic Galois group we have

that #¥—a is irreducible and normal. Thus if £ is any root of &? —a, wo
have that {, e F(f), yet [F(§):F] = p, so Cﬁclﬂ Furthoy, il « JH ALy
root of 4*°—a, then ¢ , e F(a). et w , = 2%, where f - 0. Then ar” el

ig irreducible over F (rccall that if p. ol 2, then £, e ). Thus [F(E ,): J?j’]‘ |
: e+ A

=p* and [F(0):F(Z,)] = 7.

If ¢ = f then the agsertion i iz obvious. Thus we may assumo that 7 <2 ¢
Congider F (CpeJrf) This has degree p® over F and has cyclic (3alois umup
Let ¢ denote the generator of this Galois group. Then or(C ) == L i
for some %, and o(f,) = C‘T’ £ e v

. By Theorem 2.1, we “have that a‘“ = b, thus = . b*’p f, and
@ = ¢, B, Define 7(a) = C“’ =tz wb”‘“‘ thus () 18 a conju-
gate of a. By Theorem 1.1, Wwe have that IMa ‘r) = (¢ ), and I’(C o
“has the uvnique subfield propeli,y, 80 CT = oa”f, ce bfr Lewuna 2.3,

w et
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Thus 7(8,0) = w(6a”) = o(Zfa)” =o' a?" = {4/¢ . Note that #(Z,,)
= c(c_?p) Thus 7 is an &IItOITlOI‘]’)hIth and, it hag the same order as 0‘,
thus the Galois group of 4%’ —a is cyclic. m

THROREM 2.2 (Schinzol). Let o™ —a be irreducible with abelion Galois
growp. If Alm and 7, ¢ T, then the Galois group is Zy+Z,,,, otherwise the
Galois group is ocyclic.

Proof. Let m == ] Jpit. Then. @’ —a is irreducible normal with

abelian Galois group. If GJ, is the Galoig group of a?i a, then the Galois
group, &, of 4™ —a is isomorphic to the direct sum. of the &;. If p, is odd,
then @, is cyelic, by Lemma 2.6, Thus & is cyclic iff @, s cyclic. If {, e I
and 4/m, then by Lemma 2.6, 6, is cyclic, thus @ is eyclie.

Assume that 4/m and , ¢ ¥. Then @ iz not eyeclic by Lemma 2.5
1 o is any root of 2™ — a, then a™* is a root of &' — a, and &' —ais u'reduclble
normal. Thug, by Theorem 1.1, we have that #( o™y = F(g,). Thus
2™2 g™ g irreducible over F(a™?2), f, € F(«™*) and the Galois group
of Fla) over F(a™?) is cyelic. Call this Galoig group @', then we have
that GG ~ Z,. Thus G i either Z,, or Z,+Z,,, (Section 32 of [2]).
However, & = Z,, since {, ¢ F, thus @ is igomorphic to Z,+2Z,,,. =

3. Weakly and irreducible normal binomials

TEpoREM 3.1. Let charFYm and 2 —a weakly normal, p a prime,
plm and L, ¢ F, then {pp(m), p) =1, where pp(m) = [F{L,): F].

Proof. Since 2™ —a iy weakly normal, we have that m = klpp(m),
whaere lpy(m) = [F(a): F'] and « is any root of 2™ —a. Let p°|m and let

a = b”f, where 1f f<e then a :;é by +1 for all b, € F. With m’ = m/p’,
“Tn

- we have that 2™ — bja™ — a and &™ — b is wea.kly normal. So m' = k'lpp(m).

If ¢ = f, then (m/, p) = 1, 80 (pp(m), p) == 1. Thus, we may assume that
¢ > f. Then ¥ —b is u-reduclble and if # i3 any root of #™ — b, then pmie
is a root of 2® —b. If plpx(m), then p*~4i so I|(m’ [p). Thus F(ﬂ’) > F(§™").

However, F(f") = F(L,), by Theoremi 1.1, thus #(f™*) is normal, so
@ —b 1s 1rrc.(1uclble normal and this 1mp11es ¢, € ¥, a contradiction. Thus

plesim
LEMMA 3.1. With
U(F = O = I,
Proof. Let m e I(¥), then there exists a ¥ such that o™—a is
irreducible normal. If o is any root of #™—a, then F({,) = F(a), thus
ep(m)m. Let § = [F(a): F({,)], then by Theorem 1.1, we have that
F{a®) = F(a"") = F(L,), where ¥ ==pp(m), and o —o is 1rreduclble,

U(F), O(F), I(F) defined as in (1.2), we have that

~thus m e O(F).

F (b, where rlm and o —b is irreducible

Let m e C(F), thus F (L) = piim gk

where § = mjpp(m). Then of = I, b'"e, thus F(a) = Fd¥) = F(LbM)
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However, {0 iy a root of ¢ b, and & —b is irreducible normal, thus
Py = F(L,,) and £, & F(a), 80 2™— & is weakly normal, and m = U(F). m

(3.1) Let char P4m and write m= ]"[ p?. Define f, by: o — b#i"

fi<e, and if f; < ¢, then o +# pod " y for all b e P, Set P = ]] 7 and

=m/FP. By Lemma 2.1, we have that there oxists b e I fm which
a = &, furthermore 2™ — bja™ —a.

Levima 3.2, If ¢, e I, then o™ —b 4 irreducible. Furthermore, U (I
= O{F).

Proof. By Theorem 51 of [4], we have that «™ —b iy irreducilic.
If o™ — a is weakly normal, then ™ —b is also weakly normal and ' i
Then if § is any root of ™ —b, we have ¥ « F(L,,) < F(,) < FUIR
sinee # is also a root of o™ —a. By Theorem 1.1, we have that F(F)
= F(pY™"Ny = F(L,), where 1 = [F(8): F(,)] smd a™ " —b ix irvedue-
ible. Thus gy (m}m’, 80 gp(m)m, and U(F) = ((F). B

(8.2) Bet ny = L+ If £, ¢ F, seb 4 = o if ny €1, for all I, other-
wise set A = mmx{l 7, €. Note tha.t (151)" == B-1+2 and gp(29)
=2 for f22 if 4= 0. :

Levma 3.3, If m e U(T), 2m and f< A, then m e ().

Prooi. If {; e ¥, then the lemma follows by Lemma 8.2. 8o we may
assume that £, ¢ F. Let m € U(F) and let 2™ — & be weakly normal. Then
@™ —b iy weakly normal, where ™ —b is defined as in (3.1). Furthermore,
if g is any root of a™ —b, then F(Z,,) « F(§). If 4tm, then &™ —b is
irreducible and the argument of Lomma 3.2 apphes Thus woe may assume
that djm. Let m = 2%m,, m' = 2"my, 1 = 2%m, = [F(8): F((,)], where
(2, m;) = 1. Then, F(§") = F({,), by Themcm 1.1 Now, op(m) == 2m, fm,
sinee " —b is irreducible and f< A. Furthermore, by applying Theo-
rem 3.1, we have that if p|m, A then. £, e I, g0 the Galoig group of F(£,,)
over Pis oyelic. The element ﬁ iy § Js aroot of g™ and [F(5 ]”*2 P
= My jmy. Moreover, | = mﬂ|2 Mg, 80 B(F) = B(E,) I’(ﬁﬂl gy
However F(L,) > T(4,) and [F(Ly): ] == iy fing, [Sineo F(L,) hma
eyclic Galois group, we have thab B, = F(,B*“"*a) =a (DU,

Algo, if &*—b is irveducible, then F(é‘,l) = F(b"), Tf ao'—b ia re-
ducible, then F(f,)=F(b"), by Lemma 2.2. Thus [F(Z,) = F(L)
“.E(bm), since f<.4. Hence F(L,) = 7 1 E) = ;r(bm bI.’(mlhng)),
= J (pHemimaly pmitng b ig ivveducible and (le/;na)lm?. Thusm e O(F). m

Louwia 3.4 (Sehinzel [8]). Let F' be such that pp(2’) = 2/-1 If o¥/ ~a
8 weakly normal with abelian Galms group and @ — a is veduoible, then f < 2.

Proof. Assume that #' —a ig weakly normal w1th abelian, Gralmﬂ
group but not irredncible normal, and f > 3. Then @ = b* ;80 & = p~

, where
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Agsume that & =b . Then & = and F(a") = F(£,;b'7)
= F(L,). Thus b e F(¢ Jf), hence b2 =¢f, or B = o{L 2V If P2
mc§4,thenb= —e% s0a==b", and & —a= aﬁf b* is irreducible, a contra-
diction. Tf ' = a(iZ)m then b = 4-2¢% and K R ZI, g0 217
e F{l), yet F(2") is non-abelian. Thus a s« ¥ . Hence ¢ = —b¥ .
Then a'*’ = (b and  Fla atly = F(L ), 1mplies that g, 5"
eF(ly) < I’(CHI) thus 52 e F(¢;,,), however, since f> 3, we have
that b” F(L,), thus & .., e F(Ly), a contradiction. Henco o —a is
irreducible. w

Remark. Tf char F > 0, then ¢, (2') < 271, for all f> 2

Lenvvs 8.5. If F is a field such that pgp(27) = 2777, then U( ) = C(@.
Let 2™ — a be weakly normal and 2™ ~ b defined as in (3.1). Then, F () = F(e),
where f™ = b, a™ = a. Further, if 8)m’, a™ — b is irreducible normal.

Proof. Let m = 2%mg, m’ = 2%my, (2, m,) = 1. If k, < 2, then apply
Lemmsa 3.3. Thus we assume that k3> 3. Since o '—b is irreducible,
we have that m [ F (#): #]. Recall that pp(2") = 2/~ Thus 277 |[F(8): #']-
Hence, the degree of the splitting field is either g™ m; oT 2 g¥1- 1m Assum&
that ™ —b is reduclble, then the deg:t'ee of the splitting field is 2 1= m1
NOW, ,Sml satisties 221~ b and this is reducible, thus. F(F™M) = F L)
So o™ — b has at least one root thab yields the splitting field. The other
roots of #® —b are (C"kl ﬁ)ml, gince (., 2) = 1. Thus every root of

~—1b yields the splitting fzeld ginece C* B is a root of 2™ —b, 80 21 b

is weakly nmormal and reduecible, and thlls contradicts Lemma 3.4, Thus.
2™ — b is irreduncible and if #is any root of #™ —b,then F(§) = F(a) > F(l,)-
Thus F(£,) = F(f), where 1 = [F(8): F({,)] Thus F(L,) = F @),
™" —p ig irreducible and (m//I}m. Thus s e O(F) and U(F) = O(F). m

R

Lmva 3.6, Let charF =p, p>0, p + 2, and {, ¢ F. Then there -
ewists an f such that [F({;): F]1 = 4 and F({;) # F (b, for all b e P
Proof. Let H be a finite field such that £, § K and charK # 2.
We first prove that if o € K, then #*—a is reducible over K. If o' ¢ K,
@' — @ is reducible. Thus we may agsume that ¢ ¢ K, and [K (a"%): K]= 2

- Since £, ¢ K, we have that |K| = 1(mod4), but then K’ = 1(modg&).

Thus if b generates the cyclic group K (¢*2)", then 8 divides the order of b.
However, the order of ¢ is not divisible by 8, so there exists ¢ € K(a'®)
such. that o™ = ¢%. Thus ¢ is a root of x*—a. Flence the splitting field
of o' —a is K (¢), thus #* —a is reducible.

Given I, lot 7' denote the compositum of all the finite fields conta-
ined in #. Since ¢, ¢ ¥, we have that if charF = p, then p 7 1(mod4).
Furthermore, if GF(p®) < F, then e must be odd. Let 2/7(p*—1),
where f—1 > 3. Then 2/-%[|(p* — 1), where e is odd, Thus F({,) = F({ ;1)
and [F(;): F] = 4. .
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Assume that F({,;) = F("), where #*—b is irreducible. Then
bé . Also F(L,) = F(0'7), so b = o, ceF. Thus FO™) = P (LM
= F(L,, 61, since L e F(L,). T F(e®) = F(&,), we have a contradic-
tion. Thus F(¢"?) # F({,), and &, ¢ F{c'®). Consider F(c'®). COlearly,
{F(c"®): F'] < 2. 1 the degree were 2, then {, e F'(¢) < F ('), a con-
tradietion. Thus P(c"*) = F'. But then, [F(?, £ ;): F('*)] =4, and
this contradicts the fact that #({ ;) = F(£,, 0}, thus »* — b is reducible. =

TaeoreM 3.2, Let charF 2. Then U(F) = C(F) #ff (a) L el or
(D) L, ¢ F, char F =0 and either ¢,(2)) =2, for all f =2, or pu(29)
= 271 for all f= 1.

Proof. If {, e ¥, then U(F) = O(F), by Lemmna 3.2. If £, ¢ I and

J =1, then Lemma 3.5 appliea. ;

Agsume that U(F) = O(F) and ¢, ¢ F. Now, ¥ +1 ig weakly normal
for all f > 1, thus 2’ ¢ U{F) = G(F). Assume that charF = p > 0, p # 2.
Bince {, ¢ ¥, we have that p == 1(mod4) and if GI'(p®) = F, then p* 51
{(mod 4), thus e must be odd. So if 27 ?j(p2 —1", then 27*(p**—1). Thus
{F(L,y): F] = 4. Since 3/ e G(F), we have that F(L,) = F(b"), where
& —b is frreducible, and this contradicts Lemma 3.6. Hence, char f' == 0.

If pp(27) =2, for all f> 1, then the theorem is proven. Thus we
have that ¢p(2") =2 for f< L and ¢p{25t) = 2% Ii I = 2, then the
theorem is proven. Thus, assume that L > 2. Sinee 2%+ ¢ ¢ (F), wo have
that F(¢,y.,) = F(b), a®—~b is irredncible, and the Galois group is
Z,+%,. By Theorem 1.1, we have that F(4%) = 1(Z,). Also F{( ;.,)")
= F([,1) = F({,). Thus {,;,., and b"® satisfy irreducible binomials over
F(¢,) and F(b"%) over F({,) has the unique subfield property, hence, by
Lemma 2.3, we have that { ;. = b » e F({,). With o(a) defined as
in Section 1, we have that o({,z.,) = 2%+, o(b'®) = 8, thus o(y) == 271,
thus y ¢ F. However y € F(Z,), thus F(y) = F'(,). So we have that o(y)
=251 F(yp) is a normal extension of F, henco by Theorem 3 of [6],
we have that {;,, e P(y) = F(L,), and this contradicts the fact that
[F({,p1): F] =4 Thus L =2 and p,(2) = 2" and the theorem is
“proven. m

Throughout the restof this section we ghall assume that F is a finite
-extension of the rationals, that i, an algebraic number field. We shall
show that C(F) = I(F) for all algebraic number ficlds. First wo prove
- technical Iemma.

Imyma 3.7, Let F be an algebraic number field, ®" —b irreducible over I¥
and vim. Then there exist infinitely many o e F' such that o™ —ba" is irre-
dueible- -over P, . .

- Proof. Let # denote the set of all rational, positive primes in .
We shall show that if plm, then if B = {oe#: o? —bo" is reducible},
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then |B| < oo, and if 4jm then € = {o e #: a*— b is redueible}, then
[C] <2 co. This resnlt clearly implies the leama. _

We first show that [B| < co. If plr, then b = d?, for d e B, since
#* ~b is irreducible. Also ¢" is a pth power, hence be™ == ar, for all d e F,
thus B = @. Assume that ptr, then bc" = d?, for all ¢eB. Thus Y2
€ F(b'?), since (r,p) =1. Let T = (M?: ceB), then [L:Q] = p'F.
Sinee L = F(b'), and [F(b'7):Q] < oo, we have that iB| < oc.

1f 4|z, then ¢ = @, as above. Let 2, 4fr. If ¢ € ¢, then — 4bs" = @*,
Thus (¢")'"* & F((—4b)"M), 5o o' e F{(—4b)"™). Hence |} < co, If 217,
then the same technique applies. w _

TaROREM 3.3. If F is an algebraic number field, then C(F) = I(F).

Proof. By Lemma 3.1, we have that C(F) = I(F).

Let m e C(F), then F({,) = F('), o"— b is irredncible and |m.
By Lemma 3.7, there is a ¢ such that 2™ —b¢" ig irreducible. Let « be any
root of 2™ —be; then a = [Jb'™¢"/N hence o™ = ¢ip'e, so F(a™")
= F (b)) = F(L,), since Z26Y" is a root of a”—b, thus lw €F(a), so0
#™—be" is irreducible normal, hence m e I(F) and ¢(F) =T (). m

CorOLLARY 3.1. Let F' be an algebraic number field. Then U{R) = I(F)
iff (@) Ly T or (b) if &4 ¢ F, then gp(2”) = 2/, for f 2 1.

Proof. This is an immediate consequence of Theorems 3.1 and 3.2..
Furthermore, since F is an algebraic number field, then ¢, (27) = 2, for
gome f. m :

THEOREM 3.4. Let I be om algebraic number field and o™ —a irre-
ducible over F. Then @™ — a is irveducible normal iff & = be', where T (&n)
= F{®'"), and rim. : :

Proof. Let 2™ — a be irreducible normal, a a voot and r — [T 7],
then by Theorem 1.1, we have that F(a™") = F((,,). Let F(Z,,) = F{B"),
then by the Corollary to Theorem 3 of [7], we have that o™ == e(BFMr
or a™" = en 4., (B, where A and n,r are defined ag in (3.2), and
(@,7) = 1. However, 7, 4.,(b")"" = ((n,,+2)"p") = b} and F @)
= P, thus a = (™) = ¢'b® or ¢ = ¢'bl. m

4. Applications. In this section we shall apply the results of Sections 2
and 3 to determine the wealkly and irredincible normal binomials over
B =Q{Z,). Of course, if #™—a is weakly normal, then gu(m)m. The
following lemma is eagy to prove: :

LevmA 4.1. Leb B = Q(L,), then pg(m}m iff m & {2, 2"13", oMy, ky > 0,
ko> 1,0 0,70 m

Lvwa 4.2, If m & U{Q(,), plm, p an 0dd prime, then p*tm.

Proof. By Theorem 3.1, we have that if p|m, [, ¢ F, then (gz(m), p)
=1. = o
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Tmva 4.3, Let m e U(Q(L)). If pim, p an odd prime, then 8fm.

Proof. By Theorem 3.2, we bave that T (Q(L,)) = Cl€(4,)). Then,
for m & C(Q(Z,)), Wwe have that Q({,, &) =€ (L) '}, and this has eyclic
Galois group, by Theorem 2.2. However, QL) Q(L,;,) do not have
eyelic Galois groups for > 2. m -

Thus, the candidates for U(Q(L,)) are 2% 6,12, and 20, and in fact
T(Q(z) = {28 6,12,20: k= 0L We first dotermme the 111(,(111011)1(1 bi-
nomials which dcfme 0(L,, &), tor m e C(@(L,).

TuporEM 4.1. We have that C{Q(L,) = {2, 6,12,20: k= 0} and,

(@) QL L) is defined by and™ *——Cq,

() Q(Ly, L) =Q(Lyy Ca) 8 d@f”wd by w*—3,

(€) @(Lay Coo) is defined by a'—B(14-2,)%

Furthermore, these binomials are irveducible and essentially umique.

Proof. By essentially unique we mean that if ™ —a 15 one of (a)-(c),

and #™—b defines the same field as a" ~a, then b = ¢"a”, (m,q) = 1.

(a), (b) are obvious. We now consider (c). Bince @ (£, {;) has cyclic

Galois group of order 4 over @(,), we have that @ ({,, {;) is defined by an
irredueible binomial, Thus, if we compute the Lagrange resolvent (sec
p. 169, [10]), we have that ({,, &) = GGl -G~ and (£, )
=B({1-+20) =
CoROLTLARY 4.1. We
= {2%,6,12,20: k> 0}. m
TeEOREM 4.2. The irreducible normal binowmiols over Q(Z,) are:
a) 22—¢, ¢ #oj,
by #*—e, o # €,
e MW= > 3,all ¢ #0,

have that  U{Q(C)) = O{Q(E)) = T{Q{L)}

_ — 3@2, ¢+ 302,

f) & —5(L420,)%¢", ¢ # B{142(,)%6.

In (a}~{f) we have suppressed mth powers, that is, if 2 —a i8 irredu-
cible normal, then a™—ab™ iy also irreducible normad. Furthermore,
The Galois groups are cyclic for (a), (b), (¢), and non-abelian for (d), (o), (£).

Proof. This follows from Theorems 3.4 and 4.2, It is also important
to point oub that £, denotes any primitive 4th root of unity. =

In order o determine those weakly normal binomialg which are not
irredncible normal, we ghall need the following lemroa.

TmyA 4.4, et B = Q(Z,) and let 2™ — a be reducible and weakly novinal.
Then thare exist m’, b such that m'|m, ™ = a, @™ —b i3 drredueible normal
and @™ — bl — a. Further, if f% = b, o” = a, then I'(a) = F(f).

Proof. We define m’ and b as in (3.1), thus 2™ —b iy weakly normal,
By Lemama 3.2, ™ — b is irvedueible, thus 2™ —b is irvedueible normal, m
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Thus, if 2™ —a is reducible and weakly vormal, then a™—ga has @
binomial factor which is irreducible normal.

THEOREM 4.3. Lét o™ —a be reducible and weakly normal and let
D = [F(a): F], where I = Q(L,), ™ = a. Then o™ —a must be one of
the following: '

(1) a’zmc? D = 1.

(2) @ YW D=1or2,c#aif D=2

(3) w2 c”""“l D =2t

(4) 2% —(3¢"%, D =2,

(5) m“‘ (302)12”) D= 4, 4, or 6 and, if D = 6, then ¢ # 3ct,
(6) ™ — (3(1+22,)*¢"), D = 4.

Ploof The first two are obvious. So let m = 2%, k> 2. If a ig any

root of #*° — a, then F(L,) = Fla), thus 2% D, so D ~°""‘“ or D = 262,

Assume that D — 252, “Then a = b“ a # b, for all by e I, and &**—b
is irreducible normal Thus F(H"% = F (C2 ), thus by Lemma 2.3, we
have that 3% = 0L,y 80 b = A Pe = b = ¢ and this coutra-
ab for all b, e F. Thug, we must have D = 2*!,
Hence o = b2, a* b is uledumble Thus F (5% = F(Eu), s0 prk =3
Lop b == B = ¢

Let us now congider (4). If o® = a, then F(,) < F(a). Thus 2.D.
However, D < 6, since z*—a is reducible, s0 D = 2. Thus @ = b* and
p'* ¢ F. Further F(b*%) = F({) = F(3'?), s0 b = 3¢

Let #'2—a be reducible and weakly normal, D = [F(o): F], then

. D =2,4, or 6. Thus a = P, z” —p is irreducible normal, and F(b'?)

= F(ly,) = F(3"), 80 b = 3¢ thus o = (3622, I D =2 or 4, 2”—3¢?
is irredueible. If D = 6, then a® — 3¢ is irreducible if ¢ 7= 3¢.

Let 2™ —a be reducible and weakly normal, then F(f,) = F(a),
so 41D, But D - 20, so D =4. Thus e = b%, o' —b is irreducible and
F(BH) = F(Z,,), thus b == 5(1-+-27,)%¢*

Relerences

[1] Giuvlio Darbi, Sulle Riducibilitd delle Fquasioni digebriche, Annali di Mat. puara
e appl., Ser. 4, 4 (1926), pp. 186-208.

[2] Ldszlé Fuohs, Infinite 4dbelian groups, Academic Press, New York and London
1970, .

[3] David Gay, On normeal radical emtensions of' real fields, Acta Avith. 35 (1879),
pp. 273-288.

{4} Irving Kaplansky, Fields and rings, The Unlvermty of Chicago Press, Chicago
and London 1972,

[6] Henry B. Mann and William Yslas Vélez, On normal radical extensions of the
rattonals, Linear and Multilinear Algebra 3 (1975), pp. 73-80.

[6]7 Michacl J. Norris and William Yelag Vélez, Sirwecture theorems for redical

" ewlensions of fields, to appear in Acta Arith.



124 W. Y. Vélez

{7} A. Sehinzel, On linear dependence of rools, Acta Arith. 28 (1975), pp. 161-175.

{8] — Abelian binomials, power residues, and exponsniial congruences, ibid. 82(1977),

pp. 245-274.

0] ¥. G. Tschebotaréw, Grundsige der Galois’schen Theorie, Groningen-Djakarta,
1950.

[10] B. L. van der Waorden, Modern algebra, Vol 1, Prederick TUngar IPublishing
Co., New York 1066,

APPLIED MATHEMATICE GROUE
SANDIA LABORATORIES
Albnguerque, New Moxico, 4.4,

Received on 1. 3. 1977

and in revised form on 9. 7. IBV7 {917)

icm

ACTA ARITHMETICA
XXXVI (1080)

On sums of powers and a related problem
by

K. TmANiGASATAM (Monaca, Penn.)

1. Introduction. K. F Roth [6] showed that all sufﬁclently lalge
integers ¥ are representable in the form

(1) N = Zwm _

gm=l

:a’s being non-negative mtegers)
In [7], I improved this to ¥ = Em‘*“

g=1
R. O Vaughan [10] and [11] improved on this furthel y showmg that

(2) N = Z @t
&=1

Torleiy Klgve [9] found Dby “computations for ¥ < 250 000 that
N == st“ {for ¥ < 250 000), and conjectured that for large ¥, N &= Zm‘“' L

g=1 8=1
In this paper, we lmprove further on (2), a.nd prove the following:

TEEOREM 1. All sufficiently large infegers N are representable in the
Jform ' : '

(8) . . N E‘Ts+1

where the @’s are non-negative integers.

The methods used in [6], [7], [10] or [11] ave msuiflment to prove (3),
and g0, we indicate all the necessary changes.

The method in this paper, can also be used to prove ‘

TueoREM 2. Al suffiviently large odd integers Ny, and even mtegem' N »
are representable in the Jforms :

(4} Zpa-l—l N, = Z"pwu | | T

s=I1 g=1

’

where the p’s are primes.



