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1. Introduction. Statement of the results. Let there be given a finite
integer sequence .« and a sequence P of primes. A Dhasic problem of the
gieve is to estimatbe, for any real number z = 2 the sum (sifting funetion)

S(st,Pye) = 3 1
(a,;‘(e.;%#‘l

where P(2) = [] p. The séquence & can be almost arbitrary. The

Nz peP
only knowledge we need about .« is 2 good approximation formula (in
an avarage sense) for the number of those elements from & which are
divigible by the squarefree number d|P(2);

#y ={ac & a =0(modd)}.
We assume that |« may be written in the form

w (&)

(1.1) ot =22 X+R(, @),

d
where ?—fzml X i3 eonsidered as a main term and (s, d) is an error term.

The arithmetic funetion «(d) is multiplicative and. for each prime number

p el it satislies )

(1.2) 0 < w(p}<p.

Sinee wo need the formuly (1.1) only for d|P{z) we are free to define w(p)

= 0 for p ¢ P, _ o
Our next agsumption ig about dimension. There exists s parameter

%= 0 (dimengion) and a congtant K > 2 such that for all 2> w> 2 we
have ‘ »

(1.3) IY (1w 9_1%’_)) ‘1_< (11()__‘)_5_%)” (14— lozrw:) .

WELD <8
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Remarks. Note that x iz not uniquely defined, but the smaller it
is, the better the results we shall obtain. The advantage that we assumed
a one-sided estimation iy that one can derive results for » from those
for # > ». This fach, that sieve results depend essontially only on an
upper bound of the type (1.3) was first observed by Halborstam and
Richert [3]

The dimension contains two kind of informations; estimation on
average of o(p), and the distribution of primes from J’. Tt appears in. prac-
tice that the mean value of w(p) is ofteninteger (fox example when o (p)is
the number of solutions of a congruence modp), but the set I can bo of
arbitrary dengity < 1, so the dimension is not necessarily an integer.

For all =2 and # =2 define 8 ==logy/logz and

=[] (-4

n<g
All congtants implied in the symbols 0, < will at most depend on z and
we shall not mention this thronghout the paper.

TuEorREM 1. For all ¥ = 2 = 2 we have

(L) 8(t,2) < TV TG+ R Q) loga) ™+ 3 iR (o, D),

i)
@) Sty 2> TV E) (76—~ FQ(s) Gogy) Wy— 3 R(S, B
&
For all 8 =1 we have
{1.6) Q(s) < exp{—~slogs - slaglog3s 4 0(s)}

amd for 8 < logz, we even have

A7 Q)< @XPl—310g3—810810g33+slogex—}—0(IOglogasn.

logs

The functlons F(s) and f{s) are the continuous solution of the fol-
lowing system of 11nef1,r differential-difference equations

(1.8) r"F(s) =4 for g« -1,
§f(s) =B for ¢ f,

(1.9) l (SHF(S)), = ”l‘smnlf(s —1) for e g1,

. (s"f(8))" = us*"'F(s—1) for s> B.

-The definition. of the numbers 4, B and g (sieving limit) reguires
gome results about the solutions. ¢(8) and h(s) of
(sg(8))" = wg(s) +ug (s 1),

(1.10)
(sR(8)}" = wh(8) —wh(s+1),

icm
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g0 we give here only a few properties, referring for details to Section b.
‘We have '

A1, B=0, pg=1 ifx<l/2,
A =20 mVe, B=0, f=1 if x=1/2,
4 =1, B=0, p>1 ifx>1/2.

Moreover, F(s), f(s) are monotonic (decreasing and increasing respeeti-
vely) and such that

0< fley< L < F(s) Tfor s> 8,
F(s) =1+0(e™%), [f(8) =1+0(e")

I am very grateful to the Scunola Normale Superiore di Pisa for pro-
viding me with comfortable conditions in which to work. I should also
like to thank Francesco Romani from the Istitute di Elaborazione dell’
Informazione for doing the computer calculations in Tables 1,2 and to
Professor John Friedlander for his help and valuable discussions.

a8 & 00.

2. Corollaries and comments

2.1. The sieve of dimension » < 1/2. We have § =1,

. @ du
- fe "z exp (u!e “Y)dz

0

(2.1) A =
I'(1l—=») o P e ., Gu
Ofa E cosh(wzfe %)d’z
and
i
(2.2) B = i

) o . -} d A -
[ e ?z *cosh (:u fe”"‘——ﬁ)d.z
] P U
Tomoran 2. Suppose that
(2.3) |B (.t d)} < o(d).
For_sufficiently large X and all # < X the smftmg fwwtwﬂ 8(«#, &) is posi-
tive. More procisely we hove
(2.4) XV (2 ){BmceVA(IOgX) N < §(at,8) < XV(2) {4 +oeVE(logX)™}

uniformly for all X >z 2 2, where § = min(l —2x%, 1/3) and c i & constant
depending only on .
Proof. We have I'(s)

error term

s:A and f(s) = B, so we must estimate the

< X, d|P{z)
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In the study of sums of multiplicative functions, it is often conveniens
to define the generalized von Mangoldt function 4 by

w{d)logd = Za) {nii (—g-) .

nld

Since o is multiplicative the support of 1 is contained in the set of powers
of primes. It is easily seen that A(p) = w(p)logp, 80

S o@logd = Y o) 3 2Ams D o@) 2 oplgp.
d X [ maXin : Hrin e X
alr(z) 7l P(e) mnI(z) all(z)
Trom (1.3}, by partial sumniation, we obtain
. D o(p)logp < Ko
n<e
and henee
S w(dlogd <« KX D' w(m)n < KX|V(e) <X (logX)",
A= X Thtig. X,
dlP(c) nlP(z)

Using partial summation again, we obfain
B < E*X(log X))t < KV (2)(log Xy,

This completes the proof of Theorem 2. _
TEmoREM 3. Suppose (2.3) holds and, in place of (1.3}, &t holds

2%@ logp = o(loge).

p<z

@.5)

As X — oo we have

_ 8, 2) ~ XV (2)

uniformly for all 2 X, '
Proof. Assumption {(2.5) implies (1.3} for arbitraxily small x5 0

with the constant & depending ow x. Therefore, by Thoorem 2 It is suf-

ficient to prove that

limd == and  HmB == 1,

PrESTH - wmal)

But this follows easily from (2.1) and (2.2).
Remarks. Thoorem 3 was fivst proved by Sullivan (unpublished)

by a different method based mainly on the Fundamental Lemma [B] of
Halberstam and Richert. '

We do not know whether the estimates (1.4) and (1.3) are the best
possible (so far as the main terms and general sequences are considered).

icm
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We showld mention that the Nratosthenes-Legendre sieve (see [107)
yields the following asymptotic formula:
Asstumne that the elements of o are not too large; that is

maxle] € X
el

and the error toving B (.7, d) satisfy (2.3). 'Next., instead of (1.2) and (1.3),
1
assume 0 < w(p) < (1 e M) p and
1 o)

-1 Z P 0ep —nlog — < K
Uy . w
for some congtants K, L and M = 2. Then for all X > 22> 2 we have
B, z) = XV ()| E(s) —}—0(32(10gX)2”'1)},
where § = log X /logz and F(s) Is the continuous solution of the following
equation:
s H(8) = (1l —x)

(B (s)) = ws* B (s—1)

for 0« 81,

for s> 1.

The function J(s) satbisfies

F(8) < H(s) < F(3)

and E(s)— changes sign in each interval of length one. The latter fact
follows from

8 ) .
sh(s)(B(s)—1} = —n f h(m-+1){E{e)—1)ds  for s=1
-1
and _
> : F g
{2.6) his) == f (axp( —§ % f R d%)de;» 0.
0 i

2.9, The sieve of dimension 1/2 < #%< 1. The cases = =1/2 and
s = 1 have boen considered in [97 and [127] respoctively and the results
obtainod are hest possible. The examples showing optimality of (1.4}
for x == 12 (see [9), [167) and for x = 1 (sec [15], [16]) are quite differ-
ent and none of themw can be adapted.for 1/2 < » < 1. The feature of
these oxtreme cases is that hoth x and f are simulbaneously rational.
For 1/2 < 2 < 1, #—1 is the zero of

] 2

‘ . 1 | 1 ) } .
: B S 270 aw| —1le e
B0 g0 = [ 101'[)(fo »

2
0
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50, one can expeet that for rational » with 1/2 < # < 1, the sieving limit g
is transcendental. It seems to be very diffieult 10 consgtruet «f and P
transforming the estimates (1.4) and (1.5) into asymptotic formulae.
Some speeial values of x from the interval 1/2 << # < 1 are very import-
ant for applications. For instance, il f/Q is Gulois extension of dogree
7> 2 then the number of those elements from ./ which are norms from, K
is expressible by the sifting function S{./, P, ¢} und the density of P
it 1—1/n. "As an example we quote from [11] the following result (2/3
dimensional giove);
Let K/Q be a cubic normal extension with (*(uuim*tmr f. Jach suf-
ficiently large number » satisfying the CONEITIENCO

= N o+ N b{mod27)

with (ab, 2§) = 1 is expressible as o suin of two novins of integral ideals.
Recall that B = 0 and f—1 iy the root of g(s). For 4 we have the
formula

H-1
(2.8) PR
h(p—1)
Using (2.6) and (2.7) computer caleulations give the following approxi-
mations,
Table 1 Table 2
0.55 1.0340 1.6066 1/2 1 2 (e [y
0.6 1.1.042 1.7264 213 1.2242 1.9134
0.68 1.1922 1.8631 3/d 1.3981 2.2020
0.7 1.2912 2.0212 4/5 1.6107 2.4082
0.75 1.3981 2.2020 hi6 1.0884 2.0614
0.8 1.6107 2.4082 1 2% 2o
0.80 1.6279 2.6431
0.9 1.7489 2.9106
0.96 1.8731 3.2152

We have had the opportunity to see the unpublished cormputer ealenlptions
of' Diamond and Jurkat for the sieving limit of the Buchstab iteration
method. Their resulty are vory close to thoso given in Table 1, thus sugges-
ti}:xg that the iteration method leads in the limit to the same funetions ‘F(s)-
- and f(s). Note that the upper bound is boetter for all s (even for & = 2)
than that given by Selberg’s method, oxcept in the case x» =1, 8 2
when the resulfy co-incide. T

icm
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9.3. The sieve of dimension » > 1. In this casoc the Buchstab iter-
ation method leadg (in the limit) to better results if it starts from the Sel-
berg upper bound

1 (¢, )
p g XV e Rt ")
o) Stena<xvi S+ LRl PR
i
which for small & is better than (1.4) (for details see [7]). Here the fune-
tion o (8) is the continuous solution of

RN

sz QRGP (04 ] for <2

pups) (1) or 0 <8<,
(¢ % o(8)) = —w™"'o(s—2) dor s>2.

The first iteration step (for all dimensions) was done by Ankeny and
Onishi [1]. Their sieving limit satisfies
v, ~nK Al K 00y

whers
log 2

iz
7 = 20XP {f (e —1) w}-&f- wl—loglogz} = 2.44.,.

For hurther itorations see (2], [13] and [14].
Wo shall show that

(2.10)

» »
where ¢ is tho solution of eloge = o+1 {¢ == 3.5911...).
2.4. A Fundamental Lemma. It i3 cvident from the above that
Selberg’s sieve is very strong for large dimensions and small 8 (at leagt
for 8 == 2). Howuver the function F'(s) tends to-1 much faster than 1/o(s);

loglogs
B (8) = 1.1”,0‘\(1){ ~glogs— sloglogs - slogex -+ 0 (?ﬁlggf )},

(2.11)
a(8) == 1~ exp{ ~}elogs-~—}eloglogs-+ a{s)},
and thug, for sufficiently large 8, (1.4) is sharper than (2.9).

Frony (1.4), (1.5) and (2.11) we obtain

Turorey 4 (Fundamental Lenuma). Asswme (1.2) end (1.3). For
all wze=2 we have

- ul

©9.12) Mo, 2) = XV (@) {L+0,eKQ(8)}+0, Z

P

) satisfies (1.6) and (L1.7).

(o, ),

where |0, < 1, s = logy/loge and @(s

I ®
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Remarks. Asymptotic formulae of thiz type were investigated in
greater detail in a series of papers by Halberstam and Richert [4], [5), [6].
Their result i3 esgentially (1.6). We should mention, that it |K(.«, d)|
< w{d) then the remainder term can be easily estimated ag follows:

Somsy PR Loayvie i ogar,
<y diP(s)
dlE(z)

3. The weights. We precede the construetion of the weights g, (trune-
ated Mobius funeion) by some combinatorial jdentities for tho sifting
funetion 8(+, 2).

For a given sequence of veal numbers {A}gpe sueh that A, =1
and 4; =0 for d> y, we construet two sequences {p lape i {odymg
ag follows: :

Let o, =1 and o, =0. For d>1, d=0;...0, " = .= Py
let '

ooy = IY}WL-"W and oy ss (LA ) I] Rogenri

leglanr Lagbezy

~ Let p(d) stand for the smallest prime divisor of ¢ if @ = 1, and anything
you like if @ = 1.

Lemma 1.

Bty ey = X ul@ ool gl + ) w(d) o 8/, (),

A7) {17

{3-1)

Proof. Thig follows from a simple applieation of the woll-known
Tiegendre formuila

B(t,2) = D) pld)|ery

Ve
to 87, 2) and 8«7y, p(d). .
The identity (3.1) may be found in a stghtly different fovw in [7)
(see formuls 2.1.8).

' _We are not going to use any esbimabes for S/, p(d)) oxeoph the
trivial one 8.7y, p(d)) = 0. Thus, in order to got an upper hound for
S, 2), we murb imposo
(3.2)

w(doy <0 for all AP (2)

and to get a lower bound we must impose

(3.3) uldyo 20 for all 4P (2).

icm
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Writing

iy o (d)
2l o E ke o
St = D uld)of =
a2
where the signs +, ~ stress the conditions (3.2) and (3.3) respectively,

we obtiain,

. e
B = M of IR, d),
a1 (2)

and.

{3.4) 8{et, ) < X§*+R",
(3.5) Qsty2) = X8~ —R".

Tt would be very intoresting to find the weights A} and 47 optimizing
(3.4) and (3.6) but thiy seems to be very difficult, A natural reasoning
based on the concept of the sleving limit (for the definition see [1671)
suggests the ehoieo

0 i u(d) =TF1 and p(d)=y/d",

1 otherwise,

whore 8 (= 1) and ¥ (= #") are parameters at our digposal. We have
(Lo puld))of = 0 o, the conditions (3.2) and (3.3) are satisfied. We have
also |o¥| << L and of = 0 if 42 y. Henco .

B < Y |R(A, d)].

thazyy
&P {e)

4. Recurrence formulae. For V{z) there holds an identity gimilar
“to (8.1), namely

(3.6) a3 =

3.7)

w(d)

-y tw(d) -
Vie) = > uldies T+ Y pdoa=g= V().
(=) AP
Henee _
{1 T Y 1 @ (P -o- Parr) V(Do)
tual D] Sove P <8
.’.’721,‘411’%4.1---17]‘"-‘:Wrnﬁl'ﬁ"
.?73'31-4_ Y ERED Py
V(@) }_J Si.(5), 8y,
and
c ; cee Pa)
{4.2) H e V(g) ! ! M V(p2)
P Do
el PapCane B =8

phpyg oy <p,0si<r
;ugwfnz,,.. Y
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Note, that in both cases, 8" and 8, we need only upper bounds for SE(8)
and in copsequence only one- H](lf‘d estimates such as (1.3).
Let us denote

.-Til't-,z( ) w= Su[,s( )F ¢

2,222 8=

ot S (s)

logyflogz > -1, B0 and
T5(8) == 810 (8) |- oo 4 835, (8)

2222, 8 =logyfloge = f, R 1.

o{8) =2 0,

for all y =

for all y = 2,
L1
For sz f+2r- -*%5“‘, wo have 8

For f—1 <8< f+1, we have

48 T =S = )

ylifﬁ'?’l)f{.;u:t

= V() Vg5,

It is easy to see that

- W w logy
(4.4) T3 (s) = h) j_’(__i’)ﬂ 1,,( 1&(}//!) )7 for s f, R 1,
yHE+RE) oy 4 oRp
u w - logy
(4.5)  Tfels) = o) ’n.p( lg;{:{fi_), for s f 41, Bzl
AR+ Ny er .
and

(4.6) Tha(s) =15 ()T, (B+1)

5. Some differential-difference equations

for f—-1l<e<CB41, Rz 1

5.1. The conjugate equation. It the study of the ditferential-difference
equation

(6.1) p(8) = —ap(s)—bp(s—1)
it is useful to consider the “conjugate” aquation
(5.2) (s4(9))" = ag(s)-bg(s--1).
A justification is offered by the integral formula

} '—-bfz’

which is valid for all sufficiently large s. Although p(s) ean be a very wild
function, ¢(s) has always & very smooth behaviours ¢(s) & ¢={0, o)

(5.3)

g,* ] m..|u..(}
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and g(s) ~ "™ as § -+ co. For our purpose we need (3.1) with & = —x,
—x—1 and b = —x, x. Hopefully, other cases will find application in
different sieves, s0 we eonsider (5.2) with arbitrary cocfficients a, b.

Tt iy easy to soe that if @-4-b = n-+1 is a positive integer, then ¢(s}
is a polynomial of degree n,

L
(l s,

(L £}

q(s) =

where ¢, = 1 and, for all I > 0, we have the recurrence formula

la; = ~b 2 (i) a.

i<

Examers 1, For a+b = 1, 2, 3 we have

g8) =1, q(s) =s—b, q(s)=(s~b}—D2,
respectively.
TXAMPLE 2. Tor a = b == » = 1/2,1,3/2,2,6/2,3 we have
q(8) =1,
q(8) = 8
gle) = 8¢ -3s+
g{s) == 682+93-~
g{s) =& ~-«:LOs"—l—“E’»ms'2 By,
g(s) = & —158*+758% 14582—{-903———-.
If 8 > 0, the function
g
1—e
— =l —
@ exp(sz-&»bf " du)

tends exponentially to zevo ag Reg— -—oo a.nd Tmz remains bounded.
Thus, using integration by parts one can check that

JTetb) 0o (sz+b 1o
s =G f el [

du )dz

satigfioy (5.2), where @ is any curve of the shape
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and the power 2% ig defined by exp( —{a+ b)Logz), where Logz 18 the
principal branch of the logarithm. We have

24
8¢ (8) = F(a”{ﬂ,b)le“““bexp (b f L dfu,) de™®
5

27h 1/

T(@4+D) £ o smam ( 1
= f@ dz exXp ?)bf = du
_ La+d) 1 . L=t de
= - f(l—a—be)exp sz-l-boj . ‘Z“”")';?m?zr'

= (a—1)g(s}+bg(s+1)

and, hence (5.2) holds.
Expand the function

o F1—g
R(z)=exp(bof -~ du)

into the Maylor series

i
B(z) = ? EO(0) 5 +By(e), say
I
TN '
For ¢ > 0, wo have

1 - ) ) sl_y
2mi j(e Sl = T(—7)

K3

and, for any integer 1> 0,

Ia-+b) (a -ml)
Ulfa+b—17 ~\ 1 [
Hence, from (5.4) we get '

“"’? - 1) R (0) s+ b—lfl_i_ .1_1_(_0‘._"_@_2

2008

az

qls) = 2 .j e"‘”RN(z);m.

oI N

We have RN(z)‘ < [21%*" as #-»0, 50, if N> a--b—2 one can change
- the contour & into two negative half-lines with opposite orientations.

On the lower half-line we have
z“.“*b = exp{—(a+b)(log |¢| — i)}
and one the upper half-line

2

b = exp{ — (a- 5)(10{; ol i}

icm
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It follows that

by f (a4 °-°
Picfl"b) % ¢y R () de = - (cil_Q pinm (a4 ) J e T Ry (—2)dz.
Do, (i . :

Sinee I'(@--b) (1~ a~-b)sinn(a-1-b) ==n wo have proved the following:
leraumse: :
Tauma 2. Por any integer N = a-+b -2 and oll s> 0 we hafva_

(B.5)  qle) = Z (“*"”z’*“"l)ncn>(0)sa4b...ln-zvgﬂ

AN
1 3 iz
e - e R — B) e
| IMl—a—b) .)f (=)
CoROLLARY 1.
(5.6) gs) ~ ¥t gy 5> 00l
Conorrary 2. If a< 1 and a--b <1 then
(1 —a)
8) o g L™ g g 0.
Proof. It is woll know that
@®
1%
lima~'exp ( f du) = &,
00 g u
Hence, from (5.5) we obbain
e
1 . t\? 1—e™™
[m 81""“ 8) == ]im et s ot et e f g“"‘t"a(—-—a) exp( bf dau | dF
31-044 Q( ) gl - I(l»-a——b) i 8 7 W
o " b T(l—a)
B e e e I's t"'adt == @ | S WA A,
L(L—a—b) of Ll —a—b)

5.2, The zeros of g(s). It follows from (5.6) that g(#) can have only
finitely many zeros. : ‘
Lvma 8. If b <5 0 then g(s) 45 positive. ' o
Proof. By (5.6) q(s) is positive for all sufficiently large s. Letting o
be the largest voot of g(s), then g(a-+1)> 0 and g’ (a) 2.0. 1f b < 0 this.
is in contradiction with tho differential equation wyhich gives

ag'(a) = bgla+1).
If b = 0 then g(8) == g and the lemma remains true.
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LeMuA 4. If a-+b < 1 then g(s) is positive.
Proof, Thiz follows from

[= =] o]
1 ; ol dz
\ 6 e [ oxn ] —sprn [ g ) 22 ‘
5.8)  ¢ls) .r(.l.mawb)nf“p( 55+ uj - m;)zm

Remark, The derivative ¢ (s) satisfion (5.2) with first coefi
ciont @ —#n instead of o and it differs from tho corresponding g-funetic
by the factor (a-+b—1)... (@--b—n). _

Cororrary. The number of zeros of ¢(#) 1% lesy than a .

LonMA B, Jf b= 0 and 1 << a-+-b < 2 then q(s) 48 increasing and h
azero o < b.

Proof. By Lemma 4 ¢'(8) > 0, 50 ¢(s) ix increasing. We have

| 1 > *
(5.9) ¢q(8) = s™P 1 T~ abj j ¢ ”’{oxp(b( f w-~7£;»~«~d4»b) }—f~

whenee lim, g(s) < 0 and lim. g(s) == oo. Therefore g(s) har oxactly ol
Ge=(-H Yraow -
zero. By Lemma 4 ¢"(s) < 0, so the differential equation g‘iveﬂ

(510)  sg'(s) = (a—1)q(s) +ba(s+1) < (a-+b~1)g(s)+bg (5).
Inserting § = o wo obtain a < b.

Lpymyva 6. Lel b > 0 and a--5 > 2. If a and a, are the largest zeros
a(s) and g’ (s) respectively then a> a.

Prooi, SBince, for s > ay, g(8) iz increasing, we obbain
i

0= ag'(e:) = (e—1)g(ay) +bgqla, +1) > (a--b~1)glay),
‘which gives the resulf. '

LeMMA 7. If b> 0 and 2 < a+-b < 3 then the largest zero o of gf
lies in the interval

{.11}) b<a<bt(fbla-b—2)"",

Proof. Sinee ¢'(s)> 0, we have inequalitics opposite to (5.1(
In particular o> b. We have also

3/ (8) = (@~1)g(8)+bg(s+1) < (@-+-b—1L)g(4)--bg'(8) +3bg" (8},
and, sinee ¢'’'(s) < 0,
sq'(8) = (6—2)¢ (s )4-0q (8-+1) < (a~-b—2)g"(s) +-bg" (3).
Hence, for s> b, .
{5.12) (s —~B)*—3b(a-+b—2))¢'(s) < (a-Fb—1}{s—b)g(s).

~ Bubstituting s = a, the lemma follows, '

5

: .
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Lamaia 8. If b > O and a-+b > 8, thon the largest zero o of ¢(s) satisfies
(5.13) o> bA{§b(a+b—2)e,

Proof. If ay, a, sband for the largest zeros of ¢'(s) and q"'(8) reapect-
ively then o> a; > a, and wo bave the Inoquality opposite to (5. 12).
In particular, we have (5.13).

Remark., The largest zere of g(s) is simple and is a continuous
function of @, b whon b > 0 and -0 > 1.

5.3, The largest zero of g(s). Asymptouc formulae. In thiy special
cnse (@ == b w= ») Lommata 8, 7 and 8 give

0 < o<u for d<n<l,
n< o< uAValw—1) for l<n< R
a> wtVulx—1) for w> 5.

Tor % ==1 and % == 3/2 we have ¢ = 1 and ¢ = (3 +1/§)/2 respectively.
Goenerally, if 2% is w positive integer then g(s) is a polynomial of degree
2% —1 and with rational coeflicients. Therefore o iy an algebraic number
{soo [16] and [8]).

In the next two theorems we shall ﬂhOW that o tends very rapidly
to zero ag % -» 4 and it tends linearly to infinity as x -+ oo,

THROREM B, A 2§,

o~ o” (2 - 1)8,

- du) -1}

we have 7 (2} - ¢ a3 # -+ oo, whence we obtain

Proof. Tor

r(g) = 27" { [54)) (x

" r P —
o s v f T (nm) [ Ta— 6"’“'{1( ")
Y i

12 -
(L2 Tisyy ~¢ T HE—1)

a8 % wr =, Thig completos the proof,
Tnworsy 6. We have

a = ox-- 0 (%)

where o in the solution of eloge == 61 (¢ = 3.6911...).
Tf apposes that the two lurgest real zeros of g(s) are very far apart
and this makes 6 possible to loswlize the largest zero by estimating g(s)

G~ Acln Arvilhimetlon XXEVIS
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in vicinity of e Using formula (b.4) we ghall ghow that g(s) << O Lor all
&> ono¥® and g(s') < 0 for some & = ex-- O (™),

Tt will be shown that the part of the integral in (5.4) corvesponding
to a small are of @ near z = 7 dominates if the radius r is a suitably ehosen
function of s.

Let -ug denote

At

wemenen (0
ot

12) = so--n .;f

The part of g (s) corresponding to the half-lines (—co, —) can bo majorized

by
rex I P(E9) e,
----- = —g) MRl g, i b B gl
(5:14) 2 OJ; (—ey o< s
The part of ¢ (s) corresponding to the cirele z = 76, —m < ¢ < = i§ equal to
(5.15) 'F(sz) i fexp(l(re““) — (2% — L) dep) dop
L

Writing L{%) = [{re*) we obtain,

S —

Dy =L(0) =18 +u | i,
| 4

L, =I'(0) = rs+x(l—~¢),
Ly = L7(0) == rg —ure”,
Ty = L' (0) = ps —ur(r+-1)¢"

We shall choose » and & to satisfy
(5.16)

We ean then write

l<r<2, §>2x and ILy>L1.

lip) 7, ()

(65.17)  L(ig) = ~| 'upl'qwl wrb 2o Jaat Of (4 9)9%)
and _
(6.18) L(ip) = Ly-+ipLy-+ g~--~3—L ~l«()((x 8)e9).
Lnlvuvm 9. For —1 < @ T We have
(3.19) Re L {ig) < Lo — 282 (3/2) L.

® ‘
Proof. Hinee
T
U2) == 42— \ﬂ’ e
£ neml
e ]
we have
e O
Rel(ip) == re mmrpunz g SORIP
enl
Feen )
(=4 e
L{#) ~ Zrgmin®( |- 22 Z MMMMMM ins
®[2)- e Sin%(np(2)
fm],
e
g0 L(p) - Brenind (p/2) - 2% > o SN2
w2 ad el @/2)

= Ly ZHind(p 2)1,

TmmyA 10, We have

{6.20) {7 5

Proof, Ohooke o == in Lomma 9.

Lzvma 11, There emists 6y > 1 such that for all $ > ox-+ o, g(s)
is positive.

‘f; IJO h 21}2 B

Proof, 8plit up the integral (5.15) as follows
7 () 1 (=13 -
o= ] + [ - w= 8y +8a+8,, say.
Tt - ey HE by B

' Ingerting {5.18) into 8, and cwtumtmg 8y, 8; trivially by means of (5.19),
wo arrive ab

™ ™ [ fpﬁ l
fa—« jtaxp11’20»|M'.€q9(1.)1-—~2wi~1)-m-:El}g’dfp»l-
A
" .
>i'(‘)( j (xww)rp“exp(L’u-—-.‘zﬁilﬂ (gi) La) drp)
LT ’

v <
ez f exp {1}0 b 3 (Lig =2 o 1) o —%—Lﬁ }d«p + Of (% -+ 8) L7 * 6%0),

Henee, if wo define » by

(5.21) Toy = 91
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and combine (5.14), (5.15) and (5.20) we ohtain
(5.22) g(s) = 2" T (2 VVRI(E) 60 Lig Y+ O (-t 8) L 650 Aoty
It is easy to sec that, for 8> ex-I- 6% #® and v defined by (6.21) the con-
ditions (5.16) are satisfied and the error term in (5.12) iz small comparod
to the main term. This completes tho proof of Lewmma 11,

Liiisa 12, There ewists § = eu O (5™ such that g(s) < 0.

Proof. As in the proof of Lomma 11, by (5.14), (5.15), (B.17), (5.19)
and (5.20) we have

(8.23)  g(s)

{2) 3 l
= 2—q~1*2"nj cxp{l)n g { Loy == B - 1) 2 ijm L,‘qu:-‘l‘
+0( f %+ §) gt exp {LU—Bsm“ ( q;) I m} dqp~|m%"1e*’40”2-ﬂz}
T2 3 A i
- (Ex) e [j mp{LM ip(Ly — 2tk 1) = 2oy “"E“I"’} dip -

“i ()(( _l__ )E;S,’E (5”’)]’

We shall choose » and ¢ in sueh a way to make the integral nogwblvv
The following result ensuves that we can do this,
LevmwvA 13. There exists a cubic polynomial w (@) == ¢qa® -+ Co® 4 0 ®
with positive coefficients such that
o
h= [ e®ay <0,
-0
Proof. One can prove that
e P00y -T‘;m (e By i =2 O
[ ~
and Lemma 13 follows.
Now, returning to the proof of Lemma 12, we define » and ¢ ay the
solution of
EFES T 178
(5.24) Ly = -_»’.02(61;’) , Ly = 2u— 1 ("é{ﬁ) .

€y Oy
One can easily check that the numbers » and &, so defined satisfy

po=2-00 ) and 8 = e 0 ()

BRosgger’s ai
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where (v—1)¢" = 1. Henece » < Iy < » and the conditions {B.16) are

satisfiod.
From (5.23) we obtain
I ool 6(‘ s R

and thiv is negative. This completes the proot of Lemma 12 and of The-
orem. 6.

6. The functions Q% (s). Assume » > } and let #—1 be the largest
root of g(s). Let Q¥ (s) and @ (s) be tho continmons solution of

g () = fH for s < B--1,
FQ7(8) = (f—-1)"*  for s < B,

(#1QT (8))! = —ws"Q~(s—1) for s> 41,

(8107 (8))" = ~ws*QT (s—1) for s> B.

This section 18 concerned with the proof of the following result.

Lmvima 13, The functions Q%(s) are positive and, for s =2, satisfy
the conditions .

(8.3) QF(s) Q7 (s) < QT (),
(6.4) Q1 (s)slogs € QT (s—1) < s2Q7 (),

(6.1)

(6.2)

(6.6) Q% (s) =axp{wslogSWs].oglogs-}-slogex-|~O(s lofi‘gﬂ)}.

@+ (s) will Do used for the majorization of the error term @(s) and
of the funections J(s)} -1 and 1 —f(s) ay well,
Tt 18 convenient to introduce the functions
a(8) = 5~*HQF (8)+-¢~ (s)),
b (8) e gl (thv (S‘) ——'Qm (3)) .

Tov f=s= f-k1 wo havo

(6.6) FH () == R (e ,8“" f vt —1) b,
(6.7) D (8) = f% — (B L) H L [f, (t—1)"%'dt
and, for § > g1 _

(6.8) 80/ (8) == ~ (k1) 4 (8) —na(s —1),

(6.9) ab" (8} s (s 1) B {8) 4-2eb (8 — 1)
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The conjugate equations are ig increaging for £ f sinco
G () = (--1)G(s) +ul (s+1), ‘ o
(6.10) ( o T AW Lkt N
(sH ()}’ = (x+ 1) H(s) = (s+1), i\t] Ve
80
Hence () > 0 = 2. By (6.17) and (¢
(611) G'(s) = 2ng(s) amd  H(s) = 1. (8) > O(ff) == v (6.17) (6.18) wo obtain
Henee, there exist two constants ¢, and ¢, such that 9 ( B )” . ( # _)“ (1 _ G -'J))
" ‘ f—1 fi~1 G(f)
(6.12) sa(8)G(s) = u [ (@@ (@+1)do-t-o, 1 e
51 - m [ (-1 OM > 2 [ - 1) d
8 # # .
(6.13) sb(s) = —x [b(@)dw-to ‘
' -1 This completes the proof of (6,16) and (6.15),
for all s f41. If we substitute s == f--1 and uiullm {6.8) and (6.7) ‘ Since a(s) and b{s) are continuous there exists x < 1 such that (6.14)
we find that. e, = ¢y = 0. holds for all 8 =< 8-+1. Now, we shall prove this is true for all s. Suppose
To show that Q= (s) are positive and have the same order of magnitude that the set {87 [B(8)| 3= na(s)} I8 not empty and dencte by u its infimum.
(see (6.3)) it suffices to prove: . Wo have % > f+1 and [b(#)] = nae(n). From (6.12) and (6.13) we obtain
LA 14. There ewists o constant 0 < 1 such that u y ‘
(6.14) - [b(s)| < m(s) |1 b () j (b{a)] do << j a () da < noe J afx) ~—~Ej;(-:;) )dwmnua(u),
Proof. First we shall prove that ' 1 -l u=1
(6.1B) [B(s) < a(s) for all s f+1. which is a contradiction. Thig completes the proof of Lemma 14.
The inéquality —b(s) < a(s) is evident. To show b(s) < a(s) it sufficos - Tmsmva 18 For & 2 2 awe have
to consider the worst case s = §-4-1. This iz squivalent tio ' als—1) < sta(s).
' p1 . . L N
_ _ g\ Proof. It is sufficient to prove this for s = f+4; TFrom (6.8) a(s)
. 23 #—1 . 2
(6.16) # ﬁf P < (_ﬁ”:f is increasing am] by (6.12) we obtain .
Integrating of sa(s)G(s) > Wﬂ(**i G(s)
- - em e 1 .. St LARPPL Lot §
(577G (8) =wsT @ (s 1) and (7Y = —asT" for ¢ » f--1. This completos the proof.
from g—1 to § we obtain : TasvmA 16, Theve eists e O such that (es)’a (5)s™*" is decreasing for all
A41 . : :
—_ gy . g 8 5’3 /3 "E“ 1 +
6.17 G — (B —1)""G(f —1) == e 1
( ‘ ) f _ (B)—(B—1)7G(E—1) == ﬂf (1) () dr CoROLLARY, lﬂur B o 2 we ha/w .
and o | | als—1) » a(syslogs.
(6.18) B (B 1) = w-xf w—1)"""dp. Proof of Uorollary. or s f+1 we have
- P 6,1 w1 mm -1
Since f—1 ig the largest zero of G'(s), G(s) is increasing for ¢ > -1 and, _ (6.19) | ( (3)) xs"a(s —1) .
by (6.10), G(f) = —G(#~—1). In particular, the function and henco writing 7(s) == (ss) and A(s) = a(s)r(s) 8 we obta.m

BV, 6 Ay Ly KA
O(t)*(t) (]+E‘—(FT) (6.20) 7 & = T BRRRICTNE
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i !

A
Since —T—(s) = log(ees) and I(s) < 0, it follows that
T _ .

(s—1}

for all s = f-+1.
sa(8)

> log(zes)
Proof of Lemma 16. Suppose » is the infimum. of those numbers
& = B~-1 for which A (s) is not decreasing. Thus, by (6.20} we have
v’ xo(w—1)
(6.21) T (u) = W
and, gince £ can be chosen arbitrarily small, we may assume « is suffi-
ciently large. From (6.12) we obtain

uG(w)a(u) = [ a(@)@z+1)do < va(u—1)6 (u+1) < 2na(u—1)G(u),

a1
'

ie. —— (u) > 1/2. Hence
T

’ 4

¥ ‘ 1 7! %3
- (w—1) = —;m(ea)+log (1 ———u—) > w;_(u) prc

Using again (6.12) we obtain

WG (w) () — % fa(m)G(m+1)dw<;cA(u—-l)G(u—}-l) f ?”(m;ldw

U

U1

We ha.ve

—1 1 7 1 ¢ . 1 w3 T\
( <w>) Ty D> s i ()
" whence . '

r ua(e) < %1 G(u--1) (1 r(u—1)
v xe{u—1)  w—38  Gu) \ 7(u) )
u—1 @u-+1) 1

(1_%.)“

w—3 G(u) -

provided & is sufficiently small, This is in contradiction with (6.21) and
the proof of Lemma 16 is completed.

Remark. Similar, but more precise calculations lead to the following
result: There ex1s1ss & constant ¢ such that for all ¢ > 341 the function

logs
%1 Mten-hd ~ceflog ¢
8 .a(s)( o )(Iogs) .

is decreasing,

icm
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To ecomplete the proof of Lemma 13 it remaing to ghow (6.5) or the
game for the funetion. a(s). From (6.12) wo obtain.

4]
L]

i;ﬁz

alw)de = (8- O(1))als)

provided s i8 sutficiontly large. Hence, » standard argument shows that

. loglogs
a(s) = cxxp{ —glog s — slogloge - slogex -0 (s m»—)}
7. The functions T5(¢), Let » = 0 and
0 if x1/2,
il o= the largest zoro of g(s) if »>1/2.
Define :
(fply—g*  dor f—1l<sLB+1,
S5 6) = o
0 for s > f--1,
S5 = [ (¢=1) Sl -1)ar for s 8, R=1,
a
8 (8) = J (b 1) 87t —1)dt*  for sz f+1, R=1,
&
85 (8) == 87 (41 for f—1 <8< f+1,
and
R _
(7.1) Ths) = 3 8F(s) for s>p—1,.
Pould
&
(1.2) (s = 3 8 (e)  for s>

Pren |
I i cua.ay to seo that T/i(s)
[IB'““’ “;f””: 8-t H"l I-E.R] and satisly

d-d

0o

are continuous with the compact support

LN it
) =« [ (.1,w1--;) T at= D 828,
L

dt

(1.3) Th(s) == f (Lwl) Tili=1)==, 828+

k)

T4 (8) 8% = (§+ 17+ T3 (B+1),

f-l<s< p+1.
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In this section we prove that the series (7.1) and (7.2) converge and examine

the limit fonetions;
141
T*(s) = limT%(s) for s> f— S
R=oa 2
From the previous section we reeall that, for x> 1/2, thore exist two
positive functions g% (s) = ¢*7 Q% (s) such that
1-k1

g% (s) = constant  for 0 < s -~ —5
| A A di 1+1
(7.4) qi(s):xf(lu»«{) q*{twl)T for s}ﬁ-{-__’;f____

It will be shown that ¢* (s) majorize T%(s). Since ¢%(s) is not defined if
% < 1/2 we choose, in this case a g’t (s} eorresponding to some %, §lightly
greater than 1/2. For thesc we have

g* (8) = constant ‘ for 0 < s 1+ —L";{;—] N
(7.5) '

1 r 14=90 . 1
cw>5[ (-3 ce-nd sz 1EL

instead of (7.4). This is an immediate consequence of the fact that
Iim 8, = 1.
=gt

' Having chosen the functions ¢=(s), we shall prove

Lumma 17. There exists a constant ¢ > 0 such that

(7.6) TE(s) < eg=(s)  for s > =

Proof. Since ¢*(s) is positive and T%(s) havo compact suppor,
the result is true for any fixed B. We shall show that if (7.6) is frue for
T% 1(s) (regpectively for T (s)) then it is true, provided e is sufficiently
large, with the same constant ¢, for T (s) (respeetively for TE(s)

From {7.3) and the inductive assunyption (7.6) we obtain,

o ~ 1y di
Ta(s) < ex] (1——u) g (E—=1) < eg (8)
: 13 t
for s> g. This follows from (7.4) i » > 1/2 and from, {7.0) if » < 1/2.
The same argument applies to Th(s), s -+ 1. Yor s = f--1 we must

- save a little. We have

THB+1) < ox f (1m4:‘—)‘n q (-;:—--1)-3:3 < o(l—8)g' (B-:1)

B+1
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with somo positive 4. This Lollows from (7.4) if »> 1 /2 and from (7.8).

y—w—-1

. ' 1\
s 1/2 because fho kernel (.‘Lm*t") is less than (1—%—) and

~9/10
(1_-'?) respectively. Henee, by (7.3) we obtain

v

Th(8) < (B2 TH(B4+1) < (B+1) Fe(1—8) gt (f+1)

< ag* (1) = eq™ (s)

for f—1< s p41; provided o iz sufficiently large. This completes.

the proof of Lemma 17,
Now, it is a simple matter to dednee the following result.

- LmvmA 18, The series (7.1) and (7.2) converge and the limdt Junetions:

T*(s) salisfy . _
0 < ,T"“(s) < SNJ’"IQ# (S),

TH(8) - 8% == constant  for s < f+ i:-;:—}-,
(7.7) :

. R dt
D#(8) == xf (l_mém) Tq:(t-—l)--? Jor 8,>,f3+}~:§}—.

In fact the funetion 2 () was not defined for s < f, so the equa]itjf* '

T~ (8)—&" == congtant for ¢ < # i to be eonsidered as a definition.
Our next task s {o find the constants

A =TT+, B =17(f)—p".
It is convenient to introduce the functions
m () == 57T (3) + T (s)),
(8} e g (8) — T (8)).

For f=is< f4-1, wo have

(7.8) #m(8) = A B —nd J (t— Ty i,
‘R |
(7.9) gn(s) = A BAnrd [(-1)""dt
' 4
and, for s> f#--1, ‘
(7.10) . gm’ (§) = —nm(8) —xm(s—1),

(7.11) 8N (8) == —un(8)un(s—1}.

The conjugate equations are
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(sg{s)) = mg(s)+ng(s+1),
(sh(s))' = ah(s)—xh(s+1).
Since g(s) < s,

h(s) €37, m(s) < ¢ and n(s) €¢° ap §-— oo
we Gbtain '

sgis)m(s) =« [ glo+1)m{z)de,

s—1

sh{s)n(s) = —ux fh(m+1)n(m)dm

g=1

for all s 3> B+ 1. If we substitute s = §-- 1, integrate by parts, and use (7.8)

and (7.9) we arrive atb
{7.12) Bg(Bym(B) = A[Fg(B)—(F—1)'"""g(F—1)],
: A1
{713)  BR(B)n(f) = A[F"R{B)— (B—1)""h{f —1)]+ 2% f h{w)da.
2

If § =1, the symbols 0'"*g(0) and 0'~*A(0) mean

s . T{1 —)

Jim $0) = ¢ R oy

and
Lm §'*R{s) = ¢~ I'(1 —x),

Sl

-respectively (see Lemma 2, Corollary 2). From Lemma 2, Corollary 1
we obtain,

g+1
sh{s)+x f h{z)dr = constant = limsh(s) = 1.
) =00

B+l

In particular, = f hiz)de = 1—fFh(B). Finally, from (7.12) and (7.13)

we get two Imea,r equations for 4 and B;
(B-1"g(B—1)A—F~"g(f)B = 0,
(B—1)""R(f—1)A+ B *h(f)B = 2.

For » >1/2 we have > 1 and g(f—1) = 0. Thus

B=0 and 4—28ZN"
i h(B—1) .
For » = 1/2 we have g =1, lim sg(s) =0 aml lim "R (8) == (m/e?)'™
Thus ™ i
B =0 cond A =2(ex)

icm
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or < 1/2 we have f = 1 and hence _
I'(1 —x) \
v et -
i Ty A I =0,
¢ ML —~x) A4-R(L)B = 2.
rom {5.8) we obtain

[>-]

1 - -
10 = s .Uf “P( —en |

0

—
du) e

nd

2l 2

R{Ll) = [ exp(—-zwwf 1:: mdu)d

U . 4]

imple caleulations lead to (2.1) and (2.2).
Levva 19, We have
< (3*}-?6)7}( )< 1+m.

Proof. Since h(s) is decreasing, we obtain

#41 .
1, s 3}'?,(3)+nf h{o)da < (8 4x)h{s)

nd henco
44-1

1> sh{s) - ”

> St T

his completes the proof.
OoroLLARY. For » > 1/2 we have

5
2(f—1Y 1] 4 <2(f—1 ( —]——m)
p-1r(1+5) <4 <2-1r{ie 5T
8. ]]sumates of 1% (). Thizx soction is devoted to eostimates of
£.(s). Let g*(s) bo chogen as in Lemma 17.

L1

Lymwma 20. Z‘or Yz dez2 ands>p — el e have

1) Thels) < V(2) + 65 (5) logy) ™"},

here

wn{lﬂ

wd O is some constant depending at most on sx.
Remarks. Assuming two-sided ineqnalities of the type (1.3} one
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can prove that the main term V(z)s~*T%, (s) is actually equal to the
agymptotic value of 7%, (s) a8 2 approaches oco.

The dependence on K and 'y can be improved; ¢ ‘B gan be reduced
to some power of K and the exponent 1/3 can. be increased to an arbitrary

pumber < 13t %> 1/2 and < 12 if 2 << 1/2.
50

The very arkificial factor (1+
; : logy

8 . o .
) iz introduced in order to

weaken the result in the range where the induction method does not work.
The following lemma follows immediately from (1.3) by partial

~ summation.
Tmmma 21. Let B(x) be a positive, continuous and inoreasing functiom
in the imterval w < & << 2. We have !

o (@) Vip) (logp\"p
e 3 P ) e

WP <E .
(x+1) K
logw

y J B(z)dloglog e -+ B(z)

w

Proof of Lemma 20, The idea of the proof is similar to that of
Lemma 17, but is more complicated in details because of the error term.
B(2){x+1) K [logw in the estimate of sums of the type (8.2).

For f—1 < s< f+1 we have '

-1
O
S ' logy

“and, for § > -1, we have T;,{s) = 0. This completes the proof of (8.1)
for T3 ,(s). o
Now, assume that (8.1) is true for Tk, .(8) or for T (s} with some
> 1. We ghall show that (8.1) is true, provided C is suificiently large,
with the same congtant O, for T,;Q(s) and '3, (s) respectively.

(8.3) Ti,(s) =

1
Let 8. ﬁ—f———:—;— Tirgt we eliminate some trivial cases, If s = 2r-

141 | |
+ﬁ+——§-- then 8%,(s} = 0 and 8o, we have

TE o(5) < 2 %(Za)—j(:u_)_)"g IF1=soxy (LZE)_‘_;?E_) Q‘Lﬁ%-l’—s‘v(z)»-]&

g1 p<z Pz

with any L > 1. Note that for 23> 2, V(2)™' < 2K (logz)* and for #z < 2,

T4 ,(s) = 0. Therefore, pubting L = 1+ -—— we obtain

1o Ic
(8.4) Th,(s)< V()a™ exp{—»slogs—l—sloglog}fs-{—O(_s}w L
. _ ‘ S : log2s [} logy

icm

(8.9) S ViR)s

k] >
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But, from (6. ) we have
{8.8)  GF(s)

50

= (exp { —slogs—sloglog2s-1-slog (1 + “ﬂfgy) +VE+0 (s)} .

Henee, (8.1) is evident if K* » logy or if % =

= logy (loglogy)?,
we can assume that g,/(. glogy)". Therefore

{8.6) _ K~*logy is sufficiently large
and _ ' :
(8.7) 5 < (logy)"* (loglogy)*™ — s,, say.

By the recurrence formulae (4.4), (4.5) and the inductive asgumption
we ohtain

{8.8) £ (s) < Th,(8) + 2(_?;)(_12«%'_?2_)"
Ia FET . 2 \og(y[p) v+
2p<Cy
[ log (y/p) log
+1 - 1+ ﬂ:1( togp )_l_G;’T (_lég}/_gﬂ) (log(y/p))“m}

= Tff,z (8) + 2y -+ 25, say.

Tt is elear from the definition of 83 (s) that T%(s) are decreasing. Hence

Bla) =17 M(1";’0;{4‘”)) (log (y fo)) "

iy increasing and we may apply Lemma 21, getting

5 Ve Tl +0 (77 6-) (1) )l
8y logy /}’
whore &, = max (s, igg;) We have

1\ ‘
(1«-—----) < (logy)'*  and  TF(s—1) < g¥(s—1) <sig*(s).

81

Ienee, by (8.7) we obtain

- {Tze (5)+0 (—";E— 7*(s) (logf/)"“’“)}-

Longider the two functions
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141 .
in the interval ﬁk+—:§—<t< S, where ¥ =x if »> 1/2 and % = 2,

tSO
toe (“'ng))]-

log 2t

if % < 1/2. From (7.4) and (6.4) we obtain

I 1 —f-~1
— AL{2) ﬂ(1+ (t+) )krl(1—-»~) g7 (t—1)
logy t

140

1 (say
-1 .
) . This implies that «,(f) is

The term in the bracket { } is positive and for sufficiently large

i 50
t>8,) it is greater than (1 + ilj;)

decreaging and for 8, << ¢ < &,

p £l 1 — e 1{3 i
: — - T (t 1)
(8.10) xsf (1+ logy) ( t) q¥ (1)

' 1 2/3 . 850 g J:-
o 1— = & ().
: <( so) (Hlogy) )

< 8, this ig also true. For, write « = $,+2 and split

1
For ﬁ—l——i—«:s

up the integral into x f +uf 0 The first integral, by (7.4) and (7.5), satisties
8 w
2 ; 50

1 1/15 U 'u.‘
. £
J<b) eg) oo

8

and the second integral, by (8.10), satisfies

S 1128 B0\
. 1__ ) A4 }
”f <( 30) (1+10gy) )

U

Since ¢*(u) < w*gF(s), (8.10) follows.

1+1
For f;4- %" <t <7 8,1, the function

{8.11)
1 \—%=1i3 1 w18 S50y /-1
A =|1—— A (1) =1l —— 1 Flg—1
O=(-3  a-n =13 (4] Fo-u
. . o . . 141
. 18 decreaging and this is also true in the interval g-- ——2—-.--sg t 5 S+
141 :
+~— +1 becanse ¢¥ (£—1) — constant and y is large.

icm
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logy
logx

It follows from (8.11) that B(a) =A( ) Iz increaging and

we may apply Lemma 21 getting

ST TTu (Pt M s
2% V(z)s {(1—;";) (1+'iogy)q (8)(logy)™ ™"+

: 1 -~ u—1/3 s5(] a Ks
L0 gE (g —1 . 1o e 28 1
- (q N )(1 81) ( N logy) (logy)‘”ﬂ)l

as for Z‘i, we obtain. :
PLRY J 142
SEPIR{ [
logy) o )l( sn)' N

+0 (5; (logy)"““)} {logy)™.

Hence,

(8.12) X, < Vi(e)s~ ( +

For TF,(s,) we apply (8.4) getting

. --x_ 5‘50 LN B
(8.13) T5,e(50) < Viz)s3 (1+-5;7§) g (s,){logy) ",
Collecting together (8.8), (8.9), (8.12) and (8.13) wo obtain
(8.14)  Tiels) |

) 1 2/3 .
<< V(z)&‘_“{Tﬁ (&) %‘G;l"‘ {8) [(1 — —;—-) +0 (5'[—)_1(]03'?/)_”24’)] (logg/)_m}.
0

The term in the square bracket is, for sutficiently large v (see (8.6)), less
1 i .
than 1—;6:— < 1 and hence (3.1) follows:
=0
Now, it only remains to prove (8.1) for Tk (s) with f—1 < s < f-+1.
To this end we apply the recurrence formula {4.6). If we extimate T;;z(s)-
by (8.3) and 2% (8 +1) by (8.14) we arrive again at (8.14) but with an
extra torim

0 (.I(.e"m(log;;a/)“ﬂfa)

in the square bracket, The same argument completes the proof,

a0 8
9, Proof of Theorem 1 (Conelusion). For 5% < logs we have (1 -+ wl-'----—— )

< ¢ and hence by Lomma 20

{9.1) T 5(8) < V()™ {T% s
Tor & 2= loge, by (8.4) we have
(9.2)  T%,(8) < V{e)s™*exp{ —slogs + sloglogss +VI +0(s)} (logy) 1.

8) + 06" F g (5) (log y) 114},

[ o

7w Acia Arithmetica XXXVI2



Theorem 1 follows from (3.4), (3.5), (3.7), (4.1}, (4.2), (9.1

H. Iwaniec
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“Writing
Pls) =14 *TH(s) for sz f+1,
f(8) =1—s*T (s} forsz=f
and
SF(s) = (1Y F(g+1) for 1< 41,
$f(s) = FF(6) for 1< s < B,

), (9-2), (6.5)

and (7.7).
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