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L{l, x) = —-"}“‘*‘—“r
n(l_x(P))
p Tp
we use Stark’s inequality
¢ ' - 1
(2) L(l ) o T E—— d"’"(ﬁ“l)fz ]/ d -t
y 4 2 ng () (Vfd} 515(0'1)

fo:f' eyery oy with 1+ (810g(l/}’d)_)’;1 £ 0y < 2, where 4, f, donote the dis-
criminant and the Dedekind Zeta-function for k, and f is deflined by
| dise (If(V —det@)| = @f; 0 i3 an effectivoly computable constant,
g{n) = n! and g(n) = n, it one aspumes the Generalized Riemann Ily-
f_pothesls (see [T], [2], (4.2) ff,, of. also [B], (9) (there il should read 2"d
ingtead of 2d)). '

Agsuming the Generalized Riemann Hypothesis, one has

(3) d¥" > 188 +o(l) for m—> oo
 (zee [3]). |

Ii & has only one clags, this implies M (&) < 1/2. Comparing this with
(1), (2), (3) and with [2], (4.3) to (4.9) ££., one gets (i) and (iii) of the the-
orem. for k& with n> 2. The case & = @ iz well known. For quadratic
f:e_lds i one hag only finitely many idoneal nunmbers (b, %), as follows
using the Brauer—Siogel-Theorem instead of (2). Similarly onc getr (if)
of the theorem (for a similar theorem and proof, see [1]; Batz 20).

References

I 1 J. Dz OW LB Q%Cﬁd’? atswmmen i res .-gmad v
H i i au‘,msrﬁwn; Za].dkt)“ ern, Math. olir,
) . : i )"p ] Nﬂ'
l 2 -A.- M- 0 d.]. kaO Sams a‘narlyt’l‘d esbirne f J T8 i ] A8 A
. g ] wtes of olass 'm,bmll W 4 !
. f ers d t“ﬂc ’lmwbﬂ:%f:ﬂ,

[8] — TLower bounds for discriminants of ber fi v Hi
A ‘ ] sawmber fiolds LT, T6holru Math. T. 28 (1977),

Eg 1(‘4)1 § (ﬁJ’Meq.E]‘ca.,kfmmduation to quadvatio formy, Springer, 1063,
. Petiers, Hinklassige Gesohleohier von. Tinkettsformen in tolalyoel !
6] ?:Iahlliao“rpam, Math, Ann. 226 (1977), pp. 1 Il‘?wlz{). . 'M-Wh wetraisaten
« Plentfer, Darstellungsmafe bindrer quadrali J f
: s ; o, quadralischer Formen dber Irgallon
algebradachen Zahlhdrpern, Acta Axith. 34 (1078), pp. 105111, Hber:totebroeion

| [ II. B[- S b&rk Some Gﬁ?atm}ﬁ oaaes of the i’? 'r»-%e heorem v M lflha ZJ
) g 30 ’ ] U ‘ b ()]
f e gﬂd U Gy IIL o VLS

MATHEMATISCHRS I AR - :
4400 Milnater, Roxeler g&TIGfEUT bt UHIV.&RSIG?AT

Recetved on 5. 10. 1877 (987)

ACTA ARITHMETICA

KXXVI (1880}

On linear forms of a certain class of G-functions
and p-adic G-functions

by
Kniyo VAANANEN* (Oulu)

1. Introduction. In thé present paper we employ the ideas of Baker
(123, [3], Chapter 10) and the Siegel-Shidlovski theory ([3], [10], [151, [16])
to examine the linear forms of certain -functions. ‘We have two main
aims, firstly to generalize the results of Galoehkin [8], and thus obtain
for G-functions an analogue of Makarov's [11] result concerning E-functions,
and secondly to find p-adic analogues to the regulty obtained. Our studies
havebeen motivated by arecent paper of Flicker [6], where he obtains p-adic
analogues of the results of Galochkin [7] and Nurmagomedov [13]. Here
we shall obtain similar p-adic analogues in connection with the papers
[21, (4], [81, [8), [11], [17], [18]. In particular we ghall give lower bounds
in terms of all the coefficients for the p-adic valnations of linear forma in
the values of certain G-fanctions. '

I should like to express my thanks to the referee for valuable sugges-

tions.

2. Main results. Let I denote the field of rational numbers or an
imaginary quadratic field. We congider » systems of @G-functions

(1) ful@y oo figg(2)s 812 1, i=1,..,7

(in (8] 8, =1 (i =1,...,7m) and assume that these functions sabisfy
the corresponding systems of differential equations

(2) yn:'j ﬂQi:fO(z)"i;Z‘Qﬁv(z)yiP? P=1,..,7 m‘l, veny 8y

penl

where all @, (2} e I(2). We thus immediately obbain, for I = 0,1,...,

8
(3) ¥ = Quule) + E QB ¥y =15 0n 1y J=1y 00 8iy
1=l
where all @, () & I(2).

* his work was carried out while the anthor 'wag a rescarch fellow of the Ale-
xapder von Humboldt Foundation. '
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We assume that the funetions (1) belong to the class G(F, 4, B, 1)
{4, B, D positive constants, B> 1, 1) = 1), by which we mean that these
functions are of the form

faj’ 2_, a’ijwz H

W)

t= L, 1 f =1, 00,8,

where all a;;, eI, and the following conditions ave satisfied:
(i} Theve emists a constant v, such thal
J“ﬁvi‘{;ﬂAﬂ’ i == 1,

ey Py el g8, v = 0,1, 00

(i) There exist a constant y, and a sequence {b,} of nabural w,wn,bms,
such that b, < y,B" (n = 0,1, ...) and all the numbers b, (1 == 1,000,
J=1,.8,v=0,.., n) m"e mtagem in I
‘ (111) There exist o constant y,, a sequence {d,} of natural numbers,
and a. polynomial T(2) eX[2] with integer codfficients, not all zero, sudh
that @, < %D {n =0,1,...) and all the functions

&y
"ZT( ()) Bipa(?),

q,‘w—-.l,...,w, gﬁl,,..,si, re=0,n,8, 1=0,..,n,

- are polynomials in I(z] weth mte ger aoeffw@mts
The following notations are used,

S=8+..+s, d=m Ebx{dt’@?T( @) =1, deg T (%) Q. (o)},

fide

‘b = rflja:x{wc)effl‘(z)“ ]coeffl’(z)@t.j',,(z}\},

where |coaffP(2)l' denotes the maximum of the absolute valnos of the
coefficients of the polynomial I'(z). .

, We shall obtain lower hounds for the absolate valiey of the lnenr
orms

(4) _ L(#) = e+ Z, Z“—;ﬂfi

el fus]
where all z; are ntegers in I, not all zero, Let us denote
£ = 1, g ¥y

hy = max {1, @]} e == 1016
; ) be = max{|®,,, h}.
1558 . . lu;,iv:;ﬁ:{I DU!? 'n}

- Our main resalts are given in tho following theoreras and ecorvollaries,
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Tuncwrm 1. Let the G-functions (1) belong to the class G(I, A, B, D),
A = 1, and assume that thess functions and the funclion fy,(2) = 1 are line-
arly independent over C(2). Let L(2) be any Unear form given by (4). There
then exist positive constanis y,, vy, s, depending only on S and the funclions
(1), such that if o, 8, w, v are. positive numbers satisfying

(5) (r— (IR @+ Do —Ba> 7,
then '

(6) Lig~Y)| > g—AH~(1+Sr)(1-|-(cl+1)w-1+(Iogla)(1ngq)—1)
Sor all natural numbers q satisfying

(1) g > max{FIHB 44y T(gY) %0,

where A, H, B and I' are given by

.Hmﬁh‘;f,

i==
(8) H =y (6heDS w)°”
:ET — E(z__ cu—l)m"‘]‘AZ—m‘

A= 3’5"[“8(&+1)(1+(S+1)T),
I(AB)(mel)gw_‘lS,

1

Thig theorem admits the following corollary.

COROLLARY 1, Lei the functions (1) and o linear form L(z) be as in
Theorem 1. Let &, 0 < £ << 1, be given. There then exist positive constants A,
O, depending only on 2, 8 and the functions {1), such thal :

7= [T,

f==1

(9) ) > R,

for all natural numbers q satisfying ¢ = ¢, T{q™") # 0.
We note that if w, ¢ are positive numbers satisfying

S(@-+2), 1> (d+2){o—8d-+-2),

then we can find positive numbers e = a(w, 7, y,) and § = f(w, 7, 1)
such that (5) is valid. Thus the special case ¢,=1 (3 =1,...,#) of The-
orem 1 gives an analogne of Galoehkin’s [8] result.

Now let » be any fixed prime number, Q, the p-adic completion
of Q, €, o p-adically complete algebraically closed extension of @, and
let | |, denote the p-adie valuation on €, satisfying |p|, =p~ ' If t;ne
functions (1) belong to tho class G(Q, 4, B, D), then the power series

of these functions converge p-adically for all |z|, < B!, since
Ia‘lj: !p v ’

] :’2 ‘bwa’ijwlp Wb lpl“mr'p
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which gives, for all ¢ =1,...,7, J =1,..., &,
{10) agly <0, < B v e 0,1,

‘The p-adic G-functions (1) are thus dofined at least for all jzi, < B~
Tn the following theorem we give a lower bound for |L(#)|, at some of
thege points 2.

TumorEM 2. Let the G-functions (1) belong to the class G(Q, 4, B, D),
AB>1, and asswme that these functions and the funotion fu(2) =1 are
limearly independent over Cy(2). Assume that L(2) is any Vinear form (4)
with ©y cZ. Thore then omist positive oconstants Iy Iy 1y, depending
only on S and the functions (1), such that if o, §, @ > 2, ¥ and & are positive
-numbers savisfying

(11) (r— [+ (8 +1)7) (@42 6 (0—2)) R A
 then
{12) ‘L(i) S i T (o= lop KHlog ™)
QI [l

Jor all natural numbers ¢, ¢, satisfying

g, @) =1, 4> (Mg )(+sHmEt
<, 1(L) 0
4] _

awhere Ay, Hy, K and M are given by

{13)

H, = h, ”hg'i, I = Ty (S 4+1) (a+1) (1 (8§ +1)7),

i=1
K =TIt (ZbeD‘S(d“E‘1)2w)“’“1(AB)(ww1)'3w—1s’
M e KB(I—HJ_I)‘

as

This theorem implies the following corollary.

COROLLARY 2. Let the functions (1) and a linear form L(z) be as in
Theorem 2. Let &, 0 < & < 1, be given. There then camist povitive constunts b,
A1, Oy, ¢, depending only on's, § and the funciions (1), suoh that

4 |

> g hHETY, Hy o=k n K,

g iml

(15)

Jor all natural mumbers g, g, satisfying (g, @) =1, > (0202)% 19, < €

T(gfa:) # 0.

We note that if we wish to find a lower bound depending only on
max {#;}, then the proof of Theorem 2 can be used with weaker conditions
+ . : .

icm
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than (13). We are thus able to improve on a certain special case of Flieker’s '
Theorem [6]. This result will be given in Section 8.

3. Lemmas I. We may now proceed to the lemmas needed in the
proof of Theorem 1. We assume in all lemmag that the functions (1) satisfy
the conditions given in Theorem 1. Let [#] denote the integer part of #,
and let o > 8(d-+2) be a positive nurnber. By y,, p4, ... We denote posi-
tive constants depending only on 8§ and the funetions (1).

LovmA L. Let n, (4 =1, ...,7) be natural numbers, and lot ny = n
= max {n)} > 8, N = gn,+ .., +8n,. There ewist §+4+1 polynomials

legd gy .
ti—1

£
Z Oigu® s

npn»-n.,;

P==0, i =0d=1,,..,7ri=1,...,98,

Cyl#) =

not all identically wero, with the following properties:
(1°) All o:ij# are integers in I, and satisfy

¢ (2o—1)log IV TIN
EMES 0% R AP

(2°) We have

Bo(2) = Coole)+ Y D Oy(@)fyle) = D a.2",

=1 F=1 p=0

B, = (AB)(zm—-l)_zm"-I;

wwhere

g =0, »=0,1, ...,n-}-N_[Ha..]_g,_

and, for all [z < (24)77,

N
+ =1 R
|RBy(2)] < pgo-Mos N FY |z]n [‘"] , I, = E,A® nw=t

Proof. We need only refer to the proof of [8], Lemma 2, which
nses Siegel’s lemma. '
We then construct new linear forms from the form R,(z) as follows,
dk

By(s) = S (T@FEPE), b =1,2,...

The usge of (3) gives an equality
8 k

d r
By = 2@+ )

tem]l Faml lo=(

(?;) Oﬁ-‘"z)(z)Q{_,,o, (#) 4+

r % kB %

+ Z 2 2 Z (7;) OS’ﬁmn(z)Q.-.,,;(z)fi,-(z)}, be=1, g, vy

fml Jml I w=1
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from which it follows that

(16) Ryl = Coln) 4 Y X Cyl@fye)y b 20,1, .0,

_ foml Jual
where _
Copolz) =-Cul(2)y  Oyu(2) == Oy(2),
dC
Con(2) = 57 (T ()" O ()
EARLES O (z) ,
(17) + Z _}J Tt (TP Byul2),
: ‘ Tl el Ll i ) )
%k
<N Okml)(%) .
G (2) == Bk U / PRN TR Bt A
ale) = 2 2= EE g B,
_ | i=1, ..,r,jml, i k1,2,
for which we denote Bj,(2) = (T (2))'Qule) (i = l, oty =10,

y=0,...,8, 1 mo,l, coh 101: these v,,j,v,l we have, by (2) smd {d),.

Qv{ju,ln Qijll Z QLM Qi’p‘nl

Lesl

and thug we obtain the vecursive formulae

. L&
(18) By 14 (7) = T'{2)By(e) =11 (2) By () -+ \ Rum( YB3 (2),

.’wx»,l.
by meains of which theso functions By, (2) can be casily considered. We
Seethat,foralllﬂ 0,1’...? Bij‘lz{lz) ('i f:l,...,'}‘, jm 1,‘.;,,3,‘7 ''''' O,A-¢

oy dy) are pnlynomials of degree < Id. Thus we have the estimates
(19) degCyy(2) Sm+kd,  ordCy,(e) =

for the degrees and orders at ¢ = 0 of tho polynominly Gy, (2) (4 = 0,
J=0di=1,..,rj=1,. v ¥y ks 0, 1000,

For the .mke of samphomy, lob the functions (1) and fu(2) = 1, in
some order, bo G(2), G4 (z), ..., Ug(2), and for k = 0, ..., § lat my, = n,,
when Gy (z) iz one of the funatumq Fule) (d =1, 00,85 5 == 0 if : == 0},
We then have, by (18) and (1‘)) , ¢

v g e [

(20) _ Bu(») = ZG,” (2) @, (2)

=0

where Gy,(2) are polynomials of degree <«
at 2 = 01s at least n—m; — %,

k me ‘0 :]..’ L

H

o w4 kd, and the order of G’M( )
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The following lemma is valid (the eonstants y, yy, are given in the

proof of the lemma). .

LavvA 2. If my > (N]ol+y, (0=0,...,8), then the determinani
D{e) of the matrio G = (G (@) }yimn,...,5 has the form
D{z) - z(ﬂ+1m—[NI«rJ]—-val(z)’

where D, (2) 3 0 i¢ @ polynomial of degree < [N [w]+p,.

Proof. First we prove that D{2) % 0. For the general theory of
this step we refer to [13] and [10], Chapter 4. We follow Galochkin’s [8]
deduction. and write here those parts of the proof which will also be of
uge in the proof of Lemma 5.

Assnme that D{2) = 0, and let I+1 (< §+1) be the rank of G.
By Lemma 1 we haye ¢z 0. The matrix ¢ has o minor # 0 of order T+ 1.
Assome that the functions & (2) (i =0, ..., §) are numbered in such
a way that this minor is ' ‘

-Du (z) = det(alci(z)}k,iau, = £ 0,
Turther we may assumne that m, = max {my, ..., #}. Using the general
gheory as in [8], p. 547, ox [18], pp. 11-14, we obtain an inequality

Goo() ... Gn,zﬂ(z) By(2)
(21) ordDy(2)zoed |0 o o . o L =Y0.
‘ Gpl=) o G (?) 1ty (2)

The use of the properties of G, (2) and By () gives us

-1 :
ord Dy(s) > 3] (m—m m1)+w,+z\r [N]——Z—l—;}n
Foal) CU .

o Zr?'b‘i Zmi [ ] S+1) Y11y .
qemf
degDy(a) < (L4 L)n+(8+1)2d

dog Dy (=), it follows that

N
- [»-(;—] ¥ > 2 My

fmal

Binee ord Dy (2) <

where wo denole py = pu-H(8-+1) (d+2). Now m ==mn Ifor some
4 =21, ..., 8, and thus the above inequality is impossible 1E m, > [N/ m] + ¥y

(i -.-(} ., 8). This gives D () 5= 0.
By chommg 10 = (§--1) we can now eatablish the truth of Lemma

(as in [18], p. 15, for instance).
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Let, for & ==0,1,...,
r %
(22) 1:(®) = @R (@) = o)+ D) 3 0 ()fy(2),

f=l Ju=l

where g i8 a natural number and ¢y, (2) = Rk Cini{2). By using the above
results we obtain the following lemma, which gives certain important
properties of linear forms (22).

Lmyma 3. Lot wy > [N]w]+y, (2 =1, ..., 7). Lot q be a natural number
satisfying q > 24, T(q™") 0, and denote 0 = q~*. There then ewist §--1
numbers Ty, koyy ..., kg, such that To-Fly ... +hy < (Njw]byy  and
the linear forms

y]co(ﬂ)J 'rkl(ﬂ)) R T.Taa(a)
are linearly independent, Further all the numbers oy, (0) (i = 0,j = 0;

t=1.,hji=l. 85k =0,1,.. [Nio]l+y,) aeintegers wn I, and
satisfy

(23)  max{]ey,(8)]} < (1—0)"Hyfe~oeN B (3p Dy giet @+ ( ,,‘:;Z) )*(k),
7

where »{k) = max (1, min{n, k}}. If ¥ > 4y, and ¢ > 44, then

(24)  [r(0)] < (1~ B)Fpfio—MoEN TN (p D)k ¢

#(k) N 13y
w g~ N[Nl @ (60 N
g (w(k) 1+ et wl]’

Proof. The first part can be proved in & manner analogous to the
proof of [7], Lemma 4 (Lemma 2 is essentially needed), and from (iii), (17)
and (22) it follows immediately that the numbers Cpl0) (2 =0, § = 0;
t=1ani=1,.,8;k=0,1,..) are integers in I. Thus it remains
to prove the estimates (23) and (24). For thiz wo consider fivst the poly~
nomials B, (2), which satisty (18).

We use the notation f(z) < g(») if

Ty = Dag, g)= 32, b,20,

() vemi)
and la,| <d, (v =0,1,...). Since B, () = T (2)Q ' Ve, |
-0, ™ i (#); 'wo hawve, for all
‘|2]<(2..4)'1,31;1,,1(2)<b(l—-z)"'1 ('i=1)--~s"'5jﬂ111"'13ﬂ ”:m 0, ...
--+y &), Using (18) we obtain, for all these By Iy vy

1--1

Byu(e) < ¥ (1—ef~" [T (8u+8), 1=1,3,.

=0 -

hy

icm
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which gives

25)  1Bya(0) < (L—0T @ ANy, T=1,..., [N o]ty

Sinee By, (#) = by, (28) is also valid forl = 0.
By Lemma 1 we get

max oy

$ %,},(TEw—l)IogN Eé\f @nwn,;—(rc—z) max (’n) ,
vtk

oseshk

(k)
err ' ) _3% . o
and thus, by (ilt), (17), (22), (25) and 0;2:15’6 (8) s 5( v_(k)) , the inequality:

23) immediately follows.
( )To prove (24} we put I}, = k{n+N—-N|o—k)" (see [8], p. 7916;,
if % = 0, then (24) follows from (2°) of Lemma 1). Now o > 8(d+2),

N > 4y;, and g > 44, and thus we chtain’
(14Tyo<2¢ < (24)Y, k=1,.., [N /o] + iz

Therefore the circles |g=0|<<I0 (B =1,..., [_N,fw]-l—ym) lie in the-
circle |2 < (24)7%, and thus the use of Cauchy’s integral formula

B Rol#)
BPO) =~  § g
2nd =012y {z—0)

together with (2°) of Lemma 1 gives (24} exactly as ir} (87, p. 916. ;I}hus;
Lemma 3 is true. o

4. Proof of Theorem 1. Lét
(2B8) y, = max{y,+1, 4y12+1, (@+2)(yut2}y v = (d+1)p1at+1.

We prove that (6) is valid provided that the conditions of Theorem 1 are:

patisfied. o .
First we consider the case Hz= g Let

' log(h, HT) . _ _
(26) ;= [W , t=1,..,7, M fﬁ?.:,{n‘.} |
Since alogq < logH, wo have, by (5),
' 1+ 8
(T_l—l—Sr)iogH?(T_ + r)a>y“
) logg @

which gives, by (25) and (26),
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N
Tholz =ty ~1“’>

logh, +rlog H 1487\ log H
= M g _1_>(_ ) g +?9;

w logq

SN

N > “}"S( _1) > '1:83’]22’ {’:'ylg.

Thus we ean use Lemma 3, by which we find § linear forms, say », A0)
(t=1,...,8), 6 =g¢!, that together with the form Z{0) are ]Jlleamly
mdependent Then the determinant A of these linear forms is different
from zero and, hy Lemma 3, an integer in I, whence |4} = 1,

The determinant 4 can be expressed in the form

L)

. Dy ce By or g, )
27) A = P (0} ey (6) ... 0191,‘.1(.8) oo O (6) Cra, (0)
g () Ouyg (6) O1s 15 (6) Cryteg (9) Cra e ()

and thus, again using Lemma 3, we obtain the estimates

eV |{y(2m_1)N llogN(( i )"QBD,D)“’—IES}N

([7( en "D NH'! + 1)(N1w+1'1w) o
(%)

Hfpfpe TSN (1 gy D)o mS-1 7, }N max {|my| g~} x
4)#(0,4)

y o\ f N 1y o
§ (H ( ) ) n (1 T (1 B H")) 19(““)“"/% Mgt
. 'U(]ﬂz) ) 15;7;1431 n o l

=1

Bince (see [7], p. 411; we have n > Njo+y,— 13 Njo+ )

ﬁ( en )v(fc,)< ( eSh Niwtvyy g0l Nluri-vps
e T e L=< e e
R AEI) B N/w+m) ( N) ’
it follows that

(28) 1< 4] <IL(0)] BN V@i

*}”.F'N g(d+2)(2\?/a:-l— Pratl) nax {hi q_m.} s
iy

A:]‘ "i"Ag.

Ou;' next purpose is to prove that 24, < 1..By (26) %v\re have

max {h, =™} = g‘H"’

lgizy

icm
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and thus our purpose is achieved provided that
(29) NlogF +(d+2)(N/jw+ v+ 2)logg < tlogH.

Since H = ¢°, wo obtam by (5) and (25},

a)

(@ +2) (55 +2)log g < Mogg{_(r {1487)(d+2). )

With this inequality we uso the results obtained from {7) and (26), namely

(80) (14 87)log " < flogy;

Thig implies

Nlogg< (1 + 8r)logH ..

1+-8){(d+2) . '
( i"__ilL_..L) logH + (@4 2) (y1:--2}10gg

> Nlog B + (@ +2)( N/m+m+2)logq-
Thus (29) is valid, which implies, by (28) and (30), that

rlogH > ﬁlogH + -

1< 24, = |L(g)leNqN+(cz+1)(N/m+v12)
< |L(8)| 2exp -{(1 + 87) ( - —dnﬂ+ logf )IOgH}q("‘*”m
d-F-l log B
{1 -)-S':j
< |L(9Hq1"5ﬂ ( logg )’

which gives (6) in the case H > ¢°
If H < g% then in conmdeung the lihear form 131( )
we obtain, as abave,

= [2¢°1L(6),

a1 log E
(1-|-S"n)(l+ w T Iogq)

< 1 (O)l g2 5 )

Since B < I, the uge of (5), (8) and (30) now easﬂy ylelds (6), and thus
Theorem 1 1Ls preved.

5. Proof of Corollary 1. Lot ¢ 0 <8 <1, be given. For proving
Corollary 1 we denote

.. 1008 {y, 1) I L Loos@+2) e
h R R T v b T TS
We then have |
(14-87)(d+2) Tea :
(” P Ple= 1o08 = o
NOW defing the congtants 1 B, F by (8), Whelo a, j, w T have the values

given above, and let

G — Acta Arithmelice XXXVI, 3
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(31) 0 = max [FO+S91 44341,

Tn this way we immediately obtain, for all ¢ > o,

: d--1  logkE
Sr+(1+ST)(~—£—~—|— loggq )< g,

and thus Corollary 1 follows from Theorem 1.

6. Lemmas II. We ghall now consider lemmas required for the proof
of Theorem 2. The functions (1) are assumed to satisly the conditions of
this theorem. Let o > (8+1){d+2) be @ positive number, and denote
by I',, I, ... positive constants depending only on & and the functions (1).

Although we shall construet the approximaition polynomials in a differ-
ent manner from that used in Lemma 1, earlier considerations can be
used in many parts of this section. We replace Lemma 1 by the following
lemma.

. Lmva 4. Let m, (i =0, ...,7) be natural numbers, and assume that
ny> max {n}>3. Let N' =mng-+t8sm+ ... +8n,. There then ewist

pE= Sat g
841 polynomials

ng—1

Pylz) = 2 Py =0, f=0;i=1,..,7 f=1,..,8
E=

not all identically zero, with the following properties:
(1°°y AR py,cZ, and satisfy ‘
Pyl < TPV Y, K, = (AR

{2°°) We have

Usle) =Pold)+ 3 D Py@fy) = D42,
- g=lJe=l yom {}

where _
t, =0, »=0,1,.., N[N o]-2,
and, for all |2|,< B~%,
|To(2)]p < T(B lo],)¥ -1l
Proof. Part (1°°) can be proved as in Lemma 1, ges [8], Lemma 2.
Binee (let py,, = 0 for all u > n,)

r 8

i, =.p00v+22 Zpifya'ﬁ,vun y=10,1,...,

i=l J=1 p=0
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and |ay,,. 1, < 72 B “(p. 276), we obtain (let y, > 1)

|[Ug(2)l, <  max LY < v (B 2] YV —[Viel-1
ksl "?N'—IN}ICU]—I {I v fp} =z ?2( Iz’,ﬂ) ’

which proves the last part of Lemma 4.
Again we construct linear forms

d
Usle) = 7 (T@) 0P, & =1,2, ..,

and thus obtain

r 8
(82) UuR) =Py () + D) D Pu(alfyle), & =0,1,...,

i=1 jmi

where P, (z) are polynomials having exactly the same representation (17)
ag the polynomialy Cix(2) (we only replace ¢ by P). Since degF,(z) < ny,
the degrees of these polynomials satisfy

(33) deg Py, (2) < ny+5d,

t=0,=0;i=1,...,7, =1, a8 k=0,1, ..,
As in Section 3, denote now

8
Uyle) = ¥ @)€(2), *=0,1,...,

g=D

where the functions &;(z) (5 = 0, ..., 8)are, in some order, the functions (1)
and fo(2) =1, and @y (¢) are the corresponding polynomials Py (2).
Pet My, = 0, when G, (2) ig one of the functions fule) (4 =1,...,8;
Jo= 0 if ¢ = 0). We obtain the following lemma (the constants I, and i
are given in the proof of the lemma),

Levwa 5. {f my > [N'o]+ g (1 =0,...,8), then the determinant
D(z) of the matriz ¢ = (Gm(z))k,¢=o,.';.,s has the form '

D(z) = ZN’MENIINJ—I‘T-Dl (),

where Dy (2) 5 0 is a polynomial of degree < [N feo]+1%.

‘_Proof. If D(#) = 0, then, as in the proof of Lemma 2, we come to
the inequality (21), which now gives

t

' N
ord Dy(e) > N' — [—w—] —(84-1)—T,.

Since

1
degDy(2) < 3'my+(S+1)°d,

=0
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we obtain .
B . _N'l
w2 <n0

de=l41

where I, = (§+1)2(d+1)+-1;. We thus have a contradiction if m,
> [N fw]+ T (i =0,...,8), which means that D( )y 5% 0. Tho truth
. of Lemma 5 i8 now easﬂy verlfled We can chooge I, == &+ 1.
Tnstead of Lemma 3 we use the following 1emmaj, whose proof utilizes
Lemmag 4 and 5
LemyMA 8. Let n, > [N'jo]+TI (@ =0, , 7). Lot g, g, be any natural
nwmbers satisfying ¢, < @, (@, @) =1, gl < ]3"" T{qlq,) # 0, and denots
0 = glgs. There then ewist §-+1 numbers Togy Buy vovy Jog, SUCH &ha,t

Nn’
Eo-blyd .. thg< [“aj"]'l"rg

and the linear forms '

Uy, (8)y Uiy (0)y .00y Ungl9)
are linearly independens. Further all the numbers

P (0) = Q”’H“ZP «(0)

(i=0, §=0; i=1,...,7, J=1,...,8; b =0, voy [N j] 1) are
 rational inlegers, and for these palues of % g, b we hm)e ﬂw gstimates

(34} m?;x{l 5 (001}

w(le)
< F(wﬁ Vog N' KN'(2b(d+1)2b)hf)ﬂﬁm(’pe‘%j’) . == Ty,

)

—[N'fw}~Ek—1

(35) |T,(6)], < I B*(Bgl,)™

Proof. The firgt part follows from Lemma b (bc(, the proof of [7],
Lemma 4), and it iz also clear that the numbers pmﬂ(ﬂ) (4 ==0, 4 =0;
cd=1,...,7, §=1,...,8; k=0,1,...) arc integers, because the coe.f~
ficlents of P, (2} are int.egerﬁ and, (33) is valid. Ag in the proof of Lemma 3,
we obtain (now |¢ > 1), for allé =1, ..., ¢, §=1,...,8, v = 0,...,8,

E_za)zn (d-1) _IMS),' Pe=0,1,...,

FrEa)

By, (#) < b'{1+z+ ...
By which
1By (6)] < [2b{d+1)2 0" AN RN, 1 =0
Bince, by Lemma 4,
PiE-dg
x| T

we get, as in Lemma 3, the estimates (34).

g eeny [N ] T

- 1 N el T g
& g [P DORN BN gt lmﬁhx( *),
iAo
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Obviounsly L
UL (00, < [((B)TTP6),, k=0,1,..,
and thus the use of Lemma 4 gives
O p(r—1 ~k+1
LG S e St e Y
: wea N [N a1 . e n
%  max ) g LJ} max (Blgl ) *
VN[N fol-1 { (7” ) N [Nl 1{‘}’.: 12l
TR (Blgl, ) -V,
Thig proves Lemma 6.
7. Proof of Theorem 2, Let
(86) Ty =max{l,+1,(d+1)-+2+1, Iy =dlh+2,

and let the agsumptions of Theorem 2 be satisfied.
Fivstly we consider the case H, = ¢°. Define the numbers #,, u, n’ by

(37) W,m.:[l?g@iﬂﬂ], i-o,.

ey Ty ==y = Max {0}
£

logg .
7" = 1nin{n,}.
We then have, by (11), (36) fmc'l (8T, foralls =0,,..57,

loghi-i—rl(}gﬂ 1—|—(S +1)z logH,_
logg . W logq

T

i

S I
+Ih-1 :}‘"fa;* + 1y,

and thus the first assumption of Lemma 6 is satisfied. The constant I%
in (14) can be agsumed to be greater than 1, and therefore it also follows,
by (11) and (13), that |gj, < B~ _

By Lemma 6 we find lmmrly independent linear forms L {6) and,
Bavy UM( Yy oeey Upg(D)y, where 8 == qfgy and byt .. +kg< [N o]+ T,
If A i tho dei,onmmn‘u of these lmetn Imwnw then 1he number

A = gi\f —nh (J’clr|~.‘.+)'r,5]dl,'
aig— Pq—n' Np—n’ g 757
Zon"" Fu @G .. E g e B G

_ Poar, (6) lel( ) -'_f__Prlkl(G) oo Progi, (0)

..................................

p_[)uks(ﬁ) Pl'lf.:,g(a) . plslh‘s(m ’ prl!cs(ﬁ) T .{Prs,.]n,g(a)

ig different from zero and, by Lemma 6, an integer.

pey = 10
‘rlslq o

* pmlkl(g)
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By using (34) we obtain the npper bound
A1 < (81T HPY g mae {jog| g Mgl

ﬁ{(%(ﬂ—l 21))1c;qdk,( c(azl)) (Iq)}.

71
From (37) it follows that max. {]wi;[g“"t} < qHy
¢an find I, such that “

' 14| < BN g
By this ine(iuality we immediately obtain (|gy/, = 1)
- (38) |}, = 14|, = B~ g~ q-¥~dles 1)~ gre

The determinant 4 can be expressed in a similar form to (27),
from which

¥, and thus (see p. 282) we

g AN TR T4 g

I
A=XL{6)+ D XU, (0),

I=1

where mf;zx {1 X1, [ Xl <
(39) Ml <

1, whence

m&X{!L ,13’ {UIGI(G |p} .\

We next prove that |U,,(6)], < |4], for all 1 =1,...,8. By (35)
and (38) this is satisfied provided that

_H'r > MN qn— N‘-{-d(N’[w+F9)+1+I’5|mN'—zN',‘w_.p9_
and, sinee lgl, < ¢7'*’, this inequality follows from the inequality

(40) H > MY g gV lo)dsesso-s)iry
By (11) ‘
| (""(1+(S+1)r)(d+2+8(w—2))w?1_
-whenee, by (13} and (37)
log Hy > logH, -+ (d-+2 4 d{w —2)} (L -+ (§ 4-1) 7} 0™ Log H, -+ I log g

Blogg
18+

BllogH, > I' logq,

, N’
N+ (@+2+ 6{w—2) mC;-Iogq—J-P, logq

, N
> W'log(Mg,) -+ —(d+2+ 8(w—2)|logg+ I' log g,

Thus (40) is valid, and then (38) and (39) give
(41) L), > (g~ g=v=ales i e,

icn
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By (37) we have

; ) d d 1
F10g(Kg)+ 5 (1-+5) logg < (1+(8+1)7) (142 4500 g,
@ w logg
By using (36) and (41) we now obtain (12) in the cage H, > ¢° The proof
can be completed im a manner analogous to the proof of Theorem 1. Thuy
Theorem 2 ig true.

8. Proof of Corollary 2 and certain additional results. Lt ¢, 0 < s < 1,
be given. To prove Corollary 2 we use Theorem 2, choosing

100(8+1) (I, +1) 8 100(8 1) (d+2)
= 6o ) ﬁ = W, o = . )
& &
T 08+’ T100(8+1)

Turther let A,, K, M be given by (14), where a, 8, o, v have the values
given above, and denote

0, =M, o¢={1+({E+1)5)p"

We now see immediately that (31) is valid, and we also have

log(in)) <s,

(S+1Ly7+ (1+(8+1) )(w RS g

it g, ¢, are natural numbers satisfying g > (C’1 q.)°.
from Theorem 2.

Our next purpose is to improve slightly on one special cage of
Flicker’s [6] Theorem, namely the case when the algebraic number field K

Thus Corollary 2 follows

equals Q. To do this we follow the proof of Theorem 2, but choose

RH? ‘
H, = 1%+, ﬂ[{m], mg=mn, i=0,1,...,7%,

logq
where h = h, = max{]m.@]} It iy important that # =an’ —-mm{ﬂi},
%]

which means that ¢, does not appear in (38} or (40). In this way we arrwe
at the following theorcm (where we can assume, without loss of generality,
that » = 1).

Taworeym 3. Let the assumptions of Theorem 2 be valid. There then
ewist positive constants Iy, Iy, Iy, depending only on 8 and the func-
tions (1), such that if a, B, w > 2, ¢ and 8 are positive nuwmbers satisfying (11),
then '

’L(i) -~ q—llh(S+1)(:—(l+ts+1)r)(1+dm"1+clogK)tlogm"’l))
i1/ |p ’
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for all natwral numbers g, g, salisfying
g0 =1, g >?-Il}ﬁax{M(l”'"(g"“m)ﬁ.—“,. 0}, ld,< g, o1 () #0,

‘where Ay, K, M are gw(m by (14), and b = max{|mh[}
! i
Wow let fj (8} (j = 1, ..., m) be p-adiec G-Tunetions satisfying

{(42) - = @y (2) vQﬂc( Ay § == :'I-r_ g M
where all the fanetions Qﬂ, e O(2), and assome that these funetions
filz) (5 = 1 m) belong to the class G(Q, A, B, D), where the pogitive

numbers 4, B 1) are not smaller than 1. Suppose that our functiovs do
not satisfy any equation of the form .

(zafl( ) 7fm( ))

Where Pz, #9,...,8,) % 0 i8 a polynomial in Q[m, Ryy ooy @] of degreo
< d, with respect to @,,..., #,;. By applying Lemma 7 of {7] and our
Theorem 3 to the functions

Jnl I Z), 1< Ay s e, K 8, & = 67;0,

ki

where 4; (f = 1,..., m) are non-nogamvo mtegem, we obtain the following

corolla,ry giving the gpecial case K = @ of Flicker’s [6] Theorem.
CoroLLARY 3. Let the functions f;(2) (j = 1,...,m) be as above, and

let 6,0<Ce< 1, be given. Let P(m, ..., 2,) 0 bs any polynomial in

2@y, ny @y,] of total degree s < dyy and of height < H. There then exist

posiiive consltants 6, ¢, 6, depending only on &, m, 8 and the funciions f;(2)
(§=1,..., m), such that

)

for all fmtuml numbers q, ¢ eatisfying (q, ¢) =1, ¢ max {a w Ui}
lgl, < q‘*“ % qle different from the poles of the fu'ncdro'ns Q@) (7 =1,...,m,
& =0,..., m). :

m\n) M

>q"‘]ﬂ' (

»

. 9. Examples From Lemmas 7-9 of [73 it follows thal woe enn wpply
onr results to the tanctions :

fﬁ (2) =log—'(1—|—a,;z), fi s 1, cpty =108,

Where ay, ..., a, are distinet non-zero numbers in I, Corollaries 1 and 2
give the following results: concerning logarithms and p-adie logarithms,
respectively.
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COROLLARY 4. Let &,0 <<e <1, be given. Assume that a,, ..., a, are
distinel non-zere numbers in I, omd let :
: %

Z!f‘ﬁ, ’b===1,...,4",

i=1

he polynomials with inleger aoeffiaiems wn I, mot all identically zero, Further
let ®, be any integer in 1. There then exist positive constants C, A, depending
only on & 8 =814 ... +8,, aiy..., a,, such that for all natural numbers
g (0 we have ' '

m0-+Pl(10g (1 -+ %1-)) J 4P, (log (1+i;i))

r =
where H = [T, b, = max {1, |coeff P,(2)|} (i =1,...,7).
i=1 -

= q—-ZH-—I»a’

JOROLLARY 5. Assume that I = Q, and let the assumptions of Cor-
oltary 4 be valid. There then exist positive constants Cy, A, 8, depending
only on &, 8, oy, ..., a,, such that for all natural numbers gsansf J'mg g> 0,
lgl, < g~ """ we hrwe

|$C(, Py (log(l + alg)) + ..+ P log(l+ arﬂ))rp > g MHTY,
whew Hy == hyH, hy = maw{[mu\ Iy}

In the special case v = 1 our Gomllmy 4. is analogous to B&ker s [l]
Theorem 1. Baker gives the constants more explicitly, however.
Using Corollary 3 we also obtain the following result.

COROLLARY 6. Let I = Q, and let e, ay, ..., o, be as in Corollary 4.
Lot Py, ...,2) 520 be any polynomial in Z[zy,...,2,] of degree < s
and height < H. There then exist positive constamts cl, €y, 0, dependm g.
only on &, T, 8, Gy, ..., o, SUucH that :

_{r+8
L (log(L-+0a,q), ..., log(l+ a,q)), >q 1 H ( +)

for all natural numbers q savisfying q > ¢y, |q), < g~ '
Lot ug now consider the functions

(==
= Zn"zn, J=1,...,8,

M=l

ém:isfying
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We have
' —1)! () g)
O BTN SRS i 8 =
(1—2) Pyt g 1 Py Ny
j=2,..,8,0=1,2,..,

where we denote f(e) = 2!, Thus it may be cstablished by induction
that the condition (iii) of our definition of the class &(Q, 4, B, D) is valid
when we choose T(z) = 2(1—2), d, = 4}, where d,, = Leam. {1,2,...,n}.
From paper [14] we have d, < &' The conditions (i), (ii) of the definition
are obviously valid, and thus the funections ¢;(#) (f =1, ..., ) belong to
some class G(Q, 4, B, D).

We now preve that the functions

.(43) f-ij (#) == o; (a;2),

where a,,...,, are distinet non-zero numbers in I, together with the
funetion f.m(z) = 1 are linearly independent over C(z). Since

P=1,..,rnj=1,...,8,

Jal2) =2%_1(aiz)n = —log{l—a2), i=1,...,r,
n=1 . .
our assertion is valid for j = 1. Suppose now that the functions 1, f,(2)
(=1, cear 1y J=1,...,m—1, m>2) are linearly independent, but
the functions 1, f;(2) (i =1,...,7, j =1,..., m) are linearly dependent.
There then exist the smallest sutffix » guch that

r o m~1

(44)  Poy(e)+ Y 7 Pyle)gy(02) + Prpu(2) gy (00 2) -+

i=1 j=1
. ”i"-Pmn,(.z)%n(a:wz) = 01

where P,,j (#) are polynomials with no commeon factors, P,,,(z) s 0. We then
get -

r -1 -1
. 1
(45) Fiole)+ ) 21’ Aolad)+ Y =Pyl (am) +
1= Jml Jml ’

ki

P Pale) + Y Pinlelpa(o) s LB (o) = .

LEDS

Suppose that Py, (2) s 0. By multiplying the left-hand side of (4B)

by T(z). = 2{l—a;2} ... (1~ a,.#) we obtain a polynomialine, f; (¢ =1,..
sy § =1, ..., m), which must be divisible by the left-hand side of (44),
since otherwxse we obtain a contradiction by eliminating f,,. from the

icm
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equations (44) and (45). Thus there exists a polynomial

AR) = Ayt Aye ..o + 4,27 20
such that '
T(2) {Péo(z Z{Z Pi(2) fij"E‘Z ‘"Pﬁ(z)fn;,J—l'i" Pﬂ( }
el ‘
+ V P ) fim+ »-~P @ F s
Ml { tm\¥ 1] im\&) T4, }}
= A0 {Pule)+ 2; Py(&)f+ P @it - +Pron ) fom)
sa] Fea

identically in 2, f;;. This means that we have

T(z)lg;'am('z) = A(Z)an(z)?

46 ) 1 .
“ 26 (Pan s 6) 3 Pan(8)) = APyl

identically in 2 Using our agsumptions on ¢, we obtain from the first -
equation (46)

A(z) @ 5w

= !
- 1—o2

P;T.m (2) .
T(=) z

Pm (2)

where ¢ = A, and a; (¢ = 1,...,+) are certain constants. Thus
r
Poum(#) = cz"‘n
fel

(L—ae)®, ¢ #0.
Since P, (#) iz a polynomial in =, the numbers a, @, are non-negative
integers, Let

-Pn,m-l(z) = plzl"{'pt-{—lz”l"i“ LR pi 5'& 0.

(I P, ,,_1(?) == 0, then & contradiction follows from (46).) From the second

equation in (48) we get a = T and
o+ ala,o = 4P«

If g = [, then we have a contradiction ¢ = 0. If a> !, then ip, = apy,
which. ig 1mposs,1ble, because p; 7% 0. Thus P () = 0, whence P,,(#)
= ¢’ 0, ¢ a constant. In this case we use the definition of n and (45),
by which P, o {#)= —cjz. This is impossible, and thus we have proved
the linear independence of the functions (43) and fo.(#) == L.
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The use of the above results and Lemma 7 of [7] together with Cor-
ollaries 1 and 2 leads to the following corollaries.

COROLLARY 6. Let 2,0 < e< 1, be given. Let ay, . ,a be distinct
non-zero naxmbers in X, and let L (z) be a linear form (4) with fw( given by (45)
There then emst positive constonts C, 4, depeav.dmg mﬂg/ on g 8 == grl,

- 8,y Gy .eey %, Such that

1 .
L il r> q—AH-—I—a
(o

for oll natiral numbers g satisfying ¢ > €. ‘

COROLLARY 7. Let the assumptions of Corollary 6 with ¥ = Q be valid.
There then emist positive constants Oy, A, &, depending only on ¢, 8, ay, .
‘suech that

wey My,

L), > ¢ B

I’p
for all natural numbers g satzsfymgf g 0y g, < g“l""’
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