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Equivalence classes of sets of functions over a finite field
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1. Introduction. In [3] and [6] 8. Cavior and the author studied
properties of left equivalence of functions over a finite field. In [4] 8. Cavior
extended the notion of left equivalence to sets of functions. In the present
paper we study o further generalization of left. equivalence of functions.
over a finite ticld.

In Section 2 we develop a notion of lett equivalenes which generalizes
all of the forms of left equivalence studied in [3], [4], and [6]. In par-
ticular, we consider left equivalence of sets of functions over a finite field
relative to arbitrary greups of permutations. Moreover, we show that
many of the results in this general setting can be reduced to the single
function cage, which was studied in detail in [6].

'\ Let K = GF(g) denote the finite field of order g and K (r=1)
., &,] = K[#] represent the
ring of polynomials in » indeterminates over K. By the Lagrange Interp-
olation Formula ([5], p. 55), each function from K" into K ecan be sxpressed
uniguely as a polynomial of degree << g. The group of all permutations
of K will be represented by @ so that @ is isomorphic to 8,. That (2 is
an arbitrary subgroup of @ will be denoted by 2 < @ and. {&] will denote
the order of Q.

2. General theory. If % = 1 is a positive integer the k-tuple of functions
(f1s ---s i) Will be denoted by (f;) so that there are a total of ¢ distinet
ic “tuples of functions each containing & functions.

DEEINTIION 2.1, Let @, ..., 2, < &. Then (f,) is left eqmvalem to (g;)
relative to @,, ..., 2, if there omst ¢, € @, such that g, f;=g,fori=1, ..., k.

This is clearly an equivalence relation which, if & =1, reduce.s to
that of the author in [67. If & =1 and 2, = @, we obtain the left equiv-
alence considered by Caviorin [3). Tk >1and @ = &fori=1,..., %
then Definition 2.1 reduces to that of Cavior in [4].

As an jllustration, congider the case where K = GF(6), r =1, and
k =2, Suppose that in c¢ydic notation p, = (01) and @, = (284). For
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i=1,2 let @ = {p) o that [Q,x ] = 6. T A;(Q, &) represents
the total number of egqnivalence classes induced by £2;x &, and for
¢=1,2,3 and 6, ¢(i) denotes the number of equivalence classes of
order 4, then as will be shown. in Section 3, we have

e(1) = 7776,
6(2) = 46112,

¢{3) == 260533,
c(6) = 1485671,
#o that

Ar, = 1790092,

Let ur((f))y @1y..., £ repregent the number of clements in the
class of (f;) relative to the groups £y, ..., 2. One may easily check that

&
ML((fi): LR ‘Qk:) = HML(fe': ;)

dmel

$0 that in the general case of a set of k functions, we need only compute
the values of p.(f, @) for ¢ =1,..., k Tormulas for u.(f;, &) are
given in [6] in terms of the number of invariant elements of the group ;.
Finally, let A,(2y,..., 2} denote the total number of left equivalence
classes induced by the groups 2,,..., ;.

I K ={a,...,0, and feK[Z] let 8 = {feK"| f(B) == ¢} for
J=1,..., ¢4 Assume that the non-empty 8,'s are 8,,...,8 where ¢
is the order of the range of f. Then =, = {§,] j =1, ..., ¢} is the partition
of f. ‘

"TueoreEM 2.1. Let 2, ..., 2, << @. Then (f,) 18 left equivalent to {g;)
relative 10 Ly, ..., Q, if and only if my =m, = (8| j=1,...,4} ond
There emist @, ¢ Q; such that g (yf) = & where fi(8]) = i and g,(8) = o
or j=1,...,%. '

Proof. Fix ¢ and let ae K" so that acS) for some j=1,...,1.
Hence g,(a) = & = g;(%) = o;(f,(z)) which proves the sufficiency. For
necessity, suppose ¢f; = g, for some ¢; € Q,, T fi(a) = f,(F) then g,(&)
= g;(B). Bimilarly since ; is 1-1, if (&) # f;(f) then g,(a) # g,(#) so that
7y, = my,. This completes the proof. :

DerINIrioN 2.2. Let £y, ..., 2, < @, Then the k-tuple (g, ..., ¥
is & left automorphism of (f;) relative to Q,, ..., R il fi= ffori=1,..., k.

Lt Ag((f), 2,0, Q) a0d v {(F), 2y,..., B) denote the group

and number of left antomorphisms of the set (f,) relative to the groups
£,,..., £2,. Then we have

AL By ) = ApFar @)X o X Ay iy O
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s0 that
I

"".I;((fi): By, 'Qic) = n v (fir 825).
Ten]
Thus the gencral cage can again be reduced to that of the one variable
ease studied in [67. Moroeover, if (g, ..., 2 )(f;) = (g;) fhen

A,n((!fu:)y Qyy vy Qlc) w5 gy veny (PA:)AL((J‘;'): ey sy ‘Qic) {Pry ey ‘ch)_l

go thatb
k

ki
” V(e By) = H"L(fw £
Tl

B

Thug the number of left antomorphigms depends only upon the class and
not on the particular selis of functions in the class.

The following theorem, whose proof we omit, generalizes the corre-
sponding results of [3], [4], and [6].

THROREM 2.2, If By, ..., 8, < @ then for any set (f;)

. .
(2.1) TT teatfer @)msis @01 = [T 194
fml 1=l

If @ is o permutation let ¥, = {a e K| ¢(a) = ¢} denote the set of

" invariant clements of ¢. If 2 is a group of permutations, define the in-

variant set ¥, of the group 2 by Fy= [\ F,. The following theorem gen-
reld
eralizes Theorem 2.4 of [6]. :
THRoREM 2.5. Suppose L has 1, invariant elements for & =1, ...,_Ir,.
Then the number of T-tuples (f) of functions for whiok each permutation
ke :
v X 18 o left awlomorphism e Il 1‘%’".

el

i £, % .

Proot. The k-tuple (py, ..., @) is & left automorphism of (f) if and
only if for each == 1, ..., & p(a) = alforall ¢ & B, . For each i = 1,000k
there are l;’" distinet functiony which map I’ into #, . Hence there’a,re
1. 1 distinet k-tuples for which (g, ..., @) loaves (fi, ..., fx) fixed
from which the result follows.

3. Cyclie groups. In thix section we develop several results in the
case whero the groups of permutations are oyelic. Suppose thatfors =1, ...
s kb 2y 18 8 eyclic group of pormutations of order #, where the n;'s are
pairwise relatively prime. Lot H (L) denote the subgroup of .Qﬁ of ordgr_ i
where t;[n;. Lot Ty and (%) donote the set and number of invariant
elements of H(t,). Finally lot N(t, ... 1) represent the number of h-tuples
(fuy eoor fi) such that Ay, (fy, Qo) %o X Ap(fi, Qi) = H) % oo X H(t)-



326 G. L. Mullen

THEOREM 3.1. For G, t=1,...,k

. k
{3.1) Nty te) = [ [ F(t)
where =
(38.2) Fity) = D) pla)lat)]

.

and (a) is the Mobius function.

Proof. Sinee the n,’s are pairwise relatively prime, for eaeh t|n,,
3 =1,..., k there is a unique divisor of n, ... n,, of the form %, ... 7, from
which (3.1} follows.

Foreach i =1, ..., % [1{t;)]¥ is the number of functions f; sneh that
fﬁ' (ti.) < Ay (f;, ;). The number of f; for which the containment is proper
is given by 3N () where the sum is over all u, such that u;|n,, 4w,
and #, 7= u;. Hence for each ¢ =1,..., % '

(3.3) F(t) = [T — ) N (w).

For simplicity of notation, fix ¢ and let n = ny, ¥ = §; and 4 =~ u;. Wo now
ghow that (3.3) can be written in the form (3.2} which will complete
the proof. |

Pix » and let » = st. Let N (#) = f(s) and i(f) == A(s) so that (3.3)
hecomes '

(3.4) R = - (),
. LHE]
Hal

Sino:]al § ig an arbitrary division of », the Mébius inversion formula applies
80 at

(3.5) fly = D p(@ Ay

. abmg
where u(a) is the Mdbins funetion. Ilence we have
(3.6) Ny = D ulay[ia)]”

a]li

t
which completes the proof. :
COROLLARY 3.2. For 4|9, 4 =1, ..., k there are

I

K n%N(tﬁ)
. . 7
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1]
left equivolence classes of order [T nft; and
i=1

k
(3.8) ARy ey @) = [ [ 45(20)
: g=1
where
V(1
(3.9) (@) = 34T
£lng *

and N(4,) is given by (3.2). _ o
Proof. From (2.1) and the fact that for each ¢ =1, ..., k, N(t;) rep-
resents the number of functions f; such that Az (f;, Q)= H(%), we see thap
I3

the number of classes of order [] n;ft; is given by (3.7). Clearly for each
=1

=1,k
i (&) = ZM

M,
tilng 1

so that —
4]

A (D, ey &) = Z Z”_ﬁt‘i.@f)

hley fging =1 ¢

which can be rearranged to

“ Ry LR Cy § PRTNS

n
=1 4;ing g

Henece, from (3.8), we see that the problem of determining the total
number of left equivalence classes of sets of functions has been reduced
to that of the single function case. We further note that if & = 1, then
Theorem 3.1 and Corollary 8.2 reduce to Theorem 3.1 and Corollary 3.2
of [6]. .

COROLLARY 3.3. If (f;) is a set of fumolions then vl @) = I] %
i gl
or equivalently, ug((f), @) = [ mit if and only if Ht) X ... X H{t)
Tl

is the largest subgroup of £y X ... X Qy, for which By = Fapyx...x8ty:

DreINITioN 3.1, Let Qi ..., &y, @, ..., £, < & Suppose that
0= Q% ... x& and & =Qx.. X Q; decompose (K[E])* into
the equivalence classes A, ..., 4, and By, ..., B,, respectively. Then Q
and Q' induece equivalent decompositions of (K[Z)* if {|4,]} is a permu-
tation of {|B;|} where |A| denotes the order of the set 4. Otherwise, the
decompositions are inequivalent.
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TruorEY 3.4, Suppose 2 = Q% ... X2, and @ = Q% ... x @2,
where Q; and Q; are oyclic groups of permuiations of ovder n, where the ng'8
are pairwise relatively prime. Then @ and Q' induice equivalent Teft decompo-
sitions of (K [B))" if and only if for each t, ... 4| ny ... %y, H(t) and H’ ()
(i =1,..., k) have the same number of invariant elements where H (L) and
H'(t;) are the subgroups of £, and £ of order 1,.

Proof. Follows from Theorem 3.1 and Corollary 3.2,

We now illustrate the above theory in the case where K = GF(5),
7 =1, and k = 2, Suppose that in cyclic notation ¢, = (01), ¢, = (234),
and £; = {g;) for ¢ =1, 2 8o that |Q, x Q] = 6. For § = 1,2,3 and 6
let ¢(i} denote the number of equivalence classes of order ¢ induced by
@1 % {,. Let (i) represent the number of invariant elements of (%>
= H(t;) for ¢ = 1,2 so that 1(1) =5, 1(2) =3, and §(3) = 2. If N (t,t,)
represents the number of pairs {f,, fo) such that A4, ( iy @) X Ay (fsy Q)
= H () % H (t,) then by Theorem 3.1 we see that

N(2:3) = N(2)N(3) = 243-32 = 7776,
N(1-3) = N(1)N(3) = 2882-32 = 92224,
N(2-1) = N(2)N(1) = 243-1098 = 751599,
N(1-1) = N(1)N(1) = 2882-3003 = 8014026

so that by (3.7)
¢(1) = 7776,  ¢(3) = 250533,
- 6(2) = 46112, o(6) = 1485671,

- and thus 4;(Q,, 2,) =1790092. Using (3.8) we also note that
Ap {8y, Q0) = 2, (8)) A-(8R,) = 16841063 = 1790092,
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