

ACTA ARITHMETICA XXXVI (1980)

Linear independence of 'logarithms' in linear varieties

by

Roberto Dvornicicu (Pisa)

1. Introduction. In this paper we prove a result analogous to Baker's theorem on linear independence of logarithms (see [1], Th. 2.1, p. 10, and [2]) in the case of linear varieties. Our main result is the following:

THEOREM 1. Let M_1, \ldots, M_n be complex $d \times d$ invertible matrices and let X_i be the vector space over Q spanned by the eigenvalues of M_i $(i = 1, \ldots, n)$. Suppose that

(i) $\exp M_i \in M(d; \overline{Q})$ for i = 1, ..., n;

(ii) $X_1 + \ldots + X_n$ is a direct sum. Then, for every choice of matrices C_0, C_1, \ldots, C_n , not all zero and with algebraic coefficients,

$$C_0+C_1M_1+\ldots+C_nM_n\neq 0.$$

The proof of Theorem 1 and of other similar results is in Section 3. In Section 4 we produce several counterexamples: partly to fix some limits to further extensions of Baker's theorem and partly to prevent false conjectures.

2. Notation and auxiliary results. Let M(d;C) be the ring of complex $d \times d$ matrices. An element $A \in M(d;C)$ is said to be a block matrix whenever

$$A = \begin{pmatrix} \frac{A_{1}}{|A_{2}|} & 0 \\ 0 & |A_{k}| \end{pmatrix},$$

where the A_i 's are $r_i \times r_i$ matrices, $r_1 + \ldots + r_k = d$, and each A_i has

exactly one eigenvalue.

If each element of a subgroup H of M(d; C) or of $\mathrm{GL}(d; C)$ is a block matrix, H will be called a block group; if at least one of the conjugate subgroups of H is at the same time a triangulable and a block group, H will be said block triangulable.

When there will be no confusion we shall use the word triangular instead of upper triangular; we warn the reader that we use the same letter for a matrix $A \in M(d; C)$ and the linear function $A: C^d \to C^d$ associated with that matrix. I hope no confusion is possible.

PROPOSITION 1. Any (multiplicative) commutative group $H \subseteq \operatorname{GL}(d; C)$ is block triangulable.

Proof. Let $A \in H$. If λ is an eigenvalue of A, for any $h \ge 1$, the subspace of C^d

$$W_{\lambda}^{h} = \ker (A - \lambda I)^{h}$$

is an eigenspace for all the functions in H. For, if $B \in H$ and $x \in W_A^h$, then

$$(A - \lambda I)^h \cdot Bx = B \cdot (A - \lambda I)^h x = 0.$$

Hence if we let

$$W_{\lambda}^{\infty} = \bigcup_{n=1}^{\infty} \ker(A - \lambda I)^{h}$$

we obtain a decomposition of C^d of the form

$$C^d = W^{\infty}_{\lambda_1} \oplus \ldots \oplus W^{\infty}_{\lambda_k},$$

where $\lambda_1, \ldots, \lambda_k$ are the eigenvalues of A.

Let $r_i = \dim W_{i_1}^{\infty}$ (i = 1, ..., k); let $\{f_1, ..., f_{r_1}\}$ be a basis for $W_{i_1}^{\infty}$, $\{f_{r_1+1}, ..., f_{r_1+r_2}\}$ a basis for $W_{i_2}^{\infty}$ and so on; then $\{f_1, ..., f_d\}$ is a basis for C^d . If $\{e_1, ..., e_d\}$ is the canonical basis and the matrix E gives the change of basis $e_i \mapsto f_i$, then every element $B \in K = EHE^{-1}$ can be written in the form

$$B = egin{pmatrix} rac{B_1|}{|B_2|} & 0 \ 0 & |B_k| \end{pmatrix},$$

where the B_i 's are $r_i \times r_i$ matrices. After this transformation, it could happen that there is an element $D \in K$ which is not a block matrix, for one of its blocks, say D_1 , has more than one eigenvalue. Applying the above argument to D_1 and to the space $W_{\lambda_i}^{\infty}$, we get a decomposition

$$W_{\lambda_1}^{\infty} = T_1^1 \oplus \ldots \oplus T_{n_1}^1$$

into subspaces T_j^1 $(j = 1, ..., n_1)$ of lower dimension. Hence it is possible to transform H into a block group in a finite number of steps.

As for triangulating, we can clearly suppose that the matrices of H have exactly one block. Let $A \in H$, λ_A the eigenvalue of A, and let

$$V_A = \ker(A - \lambda_A I)$$
.

IDEMMA 1. In the preceding hypotheses, we have

$$V^1 = \bigcap_{A \in \mathcal{U}} V_A \neq \{0\}$$
.

Proof. If we had $V^1 = \{0\}$, we could find a finite sequence $A_1, ..., A_s$ of matrices in H such that

$$\dim V_{\mathcal{A}_1} \gg \dim (V_{\mathcal{A}_1} \cap V_{\mathcal{A}_2}) > \ldots \gg \dim (V_{\mathcal{A}_1} \cap V_{\mathcal{A}_2} \cap \ldots \cap V_{\mathcal{A}_8}) = 0.$$

Since dim $(V_{A_1} \cap \ldots \cap V_{A_{n-1}}) > 0$ and $V_{A_1} \cap \ldots \cap V_{A_{n-1}}$ is an eigenspace for A_{n_1} we have

$$(A_s - \lambda_{A_s} I)^h|_{\mathcal{V}_{A_1} \cap \dots \cap \mathcal{V}_{A_{s-1}}} = 0$$

for h sufficiently large, and therefore $V_{J_1} \cap \ldots \cap V_{J_g} \neq \{0\}$, which is a contradiction. The lemma is proved.

Now observe that $A|_{V^1} = \lambda_A I$ for any $A \in H$; then choosing a basis for V^1 and completing it to a basis for C^1 (and changing basis, as before), we have done the first step for the triangulation, because the matrices so transformed have the form

$$A := \begin{pmatrix} \lambda_A & 0 \\ 0 & \lambda_A \\ 0 \end{pmatrix} \cdot A'$$

Let

$$V_{cl}^2 = egin{cases} V_A & ext{if} & V_A
eq V^1, \ \ker (V_A - \lambda_A I)^2 & ext{if} & V_A = V^1. \end{cases}$$

Under this definition, V_A^2 contains property V_A^1 for every A and is an eigenspace for every element in H. Let us define

$$V^2 = \bigcap_{I \in I} V^2_{II}.$$

We have, as in the proof of the lemma, $V^2 \supseteq V^1$ and $V^2 \neq V^1$; choose any subspace W_2 (and any base for it) such that

$$V^2 \approx V^1 \oplus W^2;$$

then $A|_{F^2} = \lambda_A I + f_A$, where f_A is a linear function such that $f_A \colon W_2 \to V^1$. In other words, with this new basis our matrices take the form

$$A = \begin{pmatrix} \frac{\lambda_A I \mid f_A}{|\lambda_A I|} & A'' \end{pmatrix}$$

and this completes the second step for the triangulation. Proceeding in

411

this way, we obtain a sequence of subspaces

$$\{0\} \subsetneq V^1 \subsetneq V^2 \subsetneq \dots \subsetneq V^l = C^d$$

the last one being C^d , for which the triangulation holds.

PROPOSITION 2. Let A be a complex $d \times d$ matrix such that all the coefficients of $\exp A$ are algebraic. Then there is a matrix $B \in \operatorname{GL}(d; \overline{Q})$ such that BAB^{-1} and $\exp(BAB^{-1}) = B \cdot \exp(A) \cdot B^{-1}$ are block triangular and have algebraic coefficients everywhere outside the diagonal.

Proof. We can suppose that $\exp A$ is a block matrix (possibly after a suitable transformation) and moreover that it has only one eigenvalue: call it λ . Since A commutes with $\exp A$ (remember the series expansion), A is a block matrix too and

$$W_1 = \ker(\exp A - \lambda I)$$

is an eigenspace for A. Change the basis so that the elements w_1, \ldots, w_{r_1} of the new basis $\{w_1, \ldots, w_d\}$ form a basis for W_1 ; the matrix A will take the form

$$A = \left(\frac{A_1}{0}\middle|X\right)$$

where $\exp A_1 = \lambda I$; hence $A_1 = (\log \lambda)I$, as it follows from the following lemma.

LEMMA 2. Let $X \in M(r; C)$ be such that $\exp X = \lambda I$. Then, chosen a determination for the logarithm,

$$X = (\log \lambda)I$$
.

Proof. Let $A \in GL(r; C)$ be such that $Y = AXA^{-1}$ is triangular. Then $\exp Y = A \cdot \exp(X) \cdot A^{-1} = \lambda I$, hence all the terms on the diagonal of Y are equal to $\log \lambda$. More precisely,

$$Y = (\log \lambda) I + N,$$

where N is a nilpotent matrix. It follows

$$\exp Y = \lambda I \cdot \exp N = \lambda I,$$

hence

$$\exp N = I$$
.

On the other hand,

$$\exp N = I + N + \frac{N^2}{2!} + \ldots + \frac{N^{r-1}}{(r-1)!}.$$

Let $N = (n_{ij})$; looking at the (i, i+1)-terms in the preceding equation, one observes that they appear only in N, so that $n_{i,i+1} = 0$ for every i.

Moreover this implies that the (i, i+2)-terms appear only in N, so that $n_{i,i+2} = 0$ for every i, and so on, until we conclude that N = 0. The lemma is proved.

Let us define $W_2 = \ker(\exp A - \lambda I)^2$: W_2 is an eigenspace for A. Change the basis again, so that the elements $w_1, \ldots, w_{r_1}, w_{r_1+1}, \ldots, w_{r_1+r_2}$ of the new basis $\{w_j\}$ form a basis for W_2 (the basis of W_1 is left unchanged); we have

$$\exp A = \left(\frac{\lambda I \mid B'}{0} \middle| B''\right), \qquad A = \left(\frac{(\log \lambda) I \mid A'}{0} \middle| A_2 \middle| A''\right).$$

Since $\exp A_2 = \lambda I$, it follows from the lemma that $A_2 = (\log \lambda)I$. Go on this way until, for a certain k, $W_k = \ker(\exp A - \lambda I)^k$ is the whole space C^d . Then A has become triangular, all the terms on its diagonal are equal to $\log \lambda$, and moreover all the transformations we have done involved algebraic numbers, because the equations defining the W_j 's have algebraic coefficients. If we put

$$A = (\log \lambda)I + K$$

we have

$$\exp A = \lambda I \cdot \exp K = \lambda I \left(I + K + \frac{K^2}{2!} + \dots + \frac{K^{d-1}}{(d-1)!} \right).$$

The coefficients of K can be found solving the polynomial equations with algebraic coefficients above, and therefore they are algebraic. \blacksquare

3. Results and proofs. We can now prove Theorem 1.

Proof of Theorem 1. By Proposition 2, there exists for every i, i = 1, ..., n, an invertible matrix B_i with algebraic coefficients such that $B_i M_i B_i^{-1}$ and $B_i \exp(M_i) \cdot B_i^{-1}$ are block triangular. The blocks of the matrices $M_i' = B_i M_i B_i^{-1}$ will be of the type

$$aI + N$$
,

where N is nilpotent algebraic. We can also write

$$M_i' = \begin{pmatrix} m_{11}^{(i)} & 0 \\ m_{22}^{(i)} & 0 \\ 0 & m_{dd}^{(i)} \end{pmatrix}$$
 (mod. algebraic matrices).

Let
$$C'_i = B_i C_i B_i^{-1} = (c'_{hk})$$
. Then
$$(*) \qquad \qquad C'_i M'_i \equiv (c'_{hk} m_{kk}^{(i)}) \operatorname{mod} M(d; \overline{\boldsymbol{Q}})$$

and $C_i M_i = B_i^{-1} C_i' M_i' B_i$. Suppose that $C_0 + C_1 M_1 + \ldots + C_n M_n = 0$. The coefficients of the matrices $C_i M_i$'s $(i = 1, \ldots, n)$ are elements of

413

We want now to prove some theorems similar to those of [1

 $(\overline{Q} \otimes_Q X_i) \oplus \overline{Q}$. Since the X_i 's are spanned by logarithms of algebraic numbers, this implies, by Baker's theorem, that

$$C_i M_i \equiv 0 \operatorname{mod} M(d; \bar{Q})$$

hence

$$C_i'M_i'\equiv 0\operatorname{mod} M(d;\bar{Q}).$$

But the last equation implies, by (*), that $C_i'=0$ and therefore $C_i=0$ for $i=1,\ldots,n$. Finally take the difference to show that $C_0=0$.

THEOREM 2. Let $H \in \mathrm{GL}(d; C)$ be a triangulable subgroup (in particular, by Proposition 1, one can suppose that H is a commutative subgroup). Let M_1, \ldots, M_n be matrices of $T_c(H)$ (the tangent space at the point zero) such that:

(i) $\exp M_i \in \operatorname{GL}(d; \overline{Q})$ for i = 1, ..., n;

(ii) the matrix $\lambda_1 M_1 + \ldots + \lambda_n M_n$ is invertible for every choice of not all zero integers $\lambda_1, \ldots, \lambda_n$.

Then, for every choice of algebraic matrices in $T_e(H),\ C_0,\ C_1,\ \ldots,\ C_n,$ not all zero, we have

$$C_0+C_1M_1+\ldots+C_nM_n\neq 0.$$

Proof. Suppose H has been triangulated: on the diagonal of each element of H there are logarithms of algebraic numbers. Suppose C_0 , C_1 ,, C_n are algebraic matrices of $T_c(H)$ not all zero and such that

$$(1) C_0 + C_1 M_1 + \ldots + C_n M_n = 0.$$

Give to the pairs (h, k), with $h \leq k$, the lexicographic order:

$$(h, k) \leqslant (h', k')$$
 if $\left\{ egin{aligned} h < h' & ext{or} \ h = h' & ext{and} & k \leqslant k'. \end{aligned}
ight.$

Let (r, s) be the least pair such that there exists an index $i, 0 \le i \le n$, for which the coefficient $c_{rs}^{(i)}$ of the matrix C_i is not zero. Considering the (r, s)-term in equation (1), we obtain

$$c_{rs}^{(0)} + \sum_{i=1}^{n} c_{rs}^{(i)} m_{ss}^{(i)} = 0.$$

It follows, by Baker's theorem, that there are integers $\lambda_1, \ldots, \lambda_n$, not all zero, such that

$$\lambda_1 m_{ss}^{(1)} + \ldots + \lambda_n m_{ss}^{(n)} = 0.$$

But this contradicts (ii), for the matrix $\lambda_1 M_1 + \ldots + \lambda_n M_n$ is triangular and has a zero on the diagonal.

We want now to prove some theorems similar to those of [1], p. 11. Among them, the following is the only one holding in the full generality for a linear group.

THEOREM 3. Let M_1, \ldots, M_n be matrices of M(d; C), not all nilpotent and such that $\exp M_i$ is algebraic for $i=1,\ldots,n$. If $\lambda_1,\ldots,\lambda_n$ are algebraic numbers such that the numbers $1,\lambda_1,\ldots,\lambda_n$ are linearly independent over Q, then

$$\exp(\lambda_1 M_1 + \ldots + \lambda_n M_n)$$

is transcendental.

Proof. Suppose that

$$\lambda_1 M_1 + \ldots + \lambda_n M_n = M_{n+1}$$

and $\exp M_{n+1}$ is algebraic. Let Y_i $(i=1,\ldots,n+1)$ be the vector space over Q spanned by the eigenvalues of the $\lambda_i M_i$'s (define $\lambda_{n+1}=1$). If $y_i \in Y_i$, then $y_i = \lambda_i a_i$ where a_i is the logarithm of an algebraic number. If follows from Baker's theorem that

$$y_1 + \ldots + y_{n+1} = 0$$

implies

$$y_1 = y_2 = \ldots = y_{n+1} = 0$$

that is, the sum $Y_1 + \ldots + Y_{n+1}$ is direct. Apply Theorem 1 to conclude the proof.

In the rest of the section $H \subseteq \operatorname{GL}(d;C)$ will be a triangulable group (which we shall suppose triangulated); M_1, \ldots, M_n will be algebraic matrices of $T_c(H)$, not all nilpotents and such that $\exp M_i \in H \cap \operatorname{GL}(d;\overline{Q})$ for $i=1,\ldots,n$. Then the following theorems hold:

THEOREM 4. For every choice of abgebraic matrices of $T_e(H), C_v, C_1, \ldots, C_n$, the matrix

$$B = C_0 + C_1 M_1 + \ldots + C_n M_n$$

is either nilpotent or transcendental.

Proof. If B is not nilpotent, it has a non-zero coefficient on the diagonal, say b_B . Then

$$b_{jj} = c_{jj}^{(0)} + c_{jj}^{(1)} m_{jj}^{(1)} + \ldots + c_{jj}^{(n)} m_{jj}^{(n)}$$

is transcendental by Theorem 2.2 of [1].

THEOREM 5. For every choice of algebraic matrices of $T_o(H)$ C_0 , C_1 , ..., C_n , where C_0 is not nilpotent, the matrix

$$X = \exp\left(C_0 + C_1 M_1 + \dots + C_n M_n\right)$$

is transcendental.

Proof. Suppose that $X \in \operatorname{GL}(d; \overline{Q})$ and let

$$M_{n+1} = C_0 + C_1 M_1 + \ldots + C_n M_n.$$

Since C_0 is not nilpotent, it has a non-zero coefficient on the diagonal, say $c_{jj}^{(0)}$. It follows that

$$c_{jj}^{(0)} = -(c_{jj}^{(1)}m_{jj}^{(1)} + \ldots + c_{jj}^{(n)}m_{jj}^{(n)}) + m_{jj}^{(n+1)}$$

and this contradicts Theorem 2.2 of [1].

THEOREM 6. Suppose that M_1, \ldots, M_n are invertible matrices and that $\Lambda_1, \ldots, \Lambda_n$ are algebraic matrices of $T_c(H)$ satisfying the condition

(a) for every choice of not all zero integers h_0, h_1, \ldots, h_n , the matrix $h_0 I + h_1 A_1 + \ldots + h_n A_n$ is invertible.

Then the matrix $\exp(A_1M_1 + \ldots + A_nM_n)$ is transcendental.

Proof. It is sufficient to show that $\Lambda_1 M_1 + \ldots + \Lambda_n M_n \neq 0$ for every choice of algebraic matrices of $T_e(H)$ satisfying the condition:

(β) if h_1, \ldots, h_n are not all zero integers, the matrix $h_1 A_1 + \ldots + h_n A_n$ is invertible.

In fact, the theorem follows when we substitute n with n+1 and put $A_{n+1} = -I$. Suppose $A_1M_1 + \ldots + A_nM_n = 0$. By Theorem 2, there are integers a_1, \ldots, a_n , not all zero, such that

$$a_1 M_1 + \ldots + a_n M_n = D = (d_{ij})$$

where D is degenerate; that is, D has a zero on the diagonal. Suppose that $a_n \neq 0$ and $d_{ij} = 0$. Substituting, we obtain

$$(a_n \Lambda_1 - a_1 \Lambda_n) M_1 + \dots + (a_n \Lambda_{n-1} - a_{n-1} \Lambda_n) M_{n-1} = -\Lambda_n D$$

and looking at the (j, j)-term

$$(a_n \lambda_{jj}^{(1)} - a_1 \lambda_{jj}^{(n)}) m_{jj}^{(1)} + \ldots + (a_n \lambda_{jj}^{(n-1)} - a_{n-1} \lambda_{jj}^{(n)}) m_{jj}^{(n-1)} = 0.$$

By Theorem 2.4 of [1] the numbers $a_n \lambda_{jj}^{(k)} - a_k \lambda_{jj}^{(n)}$ are linearly dependent over Q and therefore the $\lambda_{jj}^{(k)}$'s are linearly dependent over Q too. But this contradicts (β) and the theorem is proved.

Remark. If a matrix of the type

$$C_0 + C_1 M_1 + \ldots + C_n M_n$$

is not zero, we can easily find a lower bound for its size. It suffices to apply well-known theorems (see for instance Theorem 3.1 of [1], p. 22) with a slight correction, depending on the changes of basis we performed in our proofs. More precisely, if

size
$$C_i \leqslant \gamma$$
 and size $M_i \leqslant \mu$

e have, defining $C_i' = B_i C_i B_i^{-1}$ and $M_j' = B_j M_j B_j^{-1}$,

size
$$C_i' \leqslant \gamma + \mu$$
 and size $M_j' \leqslant \mu$,

10 unwritten constants depending only upon d.

4. Counterexamples.

EXAMPLE 1. Theorem 2 is not true for any linear group, for the hyponesis (ii) is not sufficient. In fact, let

$$M_1 = \left(egin{array}{cc} ix & 0 \ 0 & 2ix \end{array}
ight), \qquad M_2 = \left(egin{array}{cc} 0 & ix \ ix & 0 \end{array}
ight).$$

hen

$$\exp M_1 = egin{pmatrix} \cos x + i \sin x & 0 \\ 0 & \cos 2x + i \sin 2x \end{pmatrix},$$
 $\exp M_2 = egin{pmatrix} \cos x & \sin x \\ \sin x & \cos x \end{pmatrix}$

nd both these matrices are algebraic when we choose $x = q\pi$, $q \in \mathbb{Z} - \{0\}$. f λ_1 and λ_2 are integers, not both zero, we have

$$\det(\lambda_1 M_1 + \lambda_2 M_2) = (-2\lambda_1^2 + \lambda_2^2) x^2 \neq 0.$$

on the other hand,

$$M_1 - \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix} M_2 = 0.$$

Note that $M_1M_2 \neq M_2M_1$)

EXAMPLE 2. The following statement is false:

— if, for every choice of not all zero integers $\lambda_1, \ldots, \lambda_n$, we have ${}_1M_1 + \ldots + \lambda_n M_n \neq 0$, then we have also

$$a_1M_1+\ldots+a_nM_n\neq 0$$

or every choice of not all zero algebraic numbers a_1, \ldots, a_n . Observe first that, for $a \neq b$,

$$\exp\begin{pmatrix} a & w \\ 0 & b \end{pmatrix} := \begin{pmatrix} a^a & \frac{a^a - a^b}{a - b} \\ 0 & a^b \end{pmatrix}.$$

Jet.

$$M_1 = egin{pmatrix} \log 3 & \log 3/2 \\ 0 & \log 2 \end{pmatrix}, & \exp M_1 = egin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix},$$

$$M_2 = \begin{pmatrix} \log 3 & \sqrt{2} \log 3/2 \\ 0 & \log 2 \end{pmatrix}, \quad \exp M_2 = \begin{pmatrix} 3 & \sqrt{2} \\ 0 & 2 \end{pmatrix},$$
 $M_3 = \begin{pmatrix} \log 3 & \sqrt{3} \log 3/2 \\ 0 & \log 2 \end{pmatrix}, \quad \exp M_3 = \begin{pmatrix} 3 & \sqrt{3} \\ 0 & 2 \end{pmatrix}.$

There are clearly three non-zero algebraic numbers $a,\,\beta,\,\gamma$ such that

$$\alpha M_1 + \beta M_2 + \gamma M_3 = 0$$

(solve the equations $\alpha+\beta+\gamma=0$ and $\alpha+\sqrt{2}\beta+\sqrt{3}\gamma=0$) but this is impossible with rational numbers.

EXAMPLE 3. In Theorem 1 it would be desirable to substitute condition (ii) with the following:

— if λ_i is an eigenvalue of M_i $(i=1,\ldots,n)$, then $\lambda_1,\ldots,\lambda_n$ are linearly independent over the rationals.

This example shows that this is impossible. Let

$$M_1 = egin{pmatrix} \log 3 & \log 3/2 \\ 0 & \log 2 \end{pmatrix}, & \exp M_1 = egin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix},$$

$$M_2 = \begin{pmatrix} \log 6 & 0 \\ -\log 2 & \log 3/2 \end{pmatrix}, \quad \exp M_2 = \begin{pmatrix} 6 & 0 \\ -9/4 & 3/2 \end{pmatrix}.$$

The matrices M_1 , M_2 satisfy our new condition (but not condition (ii) of Theorem 1) and

$$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} M_1 - \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} M_2 = 0.$$

EXAMPLE 4. The following statement is false:

— if, for every choice of not all zero integral matrices B_1, \ldots, B_n , we have $B_1M_1 + \ldots + B_nM_n \neq 0$, then for every choice of not all zero algebraic matrices C_0, C_1, \ldots, C_n

$$C_0+C_1M_1+\ldots+C_nM_n\neq 0$$
.

In fact, let

$$M_1 = egin{pmatrix} \log 3 & \sqrt{2} \log 3/2 \\ 0 & \log 2 \end{pmatrix}, \qquad M_2 = egin{pmatrix} \log 6 & 0 \\ (-\sqrt{2}/2) \log 2 & \log 3/2 \end{pmatrix}.$$

We have

$$\begin{pmatrix} 0 & 0 \\ \sqrt{2} & 0 \end{pmatrix} M_1 - \begin{pmatrix} 0 & 0 \\ \sqrt{2} & 2 \end{pmatrix} M_2 = 0,$$

but a similar equation is impossible with integral matrices as coefficients.

or, if $B_1M_1 + B_2M_2 = 0$, in the sum there must be no term of the form $2m\log 3$ or $\sqrt{2}n\log 2$ $(m, n \in \mathbb{Z} - \{0\})$; hence B_1 and B_2 must have the rm

$$B_1 = \begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix}, \quad B_2 = \begin{pmatrix} c & 0 \\ d & 0 \end{pmatrix}$$

1011

$$B_1M_1 \cap B_2M_2 = igg(rac{e \log 6 - a \log 2}{d \log 6 - b \log 2}igg).$$

hich implies $B_1 = B_2 = 0$.

EXAMPLE 5. Theorems 4 and 5 are false in the general case of a linear roup. Let $x, y \in \overline{Q} - \{0\}$,

$$M_1 = egin{pmatrix} \log 2 & x \\ 0 & \log 2 \end{pmatrix}, \quad M_2 = egin{pmatrix} \log 2 & 0 \\ y & \log 2 \end{pmatrix}.$$

'o prove that Theorem 4 is false in the general case, observe that

$$M_1 - M_2 = \begin{pmatrix} 0 & x \\ -y & 0 \end{pmatrix}, \quad \det(M_1 - M_2) = xy \neq 0.$$

s for Theorem 5, let $C_0 = M_1 - M_2$, $C_1 = -I$, $C_2 = I$.

EXAMPLE 6. Theorem 6 is false in the general case of a linear group. et M_1 and M_2 be as in Example 1,

$$A_1 = \alpha I, \quad A_2 = \begin{pmatrix} 0 & -\alpha \\ -2\alpha & 0 \end{pmatrix},$$

here α is an algebraic number of degree $\geqslant 3$. We have

$$A_1M_1 + A_2M_2 = 0$$

at $\det(h_0 I + h_1 A_1 + h_2 A_2) = (h_1^2 + 2h_2^2) \alpha^2 + 2h_0 h_1 \alpha + h_0^2$ is different from so if h_0, h_1, h_2 are not all zero.

References

] A. Baker, Transcendental number theory, Cambridge University Press, 1975.

] - Linear forms in the logarithms of algebraic numbers I, II, III, IV, Mathematika

13 (1966), pp. 204-216; 14 (1967), pp. 102-107, 220-228; 15 (1968), pp. 204-216.

A sharpening of the bounds for linear forms in logarithms I, III, III, Acta Arith.
 21 (1972), pp. 417-429; 24 (1973), pp. 33-36; 27 (1974), pp. 247-252.

S. Lang, Introduction to transcondental numbers, Addison-Wesley, 1966.

1 M. Waldschmidt, Nombres transcendants, Lecture Notes in Mathematics 402, Springer Verlag, 1974.