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1. Introduction. Tn number theory one often desires to estimate
sems of the form

(1) Do)

(or equivalently > A(n)f(n) with A von Mangoldt’s function) where,
for example, f(») is an exponential function ¢(F(n)) = ™™, or a char-
acter y(n). The technigues for the esbimation of sueh swns, whether
analytic ({11, {3], [61) or elementary ([7], [8], [9]) invariably relate such
sums to bilinear formeg of the kind either

0 22 @y S ()

or,
(IL) 2 2 @y b f (1100}

Suppose that the range for # in (1) is [1, ], or equivalently that
f(n) == 0 when 2> X. Then as a fairly gemeral principle the estimates
for (1) are good provided that m < M with # small compared with X,
and those for (II) are good provided that m < M, n < N with both M
and ¥ small compared with X.

Omne method (T. M. Vinogradov [9]) of carrying out this procedure
is to use the sieve of Eratosthencs to write

fy-+ 2 2 (m)f(mn),

V’A <peX miP n<Xfm

where P is the product of those prime numbers not exceeding V’f The
right hand side of this iz of type (I), but has the defect of including m
that are close to X. In order to treat these m, Vinogradov has to intro-
duce 2 combinatorial argument, which for the sharpest estimates is
guite involved, that allows him to relate this portion of the expression

to bilinear forms of type (II). '



112 R. €. Vaughan

In [7] and [8] an elementary method was introduced and dew_reloped
which avoids these combinatorial difficulties. Consider the identity

. )= a)g(dr, n},
@ St m+ 3 3 3 @) gtm, n) @%Z;””g(w)

mmu o dm
a=<u

which holds for any double sequence g(m, n) for which the right ha:nd

side converges absolutely, and is an immediate consequence of the relation

PNIGE

(L < m=<u).

dlm.
assw
Let
Amyfimny (v <n< X/m),
g(m, ) = {0 otherwige.
Then, by (2),
(3) D Amyfin) = — 8,
pngX
where
4 8, =3 > u(d)logh)f(dk),
@ -
(5) 8, = (3] > w@4 (n)) f(Jer),
keun r< Xk d<un<o
. dn=F
(6) 8, = ( 3 u(@) A(n)f(mn)
mou v <n<<X{m éﬂé’&
Now
X da
(7) Slalj Sifa)
where
(8) Sy = 3 3 p@f(a).

d=ominfu, Xfo) e<hgX/d

Clearly both 8,(a) and 8, are of type (I) above, whilst 8, is of type (II).

Thus suitable choices for # and v will often ensure that the corresponding

estimates are good. We further remark that on some occasions the surn S

may be more sharply estimated by breaking it into two parts and treating
- the second part as a type (II) sum.

In [7] and [8] the sbove method was applied in the case f(n) = 6.(0[%)'

The purpose here is to show how the method can be applied to give a
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proof of the Bombieri-A. I. Vinogradov theorem coneerning the average
error term in the distribution of prime numbers in arithmetic progressions.
Two essential ingredients (see [1], [3] or [6]) in the proof of this theorem

ave the Sicgel-Walfisz theorem and a mean value theorem giving a bound
for

(9) 7(7,Q) = 3L 3 masin(x, 1),

<0

where 3™ denotes summation over the primitive characters y modulo g.
The technique deseribed ahove cnables one o give an elementary proof
of the following theorem.
THEOREM. Suppose that @ =1, ¥ =2, I =log¥Q. Then
T(Y,Q) < MY + Y@+ T,

Ag an casy consequence of this and the Siegel-Walfisz theorem one
hag the corollary.

CoroLLARY (Bombieri~Vinogradov).

§ nax

a,X
5@ (g,0)=1,X<F

P&, g, 6)~ T (log ¥)~4+ YAQL.

X
#(q)
2. Lemmata, The first lemma is an immediatc consequence of the
large sieve inequality (see, for instance, Gallagher [6] or (1.4} of [4],
the proofs of which are entirely elementary) and Cauehy’s inequality.

Levmsa 1. Suppose that a, (m =1,...,M) and b, (n =1,..., )
are complen nwmbers. Then

M N

Z Z \ < ((M-l-Qﬁ)(N-i- Qz)Zlam[éz anlg)m
=0 > )

The proof of the theovem rests on a maximal version of this,
Lexma 2. On the premises of Lemma 1 we have

piiy
—
2:’ ——%2 max \ ‘S“a,,, b, x( mn)l
<0 Pid x xe¥ m11 'n,_kl
mn=gX

’A‘?L nx ’n’bﬂ)

<[ +@uaran 3ot 30} log 2UN.

Proof. Let

@ sin
in
=f de,
[74
-0
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y> 0, and 4(f) =1 when 0 << <y, 6(f) =0 when > y. Then >0
and it is easily seen that for 4 =1, §= 0, § # y, we have

4
- po BILYE o 1 ,_djiﬁw_)
8(8) = Leﬂ o= da- O(A[r~ﬁl .

Let p = log([X]+1), f = logmn. Thus

2 2 by by, 3 (100)

mne ¥
f;z;gami%q@xmm m”“d+0( ;S;Lummo

—Ad m

The desired conclusion now follows easily from Lemmsa 1 on ta,kmg A
= YMN,

3. Proof of the theorem. If Q*> ¥, then the theorem follows at
once from Lemma 2 on taking M =1, a; =1, b, = A(n). Hence it can
be assumed that @° < Y

Let

(10) w = v = min(Q?, Y3, TO%.
By applying Lemma 2 a8 in the case @ > ¥ it is easily seen that

D i S’ max p(X, ) < (@ +ug)L"]

Xu?
[rete)

Hence, on writing f(n) = x(») in
by (9), to show that fo j=

*
E E max [
X< ¥
<G z

(3), to prove the theorem it suffices,
1,2, 3 the sum

satisfies
(11) T, < MY+ TG 4 TG
By (6),
< D) To(M
ek
where
M = {2#'@{,: E=0,1,..., k< (]og(fﬂ—z)) flogZ}
and

n=2 @ | 3 7 (@) dtn) o)

MemseM u<ngFid  dim
nSAfm gy
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By Lemma 2,
T (M) < (M@ YU +@) 3] amp 3 Ay log¥
m M n¥[M

< (log YV (Y + T PMEQ 4 Y49 - TQY.

This easily gives (11) with § = 3.
By (5),
I, <T+ 1)
where

I —Z a 2 Jmax | ST ST w@am) n)|

ke réX{k d<iae nsw
dn=k
and T, is the corresponding expression with k < % replaced by u < & < u?
The sum 7. is treated in the same way as T,. Thus

(12) T;’ < L3(1?+ y5I6Q+ Yl/an).

The sum T, is estimated directly via the Pélya~Vinogradov ineguality
(observe that Schur’s proof [B] is elementary). Therefore
T, < (X +@Fu)I?,
and Wlth (10} and {12) this implies (11) with § = 2.
¥ (7) and (8) it is easily seen that T, can he estimated in the same
Way as T,.
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