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by our choice of #. Thus from {20), and sinee |¢,| < I and |§( —g)| = 18(q)l,

we have

K
2 I8(@) > ¥
=1

Henee there is a ¢, 1 < o K K< TN with
(21) 18(qo)l® » NPE~*.

Now let & be odd with 1 <k < (s--5)/3. Then by the lower bound for I
in the hypothesis of Lemma 2, the inequality (13) holds for

7 — Nl—(ul(4(s—-]1.+1)))12[(3-»h+1]‘
With this choice of Z we have
Z.ﬂ—h-{-le+h—1(10gN)s gN:!a«(E,M)Ing/zu — Nﬂsh(ujs)l'% \<__.N2HK_2,

by the definition of K, if ¥ ig large enough. Henece by (21) the second
alternatix_re of Lemma 4 holds with & = g,. This implies the second alterna-
tive of Lemma 2 with m == 2¢, = 2k for ¥ large enough,
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On the differences of additive fumetions, II
by
P.D.T. A, Erriorr* (Boulder, Colo.)

In memory of Professor P. Turdn

An arithmetic function f(n} is said to be additive if it satisfies the
relation f{ab) = f(a)+f(b) whenever a and b are coprime {positive) integers.
Conecerning real-valued additive functions we have:

TEROREM 1. Lt o be o positive integer. Then the following three con-
ditions are equivalent:

(i) There is a constant B so that the inequality

2 fin+a)—f(n)* < Ba

N=L

holds for all @ > 2;
(i1} Theve s o constant O so that the inequality

Z w7 fin+-a)—f(n)]’ < Clogw

n<T
kolds for all 2= 2;
(i) There is a consiant A so that the series

2 D 7Hf(ph —AlogpF
p k=1
BONVErES.
 As a companion to this result we have
- THEOREM 2. Let 4 and @ be real numbers, A+p % 0. Let o and b be
integers. Then the following thres conditions are equivalent:
(i) There is a constant B so that the inegualily

2, 1Wn+a)+uf(n+b)* < Bu

nsn

mr.

holds forgall @ = 2;

* Bupported by N. 8. I. contract number MCS 75-08233.
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]
1)
<

{ii) There 43 a constant C so that the inequalily
Eaz_ljﬁf(n+a)+,cg‘(n+b)[‘"’ < Cloga

L
holds for all @ 2= 2;
(iil) The series

2 SoTHfphe

I =1

D o7H(ph)

vl

conoerges, and the sums

are uniformly bounded for all & = 2.

When u =1 and the funetion f(n) is strongly additive, a proof of
the equivalence of the validity of propesitions (i) and {iii) of Theorem 1
was given in o recent paper of the author, with a title similar %o that
of the present paper, and to appear in “Mathematika®, Most of the proot
given there ean be modified to deal with the more general situation of The-
orem 1, making use of (il) in place of (i). However, someremaxrks should be
made concerning the first step of the argnment, which would now
amount to the following:

Assuming the validity of (i) (in the statement of Theorem 1) we shall
prove that ‘

(1) 2, 1T < Da(logaye,

&L
Jor some constant D and all = 2.

Suppose first ’eh&_‘g both » and @ are odd. Then at least one of the
numbers n—gq and %--3a iy exactly divigible by 2. Otherwise we should
have %—& =u~3a (mod 4), and o 2¢ == 0 (mod 4}, which is impossible,
Thus if e, = 1 or 3, as the case may be, n--s@ = 2m, for some odd integer
My, and. _

(2) Flm) == fn) —f(n— eo0) +F(2)+F(m,).
We can now repeat this procedure with wm, in place of #, B0 obtain m, —e,0

= 2m,, and so on. After % steps (say) the process termingtes, and we
have & representation
k—1

Ttn) = F0)—fn— o)  1(2)+ Fm) + 3 (Fm) ~Fimy— e50)).
=1

E%inee k< (logn)/log2, an applieation of the Cavchy-Schwarz in-
squality shows that

Fr=1 .
< B{F ) ~Fn @) 57 1m)—Fim, — 0} -+loga) log
for some constant . S '

icm
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Writing m, for 2 we sun over the odd integers » not execeeding x
to obtain

PRHOI

n=r
nodd

<Bloga D logz+ ) 1ftm)—f(m—a)t+ 3 [fim)—f{m—3a)P),
* *;T' mjgm mjgm

5j=1 aj=3

(=

It an integer » gives rise to a particular m, m say) in the “decom-
position” associated with the representation (2), then we may recover n
from m by 2 sequence of operations

m—2m—{2m + 11,0) =2 (2m -+ na) =2 (2m +n,0) + ngo—,

ete., where each #;, 7z, ..., has a value 1 or 3. Sinee » does not exceed z,
the number of 7; in such a sequence of operations, say 1, is restricted by
2'm < #. Moreover, the totality of all integers # (< @) which can give
rise to the integer m is included in those obtained by choosing each
to be 1 or 8 “at random?”. In thiz way not more than 2* < #/m distinet
values of » may be reached, so that (for example)

D X i) —fm—8a)t < w m f (m) —F (m 32,
T -m:,-{:c 3 ma
8;=3

Sinee
[f (i) —f(m —3a)i

< |f(m) —f (m— a)l + | f(m—a) ~ f(mn — 2a)| + {f (m — 2a) — F (m — 3a)|
we obtain from (i} the upper bound }'[f(n){2 < Fz(logws)? for some con-

stant P and all 2> 2. nodd

Moreover, if » is even then n—a is odd, hence

2, M Y 1F(m) —f(n—a)+f(n—a)?

[ T [ B ]
neven neven

<2 D fm~fin—a)P+2 Y [fO)* < Gallogn).

a<NET I<z—a
fodd

Aitugether, the bound (1) i3 established for odd values of a.

If ¢ i5 even we argue as follows. Let o == 2', where 24b. Then as in
the above argument we obtain

2O, f(ml* < Ho(logm)2+Ja 3 m|f(m) —F (m—b)[-+

ns@ bamsm

nodd M 06
fipm—b)

+Jo D7 m7f(m) = f(m—3D)J,
sb<m=zx
7 0Rd
2{m—38)



252 P.D.T.A. Elliots im“

If (say) 2{(m--b), where m is odd, then
Flm) —f(m—b) = f(2"m) —f(2"(m~b)) —f(2")+f(2"") —F(2),

and
> w7 m)—fon =B <K 3 w(If(w)—f(w=a)P+1) < Lloga.
b bw=ae .
modd
2i{m—b)

The sum invelving f(m)—f(m —8b) may be gimilarly treated, and
once again we obtain a bound

D) 1)) < Malogo).

Suppose now that » is even; then at least one of the integer #+-a,
n+2a is not divisible by 2" Let n--2¢ == 2, where 1§y, 35,
for example. Then

J(n) = f(n)—fln+2a) +F(2) +1(s)
and
|f ()2 < B]f(n+2a) — F(n)|2+ 31 £ (29) 2+ 3| f ()2

Amongst those even integers » which do not exceed », at most 2r can
give rise to a particular integer s in the above manner, so that

DR <N ( Y tfint2ay—Fm)2+ 3 IF(s)iE) +
sy

n=T e
NEVED sodd
+3( 3 iftnray—fmie+ ) 1))+ o

< Bz(loga)?

for scme constants N, R, and all o > 2.

The desired inequality (1) has now been obtained in every case where
@ 18 non-zero.

This completes our remarks eoncerning the proof of Theorem 1.

Proof of Theorem 2. Suppose, for the time being, that |4] > |ul.

Let ¢ = p/A. Then we can rewrite the hypothesis (i) of Theorem 2 in
the form

@) Z”qllf(”)+9f(ﬂ+d)i2ngogw, x> 2,

ngeT

where d is & (positive, negative or zero) integer, and D is & comstant.
, We first prove that

(4) f(n) = O{(nlogn)t?).
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From (3),
f(n) = —of(n+d)+ 0 ((nlogn)t).

Arguing induetively we obtain
f(n) = (= o)f(n+jd)+ O ((nlogn)'”?)

the implied constant now depending npon the positive integer j. Let
¢ (> 3) be a prime which does not divide d. Then there iy a value for j
in the range 1<Cj< ¢* so that »n4jd =g (modg?), and so

P < Lol f(n-+3a)] + oy (nlogm)™ < o] |f(m) + c,(nlogn)i®|

where n-+jd = gm, ¢im, and the integer a is bounded above by
m< (n+¢*d)/q < n/2 provided only that # exceeds some fixed number
Ry, S&Y.

Arguing inductively (once again) we obtain the hound

12
) < o [inlog )™+ g1 Tlog 7]+ ...} < cufaogay®

a8 was asserted in (4).
Our next step is to prove that

{5) 8= DdnlfmE<gloge (w32 2).
In fact for each infeger =

f(n) = f(n)+eof(n-d)—of(n+a)
80 that

< Ma ) + ef u+ d)F + ¢*lf (n+ @)+

+2|f(n)+of (- d)] [of (n+ )}
< Tlogz+e* Y a7l f(n-+d)f +
nsw—d
+2lol { X0+ efnt- a3 a i}
nL =X

this last step by meuns of (4) and the Cauchy-Schwarz inequality. Since

o g —1 2 @ 2
D T dE = M @y fln d)F + > g el

nr—d wege—id ngr—d

we obtain the inequality

8 < 0*8 +6;(Slogx)* +eo5logw
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for certain constants ¢, and ¢, Henecs
03+ 6)logw it S<logx

(I—Qz)Sg (5+ 6) g " . =z gx,

(cs =+ ;) (Slog ) it &>logw

and (B) is (in either case) established.
For a sufficiently large constant 4, and all large enough a

1
Z A.‘* —logw < 10~ logz,

VE<n;‘:a;
Iftni> A
80 that
1 uE(n) 6 —2 1
— T i o) > —logwm.
‘_Z — > = ~107] loga+ 0(1) > —logw
Va<n<e
Ifinycd
Define
Fiy)= D u'(n), = sup y°F(y).
Vocn<y Va<yze
Ifm)l<d
Then

%Iogw< f%dﬂ’(y)g f ;J ay+1 < f

Vo Ve Yo

where we have applied an integration by parts. For all sufficiently large =
we §ee that > 1/3.

In the terminology of Erdos (see also Ryavee [3]) we have proved
that the additive funetion f(n) iz finitely distributed. Hence there is:&
constant € mo that the serieg

D7 f (@) Clogpf?
»

converges. Since F(y) counts square free integers n for which |f{n)| < 4,
we can readily show that the comstant ¢ has the value zero, and hence

that the se_:fies
| 277y
COLVerges.

We now appeal to the dual of the Turdn-Kubilius inequality, in
the form

{6) 219 ‘ — ——p Bi— —-l < ¢, logw y |£f:nlz

_,pk,g,_. nSx ﬂ.<.76
phin
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{seb o = 1+ (log2)~* in Lemma 6 of the author’s paper [1]). Here the
contribation of the summands involving p* with % 3= 2 is all that we need.
Set @, = f(n)., Then (fypically)

a, 1 . f(#%)
M S’R—mﬁk (F0") +f(m)) = 25 § — -0 (p Moga),
n<e m<afy m<z/pk
Pl prm DtwL

and we deduce from (6) that

sz‘ii””( P i)zgcsaogw)a 252,

E m
p"’gz, Fza m;?ﬂ? [
Since
1 }ﬂ 1 2 1 1
57 - —_ = =;—10gw—-~floga~+0( );z—-lagm
Ld T
m<mlp mu?fd " 4 r<w " s 4 ]/E !

if p*<< o™ and @ iz sufficiently large, we deduce that

A%
ool ke y

This establishes the convergence of the first series in part (i)
of Theorem 2.
An appeal to the Turin-Kubilius inequality in the form
2w = D 7R < eloga 3 a7 ey o2,

nLw Py ni:t

allows us to assert that the partial swms
1 f(p" .
""PT): %z 3,
phe
are uniformly bounded.

It is now straightforward to complete the proof of Theorem 2 in every
cage save when [A] == |u|. In this case the hypothesis (if) reduces to

Zn"llf(ﬂ)-{_f(n + )% = O(loga)

s

for some integer d and all » > 2. In view of what we have so far proved
it iz enough to consider the case when d is positive. Bubt then

fln+2d)— = {f(n+2d) - fn+d)} — {f(n+ad)+Ff(n)}
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go that :
2, f(n28) ~ fn)|* = O(logn), w32,

NER

The outstanding case of Theorem 2 may thuy be deduvced from The

orem 1.
This completes our proof of Theorem 2.
In the latter stages of this proof the influence of Professor Turén’

ideas iy eloarly visible,
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A lower bound for linear forms in logarithms
by

MICHRL WALDSCEMIDT (Parig)
Dedicated to the memory of Panl Turdn

We give an explicit lower bound for a non-homogeneous linear form
in logarithms of algebraic numbers with algebraic coefficients. We pay
& special attention to the dependence on the degree of the algebraic num-
bers, and on the number of terms in the linear form.

1. The main result. We consider a linear form in logarithms of algebraic
numbers

4 = fo-+gloga + ... + i loga,,

where By, 1, ..., B, are algebraic numbers, and a,,..., o, are non-zero
algebraic numbers. Cur aim is to prove & new lower bonnd for |4} assuming
that it does not vanish. For a complete history of this subject, we refer
to [21.

When X is a number field, we denote by Zy the set of thelogarithms
of the elements of K*:

Ze ={lel; dcK).

When 16#x and @ = €', we write | = loga. We use the “absolute log-
arithmic height” k() of Néron and Lang [6] (the definition, and eonnec-
Hons with Mabler's measurs and with the nsual height, are detailed in
§2 below).

Our main result is the following.

TEBOREM. Let K be a number Jield of degree D over Q,1,, ..., I, be
non-zero elements of Lr, and f,, ..., B, be elements of K. Defime a; = d,
A<i<n), and

A = poFpiloga, 4+ ... +gloga,.
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