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wo
(13) 01 = 0 +w+w,
ist.

Zum Beweis benittzen wir das Additionstheorem der Gammafunktion
(vgl. Rademacher, loo. oit., 8. BB (28 61))

(14) f Ij—HIe)w'd

1+u)j

wobei [arcu| < w sel. Wir nchmen, wenn j > 1, 4 = (g+i(hq+k)) f(w—p),
dann erbalten wir da § 1 (5) auch fir o < 1 gilt sofort (9), da alle aut-
tretenden Reihen absolut und gleichmifiz konvergieron. Im Falle ¢ <« §
< ¢/u nehmen wir auller dem oben definierten » noch

Uy = (91+7:(7"a + k)}/(wl — )

und wieder o < j und erhalten (12).
Es ist ja z.B. wenn man in (14) einsetzt

(w-{—z(ka+k - = fG {j, ¢ (Q 4% ha—{—k)) )
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1. Introduction. Let & be a finite sequence of integers and let 2 be
a set of primes. One of the fundamental preblems in gieve theory is to
estimate from above and from below the so-called sifting function
8(s#, #, ) which represents the number of elements in .« that have no
prime factors p < 2 in &, Lelting

Pe)= [ »

py,peP
one can write
S, P, 2) =||aed; (0, P(2)] =1}].

In general theory the sequence &/ ean be almost arbifrary. The relevant
infermation that we need about o/ is a good approximation formula (in
an average sense) for the quantity

[l = [{aesf; 6 =0{modd)}|

which represents the number of elements in o« that are divisible by &
squarefree number d|P(=). It is supposed, what frequently turns out to
take place in practice, that every lof,| may be written in the form

gl = —”—’%lxw(ﬁf,d)

where o(d) is multiplicative and 0 w(p) < p for pe®, X is some
positive number independent of d and r(«f, d) is considered as an error
term, small on average (so X approximates to o).

H w(p) is bounded on average, say by x, we then deal with » dimen-
sional sieve. In literature there are multitude of ways in which this fact
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can be expressed. In this paper we shall assume two inequalities

(1) I (1mi“~(~?il)u1<(10gz)u(l+ ut ),

- P logw logw
PEF
w(p%) L
<
(2) p*  log 3w

WEP<E ez
e

which are to hold for all 2 > w = 2 with some constants K, L>1. Tet D
be any parameber > 1, ¢ = log.D/logez and

()
__V(z):j;[) - )

The sieve estimates of §(«f, #,2) have usually the following form
(3) ;S‘(m’,gﬂ,z)gY(z)X{F(s)+A(x,s,K,D)}+R(.vl, n,
(4) S(M,@,Z)ZV(Z)X{f(S)—A(?ﬂ, S,K,D)}—R(M,D)

where the functions F(s) and f(s) depend on the dimension » and satisty
0<f(s) <1< F(s). The first error term A(x, s, K, D) tends to zero
a8 ¢ or I? approaches infinity and » and X remain constant. The second
error term R(«f, D) is defined by

(5) B(a, D)= 3 |rat, ).
d< L, d|P(z)

Sometimes the sum (5) is weighted by the factor 09 with some constamnt

0> 1. Since ¥V (z)X should be the order of magnitude of §(«; 2, 2} the
second error term R(sZ, D) is required to satisty

(6) R, D) =0(V(®)X] a8 X - co.

Note that every single error term r(s# , &} appears in B(of, D) in absolute
value, thus there cannot be any cancellation of the errors. For thig reason
every D satisfying (6) may be called the natural level of distribution of o
in arithmetic progressions. The functions F(s) and f(s) monotonically
converge to 1, therefore the larger level of distribution D we have the
better the results we shall obtain, In general cage the best fumctiony F(s)
and f(s) are not known. In the very important case of linear sieve (» = 1)
Jurkat and Richert [6] have proved (3) and (4) with optimel functions
J(s) and f(s) in the sense that there exish sequences o of the length X
such that neither (3) nor (4) would hold as X—+oo if F(s) and fla) were
replaced by smaller and: larger funetions of & respectively. Their funetions:
F (s) and.f(s) are the continuous solutions of the following. system of dif~
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ferential-difference equations
sT(s) = 2¢° i 0<s<3,
sf(s) =0 if 0<sx2,
(sF(s)) =fls—1) if 8>3,
(sf(s)) =TF(s—1) i s>2
where ¢ = .B77... is the Euler constant.

The main purpose of this paper is to show a result which in many
interesting problems enables one to apply (3) or (4) with a larger D than
the natural level of distribution, thus in that way improving the Jurkat
and Richert results. It becomes possible due to a new more flexible form
of the error term B(«, D).

TeroREM 1. Let 0 <e<1/3, M >1, N> 1, D =HMN. If (1) and
(2) hold then for all 2 < 2 < D' we have
(1) 8(,2,2)< V()T {F(s)+Ble, D, K, L)} + B (o, M, N),

(8) S(at, P, 8) = V(&) X{f(s)—Es, D, K, L)} - B (o, M, N)
wheres = logDflogz, B(e, D, K, L) € s+ 5 %E+2(log Dy '* and forv = +
(9) FE(«,M,N}
= 3 (N, ) B (M, N, (o i),
I<exp(sg—3) m< i n<iN
miP(e} niP(2)

The coefficients ay, ; and b, ; depend af most on M, N, ¢ and they are b?—
unded by 1 in absolwle value, Boreover, the estimates {7) and (8) will remain
true if the wvarichles of summation m and n in the remainder term
(s, M, N) are assumed to satisfy mn|P(2).

Throughout this paper all constants implied by the symbols < and O
will be absclute. .

There are several methods for working with E'(«, B, N) Ieafdmg
to (6) with values of B{ W larger than those possible for the conve.ntmna&
R(sf, MN). One way of treating B'{«f, M, ) is related to an idea c:f
expanding every single error ferm # (<, mn) into Fourier series. On.a,.pph—
cation of Cauchy-Schwarz’s inequality one can chauge the coafflclents
ay, and b, and one arrives then at exponential sums which can be estimated
by wvarious methods familiar from the analytic number theory.. Other
method is based on expressing 7(«, d) by the Perron integral of Dirichlet’s
generating function for the sequence &/, The double sum 3 is then the

m,n
integral of the product of three generating functions for the sequences
o, {a,,) and (b,) respectively. Since the lenghts M and N of the generg,tmg
functions for (a,) and (b,) ave at our disposal one can very effectively
apply the mean value theorem or the Halssz—Montgomery—Huxley
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inequality for Dirichlet’s polynomials. Still another approach to B'(o,
M, N} is offered by Linnik’s dispersion method.

As an application we present the following two results (the proofy
will appear elgewhere).

TamoreM 2. For any dirreducible polynomial g(n) = an®+ bn ¢
with > 0 and ¢ =1 (mod 2) there emist infinitely many itntegers n such
that g(n) has of most hwo prime factors.

TarorEM 3. For any. & > 0 and all 2> 2,(c) we have

&

w(w; g, 0) < (2+£’m5(??&")"

where

wg if 1 <g<atte,
D(w, g) = {zg~¥* if  l<g<a¥e

B P« g < e

Moreover, on the Lindelof conjecture L(k—+it, y) < (|t|+1)g° one can take
Diz,g) =0 i l<g<a'e.

Also, if the Hooley conjeciure (see [3]) concerning incomplete Hloosterman’s
sums 18 trus, then one can ifake

Diw,q) = (x/9)™ i P <g<at™.

In the paper we shall prove more precise inequalities than (7) and (8).
Theorer 1 will follow as a corollary. That will have signifieance in some
applications, for example in the problem of the difference between conge-
cutive primes.

For a given integer B> 1 lot us denote

]
WR(-M P Z) —-S(.,(Ef Z z)+2 2 S(ﬂpl...pZT_F]!ga’pm%l)
r=0 wi—( w2 Dppt)

and
— : E
Welst, 2,8) =8(at, 2,2)— 3 3 8ty 4, P10
=1 W (0500 Dyp)
‘where' the symbol wt(p,,..., Para) indicates that the summation is
over the primes p,, ..., Poryy from P patisfying the. simuitaneous con-
ditions
: Poria < ---'_<19_1<zr
(Y P Py ...pi< Dtor all 1< 7,
?gr+lphr - = -D .
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and the symbol w™ {p,, ..., ) indicates that the summation is over
the primes Py, ..., Ps, from 2 satisfying the simulfaneous eonditions
Por < .. <P < 7,
{w=)  Pypu—1---B< D forall T<r,
PoPar1 - P12 D,
The notation W*(@’ , P, 2) will stand for WI(of, 2, 2).
Tet 0 <e<1/3 and D= 2. Define 5 = ¢°,

& — {Dag(l-}-ﬂ)ﬂ; n = 0}’

H =Dy .-y DY; r=l, De¥ for 1<Igr, D, <...< D, <DV},
9% = {{Dy,..., D e #; Dy... DD}y < D for all 0<<I< (r—1)/2},
T ={Dy,...,D)eH; Dy... Dy Dy <D for all 11 r/2}.

Note that |9"] < exp(8e™ %), » = +.
THEoREM 4. Let B> 1, 0 < e < 37F and D = 2. If (1) and (2) hold
then

{10) Wi, #,2) < V() X{F(s)+ B} +-Rf + B if =2<D,
1) Wi, 2, 2)= V) X{f(8)—BY—R —R™  if =< D™,
where 8 = logD/logz, B = B(e, D, K, L) € e %K T (logD)"**,

By = D gu(D)r(st, @),

d<.Da2
diP(D") .
= 3 > Bey Dy, D)HA, P, 258, Dy, D)
(Dyse. ., Dyple”  d< D
(DY)

with some coefficients ¢ (D" and Xy(s, Dy, ..., D,) bounded by 1 in absolute
value and :

Hyloly Py 256, Dy, .., D) = > ... N r(d,dp...p,).
Dyspy <Dyt D,.sp,.d) 1-+1

s P(s)
e brkor (4. (D, T

Here I(Dy, ..., D) i3 an arbitrarily chosen (not necessarily complete)
set of pairs of mdwes {(t,9) with i =, 1< i, i<

Acknowledgment. The author would like to express his thanks fo
Professor Heini Halberstam for showing him an alternative proof of
Theorem 1 and fer an interesting conversation on the subject.

2. Proof of Theorema 1. In this section we shall derive Theorem 1
from Theorem 4. :

Bvery sequence (D, ..., D) in 2", » = + will be called v-admissible.
The empty sequence will alse be considered as a v-admissible.
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LEMMA 1. Hvery v-admissidle sequence (I, ..., 1) 8 a union of fwo
disjoint v-admissible sequences (Myy ..., My) ond (Ny, ..., N}) such that
M. M, <M and N,... N,< N subject to M>1, N>1, MN =D
and 841 =1,

Proof. If v = 1then the result it trivial because D, < DY* and either
M or ¥ is > D', Assume that r > 2. Sinee the sequence (Dy, ..., D,_) is
y-admissible we can write it, by induction hypothesis, a8 a union of twe
sub-sequences (M, ..., M,) and (¥, ..., N;) such that M, ... M, < ¥
and Ny... Ny < N. But Dy ... D,_D; < D, thus either M, ... M, D, < M
or ¥, ... ¥N.D.< N. Therefore one of the above sequences can be ext-
ended by D, giving the desired deeomposition of (I, ..., D,).

By Theorem 4 and Lemma 1 we deduce that (7) and (8) hold for
# < D and 2 < D" respectively with the remainder terms R* (o, D*M'+7,
Ny, Assume that M > N. Then reinterpreting the parameters D, M, &
by DY, MDY, WY, respectively we find that s goes into (14-s+n)s
and hence that (7) holds for s = 1+4-¢-4-u, a fortiori, for s> 2 while (8)
holds for s> 2(1-+s+ n). Notice that the variation of the arguwient s
in the main terms f(s) and F(s) does not matter because of the error
Ele, K, L, D). To prove (8) for all z< D' we appeal to Buchstab's
identity. Lefting 4 = D¥X+et2 5 — min(4, 2) we derive

B, @0y = 8(st, Py3)— D B, @, D
A<p <DYZ,piP(s)

= V()X {f(s) - B} — 2D (M, N, %

1gl<exp(8s™d) m<MuaN

m,n|P(z)
X ﬁm,z(-M’ N, e)r(sf y mn)+
+O(VE XE) — ] D gir(d, pa),

A5p< DU Py d<DY%, AP

the second line resulting from application of (8) to 8(«, £, #,) and the
lagt one from estimating 8(s7,, &, D') individually by Rosser's upper
bound sieve with weights @i such that pf!<<1, of =0 for d D!
(see Lemma, 4). On multiplying the coefficients a,,, 8, by the characteristic
function of rmrnbers free of prime factors > 4 the condition m, niP (2}
tan be changed iuto equivalent one m, n|P(z) thus giving the required
shape for the first remainder term. The second remainder term hag a bili-
near form as desired. To see that consider p and d as two different variables
when N > D™, 50 p < M and d < N. In case N < D' take pd as one
variable, so pd < D* < M and the constant 1 as the second variable,
80 l < M. Thig completes the proof of Theorerm 1.
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3. Main lemmas. The main results that we shall utilize in the proof
of Theoremy 4 can be found in [5].
Pat p =1, gy =1 and for all squareiree numbers d =9, ... P,
P> ue > Pyy ¥ 221, define
s J(=1y i p, . pph < D for all 01 (r—1)/2,
e = {O otherwise,

~ =1y i py oy aph < D for all 1T 02,
Ba =0 otherwige.

By Lemma 1 of [6] we have

Lennia 2. For any sieve (&f, P, 2) the following identities hold

WHst, @,0) = O wildal, W{al,@,0) = 3 uzlstl.
d|P{z) dl.P(2)

If we introduce for each |s7,l its approximate value w;d) X then

the following sums will arise
a
M=(D,7,2) = 2!“3: il )
&|P(2)

For these sums, by Lemmas 18 and 20 of [5] we have

LEMMA 3. If condition (1) holds then
(12) MHD, 2,2 < VE@{FE+0TogD)" )} i 2<D,
(13) M (D, 2,2 = V(&) |f(s)+0(¢F log Dy #)}  if =< D™

Remark 1. It was shown in [4] (in the special case w(d) = 1) that
the exponent —1/3 in the srror terms of (12) and (13) can be replaced
by —1. Moreover, it was shown there that > [uFi < D{logD)7?,

d<D

the bound O (D) is of course trivial. This seems to be best possible because
any sharper estimate would lead one to an extraordinary result about
Biegel’s zero.

Remark 2. Much the same proof as that of Lemma 1 leads to the
following: it 2z < D¥*, d|P(2) and either uj £ 0 or gz 7 0 then for any
M>1 and N > 1 such that N = D one can write

(14) d=dd, with & <M and dy<N.

A similar factorization exists in the case of larger dimensions and
results analogons to Theorem 1 can be proved. It is worth remarking
that if M =N = D' ¢hen the factorization (14) is also possible for
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A'g from the sapport of Selberg’s A’s becaunse they are of the form

Ay = y 24,04, -

Lownd
[dl,dz]
dy,dy< D12

Thig structure of Selberg’s A’s plays a crucial réle in Motohashi’s im-
provement of the Brun-Titchmarsh theorem. The present work was
just ingpired by hizs pioneering work [7] (see also [1] and [3]).

4. Handling of the vemainder terms R*. If ¢ < D7YWF* than th,
estimates (10) and (11) follow from these for 2, = D™"%* To this end,
apply Theorem 4 for the sieve (&, #,, ;) With &, = {p; p|P(2)}. We obtain
Wi, 2, 2) = Wi(o, Py 2) < V(@) X {F(s))+ B(s, D, K, L)} +- B + BF
and
Welsd, Py 2) = Wglal, @, 21) 22 V(2) X {f(81) —

' —B(e, D, E,L)} -Ry —R".
Here s, = logD/logz, = —loge, thug

Fsy) =1+0(e™) = 1"{“0(8) QF(S)*JFO(E),
fls1) = 140(6™) = 14-0(s) = f(5) +O(s)

Thiz completes the proof of implication in question.
In what follows we shall assume that DY < g < D2, Define

w=D0% Ple,u) =P@)PM), Vi, =7V,
o = loest; (a, P(u)) =1}, P = {p e P; prPw)}.

We shall malke use of Lemma 2 for the sieve (&i ) 93, #). But first we show
that

(16y. - Wi, P z)s;Wﬂﬂ’, P, 2),
>

{16) Walt,#,2) 2 W (o, 7, 7).
Hor, we observe that if w™ (p,, ..., p,,,.,) holds and » < R then p, ... Py
< D777 and Dapir > D7 s . Analogously, if w” (s, ..., Dy} holds

_Hq—r

and r <R then p,. ;pnr,1<1) and 1:92,>_D£?J > . Therefore,

B 8(s, . 00 P, 2,) contributes to W5 (o, 2, 2) then it is egual to § (&0‘1,1 o

, p,), so it contributes to W(s/, 2, 2) as well. Thig yields (15) and (16).
Now, by Lemma, 2 when applied to (.seﬁ/ 90 2) we obtain

w* ("f:g’a:z) = 2 M?S(Wd,-@,%),
APz
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becanse || = S(efy, 2, u) for all dP(z, w). We divide the interval
[w, D) into < e "loge™" subintervals by points from %, If 4 = p, ... p,,
PP =p > .. .>p. =4 then we say that d belongs to the seguences
{Dy, ..., D) it

D <p <D, ..., D,<p, < DM

Here and in the sequel the sequence (D, ..., D,) will always be taken
from #. It is easy to see that if d belongs to (Dy,...,D,) and u} %0
then D, ... DyD} ., < D for all 0l (r—1)/2 and analogousty, if 4
helongs to (Dy, ..., D,) and uz == 0 then Dy ... Dy . Di< D for all 1 <1
& 7/2. Therefore we have

(17)  WHS, P, 2) < S, P, u)—
- 2 2 H(Dl

0 D> > Dypy
3
Dy... DDy, < DY)
for all 0=l

+ Z E Hp,,....0p) (5, #5 %)

r2l Byl
Diye. D21D21+1<D
for all o=y

Dz,._‘_l)(ﬂy 5’7 'u‘)”%"

and
18y W (o, P, )= 8, P, u)—

- 2 Z Hpy,.Dyy {1 2 u)+
20 Dlz...2D2r+1
Dy Doy D52D
for all i<I<r

+2 Z : H(D1 ..... D_.,.,,)(-“(: P, u)
r2=1 Dy>...>Dgy
L
DI...Dzl__]_Dﬂ-(Dln’(l'!"'J)
for &112_[<I£r

where
L
{19) H(Dl,...,l),.)(ms P, u) = 2 S(‘p‘(ﬂr"ﬁr’ P, ).
Dy<p<pitt
D,.ép,(])r"’"

The symbol 3™ means that the variables of summation py, ..., p, TUR
over prime divisors of P(z, %) such that p, % p; for (4, j) e L(Dy, ..., D,).
To evaluate 8(sf,, #, u) we need the following
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Lmvma 4, There ewist two sequences {3} and {p7} such tha

(20) ¢f =1, loFl<1l and gf =0 {if dxD
(21) el S prl Lot
d
{22) 2 ‘FEE m; ) {1+0( ~1le Fe‘r—"l"s(SIOg‘D)“lla)}.
GP{u) .

Proof. Tt ig well known in the literature as the Fundamental Lemma
(see [2]). To prove the above version take for ¢t and ¢~ the functions
pt and p~ corresponding to the parameter D’ in place of D. Then (20)
and (21) are obvious while (22) follows from Lemma 3.

By Lemma 4 we get

D alada <B(oty, 2, w)< D) wfldlal,
AP(w) aiP{w)

80
*
+Hp,...00(F, #, 1) Z ®3 2 | 4py.0.py
le(u) Dy ent

..................

D,.s;:p,.cDr'H"

If we inftroduce these inequalities to (17) and (18) and then replace the

quantities |ef,| by ;)_X +r{sf, q) we shall arrive at the estimates
(23) WHiad, 9, 0) < XA+ RE+ B,
(24) W (o, P, ¢) = XA~ —Rf —R~

with the remainder terms R* = R* (o, #,2,¢, D}and B~ =R (#, 2,
2z, &, D) of the required type. The main terms 4% and A~ are equal to

w(d
(@26) At = qu .(z) _

d|P(u)
- y Z 2 o 2 @ (@Py ... Porpr) n
e

I e SR v ) Dy pla dpy -« Papsr
Dy Dyl (< DU HT) !
for all 0<Tr

Dy 1S54 <051

Yy 2%{ L R

dpy ...
r2l Dz >D2r P (u) Dy <Dt Py Por
Dy.. DEIDELF-I{D 1

for all ii<r D2,€p2,< Dz;!,,..

A new form of the error levm in the linear sieve 317
and
- _ o{d)
28) A7 = Pa — 5 "
)P(u)
* @(dPy .-+ Papi1)
- X e YN gy
=0 Dyme.2Dgpaq AIP(W) Dy<py < DI Py e e Popsa

............................

3
Dl"'Dil.l—lDzl(D

for all l<i<r DQTHQPMH.:D},HI

+ 2 Z ng Z w(dp1 pﬁ:if)

r=l Dz >Dan diP(u) D1€p1<Di+n
Dy Doj 1D§;<D .....................
for all I<Cl<r D2r§'-°2r<D3:ﬂ

5. Estimates of the main terms. To complebe the proof of Theorem 4
it remains %o ghow thab

o A+ < V(&) {F(s)+ Ble, D, K, T)}
and '
(28) A" > V(S f(s)— Ble, D, K, L)}

“We shall treat in great detail 4" only, the case of 4~ being similar. If one
replaces in (25) ¢~ by ¢t we make an error which is less than (in absol-
ute valae)

d )
(3w P = S ) 3 2
&P ()} d|P{w) 71 P(z,u)
<% V(u)e‘”‘(l+e‘r1_{(slogl))_”3)

i)
Vi2)

—1fe VE N1} —4 £ :
< Viz)e " (L+¢"E(elog D) #)e (1+~————)

gtlogD

< He, D, K, L)V ().
Therefore :
(28) At = WD, P, u) X

: o Poppa)
-2 L2 DI o

rEd Dy, >D2r+1 D1€P1<Dl+ﬂ
Dy...DyDl z+I<Dll(1+’ﬂ
for allosl<r Dy, +1.§=er +1< Dz;"+1
W * (pl X 1921')
+ E E —= 2T O (Ble, D, K, L)V (2))

21 DyEe2Da  piep <plt P1 v Par

Dy Dyl <D T
for all < <r Dy nigg< Dl-I-ﬂ

— MH(D*, @, u) Lt e, D, P(2)) + O (B (e, D, K, L)V (2)), say.
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To estimate L (¢, I}, P(2)) it is convenient to compare it with M+ (D, 2, 4.
In both sums L™ and M™T there arc terms of the same type o(q)/g with
g =Pi--- P, PP (2, u). We shall classify all ¢ that occur in one gum
only into four classes 4, B, ¢ and D. The first class consists of these 7
that are not squarefree:

A ={g=pi... 05 DlP(z, u) for LI, plg) = 0},

Now, let us fake any ¢|P(z, #}. I w(g)jg contributes to M*(D,gﬂf,z)‘
and it does not contribute to I (e, D, P(z)] then either ¢ belongs to
B = {g; qIP(%, %), ¢ has at least two primo factors in one interval
of the type [B,, B,.,)}
where B, = D" 9" m = 0, or it belongs to some -+ admissible REQUEnce
(Diy vvoy D) sueh that Dy ... DD, > DY for some 0<1<r
In the latter case such g must belong to
C = {g; qlP(z, u), ¢ =P Popgry Pr > oo 2 Paraty
DD L py oo PPy < D for some 0 <1< ).
To complete the classification it remains to consider ¢'s such that wln¢
contributes to I (e, D, P ()| and it does not contribute to M~ (D, P, 2.
Obviously, every ¢ in question belongs to some -+ admissible sequence
(Dis ...y Dy,) and, writing ¢ =p,...p, with p, > ... > Pqgpy 1t 10USE
hold p; ... pypi,: = D for some 0 <I< (r—1)/2. Hence we see that s
is in the class
D = {g; q¢|P(z, u), §=P1- Dary Py > oo > Py,
o Dpy ... pypli < D7 for some 0 <1 <7},
By the above discussion we get '

(30) AL e, D, P(2)) =M+ (D, #, 2)| < »l)

geduBOOUD q

A. Bstimate of >. Wo have
aed
(1) g( _ w(:.r:“)) ( w(fp“))
anA ml%ﬂg » ngo ; 2
L log 3 M
< Ue¥ Vi) ILe logz 14 K }
Viz) logu  logu logu

< e *Ke (log D)1,

‘where for simplicity we denoted Z'Mby Z o (2% by U.
o eed »

a
aed  p|P(z,u) apxl
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B. Hstimate of 3. We have

qel
o7 o(p) \? w(g)
< 2 ¢
qeB Ge? Gxpcltn » alP(z )
usGi<s ped?

Bui we have
@) _ 1. T

-

K
< 10{5’(1+’?)(1+“1"0g—u)< &+

% l0g 147 1 ?
< n V(@G ogu
ned
v
) < log () < —2logs-
P Viz) logu
ULP<E
ped
and
¥
q|P(z,'u) q (z g
Gathering these estimates together we obtain
(32)
K X K
9 -3 —3 1___ .0 —SKS 10 D mi__
Z:(“(a+10gu,)(10g‘g +logu)8 ( ! logu) <ete (log D)
geB
CD. Estimates of > and 3. We have
qeC qel
< o (mpn)
mpn
geCuD mpn ] Pz, u)
DU cppd < 141
w(m) w(p) 1 o{n)
<( 3 e eyt
| P2, ) m <pdom ) n|P(z,u)
DIP(2,4)

where m, = max {u’, DV /m} and m, = min{z*, D'77m}. By (1) we

obtain
w(p) Vim®) logm, K , K
Z » < log V (m") E: log logm, k logu <&t Jogu

V()2 I ] K\, K )
(V(z)) (87+ logu) = ¢ rh(l + Tégu) (B + loga

< &+ e K (log D).

my&pd<m,
1
Hence

(33)

A

qeu D
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By (29), (30), (31), (32), (34) and (12) we obtain
At = MH(D*, )l MH(D, $,2)-+0 (e "Ke"(log D))} +
+0{Ble, D, K, L)V(2))
<viwlr (—E) -0 log DY)
V (2}
V()
< V(2){F(s}+B(s, D, K, L)}.

‘The proof of (27) iy complete. Much the same arguments give the proof
of (28).

% [F(s)+ O (6 -+ K*e=(log DY)} + O (B(e, D, K, L) V(2))
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To the memory of Professor Paul Turdn

I, In what follows we are dealing with the maximal order of the
elements of §,, the symmetric group on n letters, resp. of 8%, the sym-
metric gemiproup on » letters.

Let O(F) denote the order of the element P of 8,. B, Landan proved
(see [2]) for

(1.1) G(n) = max 0 (F)
PeSy,

the asymptotical relation

1.2) © lim w =1.
el nlogn

Dealing with the value distribution of 0(P), in his paper [6], Pro-
fesgor P. Turdn posed the problem of the analogue of (1.1)~(1.2) for 8%,

In our paper [6] we proved that for z > ¢ and 2 > n,(e) the following
relation holds

(1.3) | log@{n) = l/n(logn—i-loglag%—i— é(n))
where
logn—2 — 1
(L.4) —1q LEIBETET iy <2
logn 4

Meanwhile we got to know abon$ a paper by J.—T.. Nicolag. In thatb
paper (see [3]) J.-L. Nicolas proved — among other things - the asymp-
totical relation
m

(1.5) v{G(n) ~2/

logn
(v(k) stands for the number of different prime factors of k) and mentioned
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