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By (29), (30), (31), (32), (34) and (12) we obtain
At = MH(D*, )l MH(D, $,2)-+0 (e "Ke"(log D))} +
+0{Ble, D, K, L)V(2))
<viwlr (—E) -0 log DY)
V (2}
V()
< V(2){F(s}+B(s, D, K, L)}.

‘The proof of (27) iy complete. Much the same arguments give the proof
of (28).

% [F(s)+ O (6 -+ K*e=(log DY)} + O (B(e, D, K, L) V(2))
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On the maximal ovder in S, and &
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M. SzAarAv (Budapest)

To the memory of Professor Paul Turdn

I, In what follows we are dealing with the maximal order of the
elements of §,, the symmetric group on n letters, resp. of 8%, the sym-
metric gemiproup on » letters.

Let O(F) denote the order of the element P of 8,. B, Landan proved
(see [2]) for

(1.1) G(n) = max 0 (F)
PeSy,

the asymptotical relation

1.2) © lim w =1.
el nlogn

Dealing with the value distribution of 0(P), in his paper [6], Pro-
fesgor P. Turdn posed the problem of the analogue of (1.1)~(1.2) for 8%,

In our paper [6] we proved that for z > ¢ and 2 > n,(e) the following
relation holds

(1.3) | log@{n) = l/n(logn—i-loglag%—i— é(n))
where
logn—2 — 1
(L.4) —1q LEIBETET iy <2
logn 4

Meanwhile we got to know abon$ a paper by J.—T.. Nicolag. In thatb
paper (see [3]) J.-L. Nicolas proved — among other things - the asymp-
totical relation
m

(1.5) v{G(n) ~2/

logn
(v(k) stands for the number of different prime factors of k) and mentioned

21 — Acta Arlthmettea XXXVII
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that 8. M. Shah had proved the relation
(1.6) d(n) = —1--0(1}

(writing it according to (1.3)) in [4].
In his paper [4] 8. M. Shah really proved the estimate

(L7) d(n) = O(L),

“

which i3 somewhat weaker than (1.4). (The o-sign and the O-sign refer
o n—+o00.)

Combining 8, M, Shal’s proof with ours from [5], we ean improve
both resulés. Namely, in this paper we prove that

loglogn — 2+ o(1)
logn

(1.8) 3(n) = —14

{cf. Theorem 1). By the way, Corollary 2 gives an estimate of similar
exactness for p,, the wth prime number.

Some argonments of ours from [5] are unneccessary for Theorem I,
but will be of use for Theerem I, which improves J.-L. Nieolas’ regult
{1.B).

Using a theorem of J. Dénes (see [1]) and Theorem X, we ghall prove
Theorem III, which asserts an analogue of the estimate (1.3)-{1.8) for
the symmetric semigroup 8.

2. Throughout this paper p stands for (pogitive) prime numbers.
Tor different p’s and positive integers », let

(2.1) 2 max. ",
EpPr<z Hp
~Then, a8 was shown by H. Landan in [2],
(2.2) G(n) = max0(F).
’ Pe§,,

Ag is well known, for suitable o > 0 and arbitrary f with ¢ < B < 3jb
we have

(2.3) (@) Z 1= f1—~ +0{a-exp ( —alogs))

. pEx

and

(2.4) Har) = Zlag;p = g+ O#-oxp( — alog’)),
PR

where exp(v) stands for %
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Firgtly, we assert

IEvwA 1. For 2> 0 and fived 8> 0 we have
JEES ]
— s+1 8
(2.5) ;p zf oz -+ Oz exp (~alog)) .
Proof.
Pt == 204 | Pde (D)
D!
2 t '3 5
:2°+ft"d (n(t)— 1du ) ! dt
: y logu B logt
13 I E o8- 1
d 2
=2"+[ts(m:(t)-—- - )} ——f(w(t)— )
logw [ i, : logu < logu
2 au zs+1 i
== 2R n(z)—f ) -+ Olz-oxp (— alog?s) -2%) - 0(1 Y
( | oga) +Ol-exp(—alog £+ ()+2f o
g+l

—f logu +0(2* " -exp (— alogh)),
2

since i exp(—alog”) is monotonically inereasing for t3 #y(a y ).
From Lemma 1 we get by partial integration

COROLLARY 1. For &> 0, 23> 2,(s) and fived $ >0 we have the in-
egualities

(2 6) zS-H zs+1 2zs+1
' logz®t! +10g2zs+1 log3z®+?
AR 2 (2L g)e"Tt
< 2p"< Ton +1 T Tt ——
v og# opta log?sf

3. Now, we assert
Lpaa 2. For £> 0, 2> 0,

(3.1) Y (Iogw +logloge —1 + bglﬂfﬁjﬁ),

logm

@22 @y (c) and fiwed s > 0 we have the inequality

(3.2) S <o.

TRy
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.Proof. Since log(L+# > 1—12/2 holds for 0 <1< 1, we have for
& = 0g: ()

logloge —1
logzs+1>laga:+loglogm+log(1+ gloer )

loglogm —1 —g/2 dot
Toga = K () > logu.

> logw +logloga +

Now, we infer from Corollary 1 for @ = 2y (s) > @ (g) that

2 . A 2T (246/2)e" "
2 < log 2+ +10g2z"+1 T logtstt
2+ef2
zb‘+1 (l + E(m)
“E@\ T T E@) )
1+¢/2 2 +&/2
<m(1_- +K(m) )(1+ A K () )
. K (%) K (x)
1482 24-¢/2
<m(1_(” iy ) [+ }‘l)m .
K2 () '

Next, we prove
Levma 3. For ¢ >0, 4> 0,

logloge —
(3.3) ¥l =a (logw—}—loglogm—l—}— M—tﬁ),
loga
@ 2= ,(2) and fimed‘s = 0 we have the inequalily
(3.4) Spt>a.
DY

Proof, Since log(l+4) <t holds for ¢ 0, we have for o> @y (8)

g10g$ —1 - I—edeef

logy** <logw +10g10gm +
loga

Li{z)<<(1--5/2} oga.

Now, we infer from 001*0]1&17 lfor 0 <e< ? and o= @,y(8) = wyy{c) that

2
R QRS
ys-l-l 2y5+1 ys+1 L(-’ﬂ)
>y + > 1
P log'y““ log'y™" | Togiy" ~ L(a) ( T I )
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1—(e/2) 2
i o 1)
= T(2) L(2)
e\’ , 1 —(e/2) 2
0 ) S L(m)l
=oli+ 77 (a) )

Applying Lemmasg 2 and 3 for 8 = 0, we get
OOROLLARY 2.

logiogn —24¢(1) )

= 1 & 1 ' — 1
(3.5) D 'n( ogn +loglogn —1 4 Togn

4. Now we can prove
TaeorEM 1. With nolation (2.1) we have the rélation

loglogo—2 +-0(1) )}

(1) @(z) =exp {l/:c (logm +loglogow —1 + g2

Proof. In order to get a lower hound for log?*@{x) we apply Lemma 2
for s =1. Let e> 0, 2> 0, o2 o, (¢/2) and

logloge —2 —&/2
loga !

éﬂ =& (logm +loglogw —1 4

then (8.2) yields the inequality

Hence,

therefore, uging (2.4), we gel

log*6i () > { 3 logp)’ = (#(2)f" = o O e-cxp(— alogh)|]

7244

1.
= w2 2. o —_ # = g
=+ 0(s-oxp(—alog’s)] =2+ O(mmg‘” 1og"w)

logloga:—Z——a)
! -1 — e
> cv( ogw+-loglogw —1 - Ty

for @2 my(e).
Turning to the proof of the upper estlmmtlon, let

Dot Dot oo APy <O PytPot oo FPu
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and let gy, ..., gy be arbifrary (different, positive) primes with the Property

fitdet ..o <2

Then, a8 was shown by 8. M. Shah (see [4], Lemma 4), we have

(4.2} Bz v " G<Pr Pt oo " Ppe

Usmg (4.2) and estimating the contribution of the higher prime powers
by E. Landau’s theorem (1.2), he proved the following

Lmvara 4 (8. M. Shah, [4]). Defining the integer m by

(4.3) Jp<e< Y p,

nsm p=m41

we obtain the inequality
(4.4) log @ (z) << #(m)+ G (2"4log ).

Lemmag 2 and 8 yield relatively precise estimations for m. For s >0,
o = wq4(ef2) and

(4.5) Y == ]/m (logm +loglogw —1 +

logloge —2--¢/2
logw

Lemma 3 gives m <y and, consequently,
{4.6) #(m) < H(y).
Owing to logy > }loga, y = O (Valoge) and (2.4), we have
(4.7 9(y) = y+0(ylog™y) = y+ 0V wlog~*"a),
Now, we get from (4.4), (4.6) and (4.7) the estimate
10gG (2) < y+ OV v log=).

Hence,
log*G (o) < y*+ O {wlog2).
Finally,
log*@{a) < o (IOgm +loglogw—1 + loglogs —2 4- 5/2) 0 ( »
loger log2a

z (logm +loglogw—14 w)
log a

for m,}:wa(s){ Thug Theorem I is complately proved.

On the magimal order in 8, and &% 327

5. Turning to the investigation of »{@(n)) weo assert
TagrorEM 1L. For n > n, we have the relation

G e o)/ g TEE 1),
where
(5.2) 1.7 < n{n) < 3.05.
Proof. We have
{5.3) G(n) = max [Jp™.

Ip'Pan

Let & = »((n)). Then we write the maximizing produet as ﬂ 7, resp.
the condition as Z p? < n We obviously have

219
i _
(5.4) ”p g( . ) < exp {k(logn —log )}
Firgt, let us suppose that

n | loglogn  1.78
: k<2 ]/ 1—— . .
8.5) = logn ( logn i logn)

Since k(logn—logk) is monotonically inereasing in % for 1<k <
get for sufficiently large n

nje, we

E(logn—logk)

loglogn —1.75

21/ © {1 ]
logn logn

—3 (logn —loglogn+log (l —

) . {logn—wlogz —

loglogn —1.78 ) }
logn

~

—1.75 '
i (1—— loglogm ) {log s -+ loglogn —1.379}

logn logn
loglogn —1.75 ( loglogn —1.379 31
= -log i —1. 1— 1A
{%(logn-{ oglogn —1 379)( Togn ) - logn }
0.871 l””
< in{logn+loglogn —1.879) {1 |— 7 )i

0.371logl 2
< {ﬂ (logn +loglogn —1.379 4 0.371 4 wi.igrz%?ﬁ”j)}

- l/ﬂ(logn—}—loglogw —1).
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Therefore, nsing Theorem I we have

k{logn —logk} < log@ (n)
and (from (5.4))
JIp* <awm),
k

in contradiction with the maximization. Thus the inequality n(n) > 1.75
holds.
Turning to the upper estimation, we infer from the condition Sp? < n
that k

3

(5.6) ?L}Zpy'pBZj)Z}ZpM= Z;p.
k k p=1 P

But Lemma 3 yields the inequality

(5.7) Dp>m

DEY
for n > n,(e) and

(5.8) Yy = Vn (logﬂ +loglogs —1 4 M) .

logn
Now, it follows from ({5.6) and (5.7) that

(5.9) Pe <Y

Further, Corollary 2 implies for & > k(e) that

logloghk—2 — s)

5.10
( ) logk

=k (logk +loglogk —1.4-

Now, let us suppose that

(5.11) - 2}/ n (1_10g10gn + 3.08\
logn logn logn

Then, for sufficiently large n, we have
P> Ek(logk+logloghk —1),

_loglogn—3.08 )}

logh = log2 4+ % {Iogn — log'logw, +log (1
logn

> {logn—loglogn),

loglogh > —log2 +loglogn +log (1 — lf.g_b_gﬁ)

logn

On the mazimal order in S, and S} 325

and
logk+loglogk —1 > %(logn +loglogn —2.01).
QOonsegquently,
loglogn —2.01
1 —201) {1+ "
P > {fn(log n+ loglogn 01) (1 L ogm )X
loglogn — 3.06 }”ﬂ
1——=-=
x( logn )
[ oo ot Tooloom - 1.03 }m
> 1%(10,&3% I-loglogn —2.01) 1+1m_0gn
> {n(logn+loglogn~1 -+ 0.02)}'2 > y
for @ > Mg,

Thus we have {for sufficiently large #) the inequality

.pk>y1

in contradiction with (5.9). Hence, also the inequality 7(n) << 3.05 holds
and Theorerm XL is completely proved.

6. Now we are going to prove an analogue of Theorem I for the sym-
metriec semigroup 8.

& oconsists of all mappings of X, = {¥y, s, ...,.0,} Into X,. 1f
a, p e 8%, then the product of e 8, is defined by (af)(@) = a{f(s)) for
all ze X,.

Ag is known, for each o e 8, we can divide X, into two clagses: of
cyclical and non-cyclical elements. An @ & X, is 3aid to be eyclical vmdor a
if there ig an m > ¢ with o™ (%) = . Let C, denote the set of the ¢yclical
elements under a. Since X, | = =, for tixed x e X, the elements

¢ = a’{®), a(z), a*{x), ..., a"(®)

cannot be all different. Thus, there exist integers 4, j such that

(6.1) 0<i<j<tn
and
(6.2) (@) = o (1) = a"'—""(a"(m)).

Consequently, ¢, is not cmpby; further, for arbitrary c e 8 and o e X,

there exisis an integer ¢ such that
(8.3) 0gign—1, o) ed,

Also, there i a least integer v = v,(%) = 0 such that «"(#) e ,. This »
is cadled the a-height of =. :



830 M. Szalay im“

The height of « i defined by

{6.4) h{a) = maxr,(z).
reX,

For this k{a), (6.3) yields the useful inequality

{6.5) hla) < n—1,

For fixed ae 8, let 0, = {®;, %, ..., w;}. Then for each j with
1« j <1 there exists an m; > ¢ such that
{6.6) @M (@) = @3
-gonsequently,
da(z) = alag).
Thug we have for 1 <j<t
{6.7} a(mij) ed,.
Let ny define P, hy
a(®), i wedl,
16.8) P(@) = iy
z, if wx¢d,
. for all # € X,. Owing to (6.6) and (6.7) we get P, e8,.
In his paper [1], J. Dénes has called the restriction a* of a to ¢,

the main permutation of «. It is obvious from (6.6), (6.7) and (6.8)
that «* is the restriction of P, to ¢, and

(6.9) O(a%) = O(P,).

Thus we can write P, instead of a* in the following theorem of J. Dénes.
For ae Sy, he defined the order of «, 0(a), as the number of distinet
elements of S, in the set {a, o2, o*,...} and proved the following

Levwa 5 (J. Dénes [L)). For ae 8, O(a) is the least integer m for
which there exists an integer ¢ such that 0 < ¢ < m and a? = o™, Further,
{6.10) O(a) = O{P,)+max{0, h(a)—1}.

7. For owr Theorem III it is enongh to prove
LEMMA 6. For ae S, we have the inequality

{7.1) 0{a) < O(P)+n.

Proof. (7.1) is an immediate consequence of Lemma 5 and (6.5).
-Now, we can prove '

TarOREM I1I.

aest - logn )

On the maximal order in 8, and S; 331

Proof. Owingto 8, < 8y, the lower estimate fellows from Theorem I.
1n order to prove the upper estimate we use Lemma 6 and Theorem I
as follows,

For sufficiently large n»

Oa) < O(P)+n<max O(P)+n = GFn)+n

PeSy,
< G(n) {1+ nexp( —Va)} < & (n)exp {nexp{ —Vn)};
hence, ~
log O(a) < log& (s} + nexp( —¥n) < log@(n)+n"" = (log?@ (n) - o (1))"?

loglogn —2--0(1)
logn

= ]/n (logn --loglogn —1+

and Theorem ITI is completely proved.
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