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Additive functions with rvestricted growth on the numbers of
the form p--1
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1. In 1974 Blliott [3], elaborating on his carlier paper [2] and
thereby solving a problem of Kafai [6], proved the existence of constants
A4, B, 0, such that for every completely additive function f and every
@ 3= ¢ the following inequality holds:

@) fm) < Amax [fip-11)].
PEP, psn

Here P is the set of all primes and a funcfion f: N — € is called com-
pletely additive if flab) = f(a)+f(D) for all @, b. This inequality implies
in particnlar, that a completely additive function f must vanish ident-
ieally if f(p+1) = o(logp).

In the motre general ease of additive funetions, that is if fab) = f(a)+-
+f(b) for (@, b) = 1, he has a weaker resull:

Ifim)] < Amax{f(p-+1)|+4 max [f(m)].

_'pz-:'n mlof
In this paper we shall preve (1), and actually a little more, for all
additive functions.

THEOREM 1., There are constants 4, B such that for olf additive funciions f
and all n e N the inequality

(2) If(n)i< A max |f(p-+1)|
: NP 1ns
pelf
holds.

Except for the lower hound p--1 = » this is again a conjecture of
Kétai’s [T]. We counld even inerease this bound to become p > n° at the
cosb of larger 4 = A{e), B = B(¢).

Unigueness statements for additive functions are usually related to,
If not equivalent with, statements on multiplicative representations of
numbers, see Wolke [10]. We give here a theoremn which renders
Theorem 1 obvious as far as completely additive functions are concerned..
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TEBOR®M 2. There ave constanis €, ¢, such that for every n e N fhere

is o representation
h

nt = [[p+1)4, p;eP,

3=1

where a << ey, b <oy, gpe{+1, =1}, a<<p -l << n2,

Very likely this theorem is frue with small values of & and b. The
cage o =1, b =2, & =1, & = —1 is a generalized prime-twin conjec-
ture for which there is presently little hope of resolution. But a =1,
b =3 may just be accessible for medern sieve theory.

Az an obvious corollary we may mention that for multiplieative
funetions f{n) = O{log*n) and f(p-+1) = 0{log%(p+1)} are equivalent.
This ig still true if a < 0 but it is rather a weak statement then. Actually,
by Theorem 1 f(p+1) -0 and f(n) - 0 are equivalent but the only
additive fnnection with this property is the null fonction: Let % be arbi-
trary and let w tend to infinity while (m, #) = 1; then f(n) = f(mn)—
—fim) — 0, whenee f(n) = 0. S0 we have

Cororvary 1. If f is additive and f(p +1) — 0, then f = 0 identically.

The case ¢ =0 correspords to the statement that ‘flp+1) = G(1)
and ‘f(n) = O0(1) are equivalent. This again allows for a refinement out
of itself, so to speak.

CoROLLARY 2. Let f be additive, veal valued and suppose that |f{p--1)|
1¢ bounded. Then

Lm f(2n) = limf(p+1), Hmf(%n) =lmf(p-+1).

Thiy is essentially due to J. Meyer [8] who uses resulty from Elliott [2]
and lower sieve estimates for his deduction. CovoHary 2 of course includes
Corcllary 1.

Proof. By Theorem 1 we know that f{n} is bounded. Therefore

2 sup (")
p b

converges, otherwise an » = []p}¥ with arbitrarily large f(n) could be
found. Choose = and m so thab

and let

2m = ﬁp;’i.
=1
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By Divichlet’s Theorem there are infinitely many primes p such that
%
p+1 =2%m mod (Hp;f*l)
i=1

and
p+1 Z0modp’” for all p'<<w, 2" ¢ {p, ..., 0.
Then p-+1 = 2mg, where (g, 2m) =1 and no prime divisor of ¢ s <Cw.
Henee f(§) = —& flp+1) = f(2m)—e= Hfﬁf(?.m) — 2e.
9, Sketeh of the proefs. We define a relation
EL~m:<=kn—-1lcP, (k,m) =1

and call sueh numbers b and m relatives of first degres. Numbexs k, §
are called relatives of second degree if thereis an m such that & ~m ~ L

Let f be additive and |f{p-+1)! ‘small’ for all p e P. If k& ~ m, then
kmo=p+L, flE)+f(m) = f{p-+1), hence f(k) ~ —f(m). Therefore, if
I and [ are relatives of second degree, f{k) =~ (). For fixed k and large ¥

there are  »
i)

1
1J relatives of first degree m <y, and therefore
ogy

» ———— relatives of second degree I < @ (¢ large eompared o y) where
logzlogy

only m < ¥ are allowed to mediate and every I iz counted with the number

of mediating m as its multiplicity.

Given k and ! this multiplicity is the number of a certain type of
prime twins and therefore accessible to a good upper estimate by the
sieve method. Together these estimates imply that each & has at least
wi velatives 1 <C o of second degree (p = eongt > 0), now counted without
nuultiplicity. For all these I, as we have seen, f(I) approximates f(k).
I we have &y, ..., by such thabt f(%), ..., f(ky) are ‘essentially different’
then the eorrespending sets of relatives must be disjoint, whence ¥ <y~
In the case of completely additive f it is encugh to have one &k with 2
‘big’ value of f(%), then for &, = & the f(k,) = if(%) are essentially different
for i < W and arbitrary I zo that we gain a contradiction from the asgamp-
tion of a big value f(%).

In the case of (not completely) additive f we use Linnik’s Theorem
on the smailest prime in a progressicn to construct k; with similar
properties.

The main difficulty in carrying through the sketched proof arises
from the fact that in view of our proposition we are not allowed to use
& y greater than some fixed power of k. Fortunately, by the work of Fo-
gels [47 (see Elliott [3]) or more conveniently Gallagher [5], lower esti-
mates for w(y; k, ) with such a small ¥ have become available,
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There are many parallels between Elliott’s method and ours, The main
differences seem to be that we measure sets of integers by their cardi.
nality rather than the sum of reciprocals, and our use of Linnik’s Theovem,

3. Proofs. We begin with a list of notations:

P : the set of rational primes,

(s k, 1) the number of primes p<a, p =+ mod 5§,

R T

E~m:ehkn-1cP, (k,m) =1,

My = fmym ~ K},

Sy = M, n I,

M (), S;7lz) : the eorresponding counting functions,

Lg(®, y) : the number of 1< o with Sy(y) > 0,

®,y ¢, : positive constants that may be enlarged without affecting the

defining inequality,

¥, : positive constants that may be diminished withous affecting

the defining inequality.

Voluminous summation conditions will be given following the sum
and enclosed in {...}.

Lenova 1. There ave @y and vy such that

Ly,

&
3 1 E ) —————
3) wl(x; Ity 1) dp(k)log
Jorall @ = @y, k& << o™ty (v, k) = 1 with the possible exception of the multiples k&
of & number q,(»). We have q,(x) =2 and G{o') = g () if o< < a®
provided both g, ewist.

Proof. According to Gallagher [53, Theorvem 7, there are y,, ¥s
sueh that .

Ttk . 2R __ysl_og;g
@ [ legp=nl+ 3 S 3 yin)logp| = Ofwe "0

it
Viogs < logQ < yyloge, /@ <h<a.

Here as usual 3 denotes summation over all primitive characters modg

and ¢, is the possibly existing “exceptional modulus” ¢, < @ for which
thers is a primitive character %1 with' g zero

d
b —
{5} gy > 1 Tozd
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of L{s, 7). The positive constant & can be given any small value, it fietez‘-
mines ya, ¥z, the O-constant in (4) and the notion of exceptionality.

If we take b = 2 and @ = (22} the right hand side of (4) becomes
O{xe”7""1) and therefore < @ it y; is ehosen small enough. Wow by the
usual argnment one finds

r |

A\ lo ——w—‘
L BP T Lm
a=rmodk

1 {it | 3 . w

<—*(] Ioo"p—w]+ 3 x(ﬁ)logspl)< s
o 2ol 2 22 e
a>1
23 by 1) >
e Bk > ea

provided g7k and k< . Replacing 2 by » and redefining @: = a™
we obtain (3).

Ag iz well known (Landan) there is at most one primitive character yx,
with modulus ¢; < ¢ and with a zero o of L(s, y;) satisfying (5), if d<C y,,
say. Consequently, if §: = Iy, then exceptional moduli ¢, < @ and ¢; < ¢’
will coincide for @ << @' << @® Because of @ = 2"t this correspends to
saving @ < o' L 2% Obviously ¢, = 2 since £(8) 0 In 0 <5< 1.

LA 2. Let 2wy +1, k<™, gt F. Then

Hy(w)>

x
5logz’

where ¢, i the possibly existing g,(x') for v —1 < o' < (w—1)2
Proof

Hy(x) = 21 {mk—leP,(m, k) =1}

ML
1
= Z 1 {p eP,p = —1modk,(£jc_—, k) =1}
pke—1
~ Z’ a(ke—1; B, 7)) {(r41, %) = k).

rmod ;2

Becanse of ke—1= 3, K <o™ and 21 he—1<{z—1) Lemma 1
applies to each term in the last sum, always with the same — if any — -
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exeeptional moduolus:

e —1

Mylx) = - 2 1

2 — -
dp()log (ke —1) &, {(s, %) = I}

_ faz—1 . -1 1-1/x 7
 dklog(kn—1) T 4loghks T 1+y,j2 dloge

If »p is taken big and y, small enongh our proposition follows.

LEMMA 3. Let @ > ay, @, sufficiendy large, and y = &' Then for all
k<< a7 with ¢t B one has

D 8uly) >

I<z
I

Prootf. Firstly @

2 log%

M, (x) = Zl tm—1eP, (I, m) =1}

S 3

dlm

{lm—-1ecP,amn

= Zp(d) m(mae—1; md, —1)
dlin

i
= %‘ (;{l;;) Li(me —1)— |p(d)| B (e, md)}_

Heze 2 pldfg(md) = 1m because of ¢(md) = dp(m) and 2 ud)d

dim
= g(m)[m. Furthermore for large =

T

1
—lme—1) > (l—g) —
y Dme =1} = (A=) log (max)’

therefore

>f e

(6) M, (5) = Z | ()| B (e, mdd

10 m )

Beeondly

U<, m<y, e ~m ~1}

S =3

[
- F Za-

mEY,m~k Iz, om

A ().

Mgy, mvk
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Using (6) and y = «'* we see that

M Wz > Togs ~ 2, (@I Blay, ma)

?<w MY MY
[ dim
2m
= Troga M= 2, w(m) By, m,
ngy?
where
p(n): 5’ (@) = 3 iuid)
a2in

d!m

is a multiplicative function. Since y(p) = 1, ¢(p*) = 2 for » > 2 one finds

wA () 1 4 4
i !i 14— 4+ — 4+ —
Z % (T?TP2+I’3+ )

n<y? <y
1y 3
< (1-—) H(1+—-> < logx.
@Q P 7 P’
Therefore
1f2 iz
(8) ,241'”(” VB {wy,n) < ( N (% ) ( ‘)_’%Ez (By, n )
n<y~ n<U"
I
< (Ioga; ZnE”(my, -n))1 .
n<yt

With the trivial esxtimate B(z, n) < #/n for 2 > » and the deep Bombieri—
Vinogradov Theorem, see [1], of which the wmkened version

v &
Lowd Bz, m) < Jog™»

m(_zgfs

sufiices for us, (8) turns into

oy
Vw () i {wy, n) < Tog's

(note that ¢? = (my)gfs)‘
Since, by assumption, g f%* and B ot = ym? we may apply

Lemma 2 to M, (y) in (7). Thereby
2wy @y Bay &y
8 = -0 .
y ul() > 16logaxlogy —0 (1(),3‘3;(:) 1510g%x (Iog“m)

Now, obwously, Sl <

¥ and the proposition follows for sufficiently
large o, '



@

TEnMA 4. If v 222 and & =1 then

8,(4) < k-1 Y
4 <3 -
Wl == Toghy !

uniformly in %k and L .
This lemma can be deduced with any one of the standard sieve
methods (Brun, Selberg, Montgomery). For every prime p the set

Sy = {m; mk—1eP,ml—1eP, (m, k) =1}
1
containg no m = 0 mod p if p|k, and at most one m EE moed p if ptk;

1
similarly no m =60 mod p if pl and at most ene m == 7 med p if ptl

Given k, 1 and p these two forbidden classes coincide if and only if & =1

mod p. If all elements of all these residue classes for all p < ¥y are cancelled
from the intervall [1, y] the number of the remaining integers is

< [10=5) T10=3)

<y Py
k= Imodp kslmody
1! 1\? k—1
<v |] (1“—) H(l”") = (lu TR
ol [k —
e P o pr ¥ o gy
1 1
Unjustly caneelled are only those numbers of the form p-i:_ or 1';';'_
with p = }@—, less than ]/J of them alfogether.
LEAMDA B. There are yg, v, such that for all £ 2 o, and k < m”S {except

if @]k
Lyl zye (y: = mm)-

Proof. Elementary caleulations or general theorems (see Wirsing
{97) yield

.7?2
2y <

n=E

Thereby we infer from Lemma 4 for every k< a

‘ 0
2, Sl < 3 Z (i

< —k e~
I#k n#EDd

xy* e

* Tog'y < log*z ~
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For those I that arve admitted in Lemma 3 one has therefore

2
(01 - ) ( E Sy ) Li{e, ) V,S“ (y) < Llc( oy %),
Og'L 1\:5
= sk

whence Ly(z, y) > @.
Proof of Theorem 2. Let ¢ dencte Linnik’s congtant. Then for
any # = 2 there is a prime

p =n—lmodn’, p<n®.

Writing p41 =nn" we have »' = (p+1)/n =1Imodn and therefore
{n,n') = 1. We assume #’>>2 since otherwise by » = p-+1 we have
already found the desired representation. Choose N so big that

Nyps>1 and 2%V = o,

Then we may apply Lemmabtoall b =o' (4 =1, ..., N)ortoall b = (»')
and ® = n*°"s, With these parameters, on the one hand k< n2¥ < s,
on the other 7 > 4°¥%s > »,, and not for both choices » and #° can qllkz
sinee g, =2 and (n, n’) —=1.

Let us fivst assume that » is admissible. For each i < ¥ the lemma
gnarantees the existenece of at least yw integers 1< » and for each I an
m< y soch that

9 m =p'+1, Chmo=p" 41, p,p"eP,

which implies & representabion
P+, Pl o
pu +1 pu +l M

There are altogether at least Ny > @ such representations. Hence,
there is an ! that can be represented in the form (10) with two different
exponents 4 and §, say:

(10 I =

pW 41 p(SJ 41 ;
6] "= "
PP +1 W41

Apsuming i—-j = :a > 0 we find

(P# +1) (p™ 1)
(M +1)(p®W 41y

As for the size of these primes, (9) implies

(11) ‘ n® =

Pl =lm <oy <2 =n% (6 = 4eNy;Y)

and

27+l = km < py < 0,

23 — Acts Ariithmetlca XXXVII
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To obfain a lower bound for p', p” we have to use a slight sharpen.
ing of Lemma 5. The definition of Z,(x, ¥) may obvicusly be modifieg
80 a8 to count only I that are > Va, say, and the loss can be compensated
by a reduction of y,. Aiter this change we may infer from (9)

PAlzlza' =5 g,

Concerning »” we have p” +1 = k2 n anyway.

There remains the cage where % is not admissible because of ¢ |n*
for some <. Here we hawve a representation of type (11} with »’ ingtead of Ty
which eombines with as’ = p-1 into

(™ 1) (" +1)
(29 +1) (O +1)
For p we know already that p < #*, and p+1>n follows from 41
=n mod #% Actually in the present case we have n = p 41, therefore an'
=aitn, v >0,

Congequently p+1 > #' > n. In the other direction

n = (p1)”

p(i) < (n’)ca < 23

follows. A possible choice for N is [ys'+17; 80 Theorem 2 is valid with
610 =N+4 = [y7" 5] and ¢, : = 3co,

Though the proof of Theorem 1, where the completeness of addi-
tivity i8 dropped, follows the same line, the ecoprimality condition
necessitates some extrs care which gives our last lemma a somewhat
technical appearance.

LEvMMA 6. There are eonstanis o, oy, such that for every even nelN

the following conditions can be satisfied with natural numbers @y By By
cvey hyy My, my and 1:

(12) 1<b<a<e,

(13) he~no for 1<i<a,

4y (hyBy) =1 for i 4,

(15) g by < s,

(186) Uewmg o Bohy ... hy, Uy ~ by o By,
{17 n<l<<n%,  m,< %, my < n.

Proof. For n =2 an explicit solution is @ — 2, b=1, b =3,

hy =T, m; =my, =2,1 =3.Indeed 2-3—1eP,2-7—1 e Pand 2-3-T—1
e P.

Xow We can assume # > 2. 'We fix ¥ so big that
(18) (¥ — 2}y > 1.
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We oonsider primes p; (4 =1, 2, ..., ) fulfilling
(19} p; = —n—1mod n2.
Then
Pl

Ry = —1mod n,
n

hence h;>> n—1 and (k;, n) = 1. The 4, are odd, since 2[n. Choosing the
p, {or k) sucecessively we may demand
(20) 2; =1 mod {hyhy ... B_,)
along with (19). This implies
(hyy Foghy o By_g) = (2, hahg oo By y) =1

and in particular (14). Linnik’s Theorem gunarantees the existence of p;
according to (19) and (20} such that

by << 0y < (82hehy oo By LY
After a little caleulation this yields

he < w2t s for PN ,
if
6+ == 2e(l 40y

Sinee the hy are coprime and > n—1 > 1 they differ from each other.
Should one of them equal n—1 we cancel it and renumber the remaining
ones into hy, ..., hy_q.
Now choose
cs:zfiN, o1 =n%
Vs
and apply Lemma 5 to k: = hih,... k. Then k<<#%" =% and,
provided ¢, is hig enongh,
ez 4%

Should ¢,{(A, ... hy_,)* then because of (14) it will suffice to cancel a

suitable one of hy, ..., Ay, (and to renumber the remaining ones) in
order to ensure

gtk forall i =1,..,N-—2.

By the lemma each of these k, possesses no less than v relatives I << a.
At least 3y of them ave > iy. For these I

1> by’ > dpe 45
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if ¢; is made large enough. The fotal number of I < o thuy represented
I8 2 (N —2)ysde > 25 so two of them must coincide. Explicitly : There
are @, b, my, my and 1 such that (12) (with ¢,: = ¥ —2) and (16) hold.
The upper bounds (17) derive from m,, M, <y <2 =% and 1< g,
For the sake of simpliciby also k; < n% i weakened inte h; < n%; quite
apparently ¢; > ¢,.

Proof. of Theorem 1. In the first ingtance counsider even n, Then
with the notations of Lemma 6

why, =p;+1, (0, k) =1,
Maliy vou by = 2oL, (Mg, Byou ly) =1,
mghy oo by = Pp+1l, (Mg, hy . hy) =1,
Ml =p, +1, (m,, 1) =1,
ml =p, 1, (my, 1) = 1.
Using also (14) we infer
Jy = f(pe+1)—f(hy),
(a—b)f(n) = jf(iﬂf 1) =fmahy <o B} + F(mgl) + f (mphy . .. Ry} —f(myl),
{21) -

(@—B)f(n) = 3 f(pit1)—F(pa+1)+Fpy +1) +1(p)+1) — (25 +1).

b+1

Bounds for the primes coneerned are derived from (13) and {17):

. By = p+1 <
(22) L h < a+1 < ( 05)a+1 < %65(044-1)’
WL Py 1 <0,

and similarly for p; amd 19;'

For even # Theorem 1 follows immediately from (21) and (22) and
the initial remark on » = 2. For odd # we write

f(n) = f(2°n) —f(2%).
It ¢ is chosen according to -
R (< nd)

and the section of the theorem s0 far proved ig applied to both terms
Theorem 1 is obtained in fyli.
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Remark (added in preof}). Lemma 3 is more easily seen by another appli-
cation of Lemma 2 to theindividaal Mp,(w) rather than estimating them iz Bombie-
ri’s Theorem: Instead of y = a' fake y := 2712, Then we have My,z) >aflogw
for all m < ¥ but those with g,fm* By Siegel's Theorem g, »Ilogly, say; so the
condition g.fm® excludes no more than y/yy; < y/log? of the Myly) (> y/logy) num-
hers m < y with m~k. Hence

Y xy
85, A e
12 (@) = Z m(z) > logzlogy o logﬁm
<z

mey
Mok
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