ACTA ARITHMETICA XXXVII (1980)

On a constant of Turán and Erdős

bу

D. H. LEHMER (Berkeley, Calif.)

Dedicated to the memory of Paul Turán

In a paper entitled Combinatorics, partitions, group theory, Turán reported on some joint research with Erdös on the asymptotic structure of the symmetric group S_n on n letters. One of the questions raised had to do with the p(n) conjugacy classes of S_n . Since all elements of any such class C have the same order, one can speak of the order O(C) of the conjugacy class C. They found that, as $n \to \infty$.

$$O(C) = \exp \left[\sqrt{n} \left(A + o(1) \right) \right]$$

holds for almost all classes C, that is, for all but o(p(n)) classes at most. The constant A was determined to be [1]

(1)
$$A = \frac{2\sqrt{6}}{\pi} \sum_{j \neq 0} \frac{(-1)^{j+1}}{(3j^2 + j)},$$

that is $1/\sqrt{\zeta(2)}$ times the alternating sum of the reciprocals of the non-zero pentagonal numbers.

It is the purpose of this note to show that in fact

$$A = 4\sqrt{2} - 6\sqrt{6}/\pi = .97867344209...$$

Use will be made of the general harmonic sum associated with the arithmetic progression r, r+k, r+2k, ..., namely

$$H(x, r, k) = \sum_{\substack{0 < n \leq x \\ n \equiv r \pmod{k}}} 1/n$$

whose properties were considered in a recent paper [2]. We begin by defining

$$S(N) = \sum_{-N \leqslant j \leqslant N} (-1)^{j+1} / (3j^2 + j).$$

Since

$$1/(3j^2+j) = 1/j-3/(3j+1)$$

and because

$$\sum_{-N \le j \le N}' 1/j = 0,$$

we can write

$$S(N) = 3(T_1(N) - T_2(N)) + o(N),$$

where

$$T_1(N) = \sum_{1 \leqslant j \leqslant N} (-1)^j / (3j+1) = \sum_{1 \leqslant j \leqslant N/2} 1 / (6j+1) - \sum_{0 \leqslant i \leqslant (N-1)/2} 1 / (6i+4)$$

and

$$T_2(N) = \sum_{1 \leqslant j \leqslant N'} (-1)^j / (3j-1) = \sum_{1 \leqslant i \leqslant N/2} 1 / (6j-1) - \sum_{0 \leqslant i \leqslant (N-1)/2} 1 / (6i+2).$$

That is,

$$T_1(N) = H(3N+1, 1, 6) -1 - H((3N+1)/2, 2, 3)/2,$$

$$T_2(N) = H(3N-1, 5, 6) - H((3N-1)/2, 1, 3)/2.$$

By [2], (1), we have

$$H(x, r, k) = k^{-1}\log x + \gamma(r, k) + o(x)$$

where $\gamma(r, k)$ is the associated Euler constant. It follows that

$$T_1(N) - T_2(N) = -1 + \gamma(1, 6) - \gamma(5, 6) + [\gamma(1, 3) - \gamma(2, 3)]/2 + o(N).$$

By [2], p. 133,

$$\gamma(1, 6) - \gamma(5, 6) = 3[\gamma(1, 3) - \gamma(2, 3)]/2.$$

Hence

(3)
$$T_1(N) - T_2(N) = -1 + 2[\gamma(1,3) - \gamma(2,3)] + o(N).$$

Finally by [2], (12), we have

$$\gamma(1,3) - \gamma(2,3) = \frac{\pi}{3} \cot \frac{\pi}{3} = \frac{\sqrt{3\pi}}{9}.$$

Now (3) and (2) give

$$S(N) = \frac{2\pi\sqrt{3}}{3} - 3 + o(N).$$

Letting $N \to \infty$ we obtain from (1)

$$A = \frac{2\sqrt{6}}{\pi} \left(\frac{2\pi\sqrt{3}}{3} - 3 \right) = 4\sqrt{2} - \frac{6\sqrt{6}}{\pi}.$$

References

- P. Turán, Combinatorics, partitions, group theory, Colloq. Internat. sulle Teorie Combinatorie, Accad. Naz. Lincei, Rome 1976, vol. 2, p. 183.
- 2] D. H. Lehmer, Euler constants for arithmetic progressions, Acta Arith. 27 (1976), pp. 125-142.