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On sets characterizing additive arithmetical functiens, II
by

RoBERT FREUD (Budapest)
To the meniory of Professor Paul Turdn

As in [1], f denotes an additive arithmetical function, 4 and B are
subsequences of the natural numbers, consisting of the elements a, < Ay
< @y << ... and by << by < by < ..., Tespectively., 4 is called a U-set, if
({az) =8, k=1,2,..., imply F = 0.

In 17 we proved the following assertions:

I Let 4 be a U-set. Then

)
liminf 222 < 1,

2

L7
moreover, if we pub % = ¢, then
ke
(1} liminf(e, ... ¢) = 0  (Theorem 2/1).

In fack, if A does not satisfy (1), then we can construct an additive 5
which is “arbitvarily strongly” unbounded, though f(a,) =0 for all %
(Theorem 4).

II. Let a; be an arbitrary sequence of positive numbers satisfying
Rimint(e, ... ) =0  and a3 2°%,
Then there exists an 4, for which

s
a,

= oy,
helds, and A is a U-get, moreover, if

2) Zf(%) is convergent,
k=1

then f =0 (Theorem 2/IT).
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A has also the following characterizing property:
It

E
(2a) the 2 fla,) sums are bounded,
=1

then f is bounded (Remark 4, affer the proof of Theorem 2/IT).
Now we examine the problem of replacing the characterizing con-

ditions(2)and (2a) resp. with even weaker ones, namely, with the following:

(3) fla;) i3 convergent,

{3a) fla,) is bounded,

(4) flogy1) —F(ay) is convergent,
{4a) flagy ) —Flag) is bounded.

We have the following resulfs:

TaroREM 1. Let a <1 be an arbilrary real nusmber, We can construct
an A, which salisfies

a,
(5) , 2%‘ >a
and (3) implies f = 0.

b THEOREM 2. Tt a, be an arbifrary sequence of real numbers tending
to 0. We can construct an A, which satisfies

Tpp1
(6) 5 = G
@y

and {3a) implies that f is bounded.
Moreaver, we can guaranics even

sup |f(n)| = Biklp If{awl.

TrEOBEM 3. Let 5> 0 be arbitrary, We can construct an A, which
satisfies
{7) . Gppy > G5 ',

and (4) and (48), resp., imply f = 0 and the boundedness of f, resp.

Remark. The proofs have some common featureg with the proof
of Theorem 2/II in [1] (but involve several new ideas too).

Proof of Theorem1. Letiiy, &y, ... bea sequence (of natural nnmers),
which containg each nafural number infinitely often.

The required set 4 will be the union of successive “blocks”.

icm
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The 4th block has the following elements:

Uiy vvvy Ugpys Bty Yppnry ooy fUypan,y ooy

Ug Npr—1y b vy W1 Wig” oon U s

i.e. every rth w; is multiplied by ¢;, and on the end we take the produet
of all the u;. The block has altogether X,-r--1 elements.

Now we put several preseriptions for the uy, 7, and ¥,.

The w; are primes and (uy, §) = 1.

We take a 4> 1, for which y = a-9% < 1 holds (# does not depend
on ).

r should be chosen in the following way:

(8) y >4,

further, if we consider all the {, having the same value, the corresponding
numbers + take exactly two different values, alternately. {(Thus » depends
on t;, and somewhat on ¢ too.) :

Let us suppose that we have already construeted the (¢ —1)-st block
and denote its last element by a..

Having (5) in mind, we intend to construet the ¢th block in the fol-
lowing way:

Boyr = Uy = U > a6y,

g,

4+

a = Mﬂ ~ a.(a8+1)2 — a.uﬂ’

— . 2 3,04
Bgyy == Uz ~ @ (G o) ~ o %

Bgymwportr = Yggmoor "Wy np-

Precisely, we act as follows: Let w, = u be a “large” prime:

(> a-aﬁ,
(9) .

u > i’i}
further, if m > ufi;, then there is at least one prime between m and m- 5.

Put ’
et PRt
(v u) <a,3+,-<(7’ ) 8,
v ¥

i=2,3, .., N

+
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According to the choice of » we are able to select the a,,, 80 thab

the u;; should be primes. Alse wy;>#;, and ths (u;, %) =1 holds.
Now, for § =1,2,..., N;-+—1, we have

7
L TN ) i A
(@) (y-uf® 9 #
;J)B
Further
CJJ8+N?:.,-+1 ,___ a’8+1 Yeas " aB+N1:,',
(“HN;-T)E tf‘vi"(“s-:—.r\?,--r)“3
(}; . u)1+2+_..+2N‘.r—l a

= N —
it
YT () Ty

("t
By (8) v, < 1. Hénee, if W, is large enough, then

B Ny pat

P > a.
(“3+N@--r)

Herewith we proved (5) for all %.

For later purposes we choose N, so thatb

(10

should hold.

Let now f be additive satisfying (3), i.e. f{@;) — ¢, and fake an arbitrary
natural nuniber, say k. ' ' '

‘We consider those blocks, where f; =k, and denote by »; and r,
the two values of + corresponding to A.

In any of these blocks we have by the additivity

.f(as+N2--r+1) = f(a’s-(-l) 'l—f(a‘s+2) + ...+ f(a’a-i-Nl-vr) _N‘if(h)‘

Let &> 0 be arbitrary. We can find an M such that, for m > M,
we have |f(a,,) —c| < e

We consider only fthe blocks with s> M. Then by (11) we obbain
[r-Ny-o— N f(R) < lo] -+ (Ny-r+1) e,

ImN,; = oo
i

(11}

ie.

R}

T

fel
7-N;

[+

i< —{—a-(l—i—%-)

1

and hence, using (10),

it

)
(12) |c——r)-k < 2, if 4 is large enough.
!
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We consider first only those ¢, for which » = r,. By (12) we obtain
f(R)

LY

Repeating the argument with »,, we infer ¢ = 0, f(h) = 0. Thus we proved
Ff=0
Proof of Theorem 2. Now the ith block will be the following:

Dpry voey gy TomUyny Bothipy oony Bntigngy gyt oo Uy

The #; have only the role of “stuffing” elements, till o, becomes
“gmall enough®.

‘We take an m,; such that form > m; o, < 1/2%,.

After the (i —1)-st block we insert arbitrary o satisfying the “pre-
seribed rate of growth”, and we stop at an a, = vy, where § > my,

Now we choose the a,,; =1,-uy elements as in the previous preof
(r =1, and we put 1/2t, instead of a), and obtain the validity of (6) for
all & by the same arguments.

Let now f be additive, and sup |f{e,)! = L. Then

E

Fluns ootgy) =l ug) + o F G upn ) — N f(1)
and thus
Nl f@) < (I +1)- Ly
i.e.
N,+1

(13) 5

IfE) < L.

Let % be an arbitrary natural number, and consider those i, for which
f, = h. N, > oo for these 4 too, hence
"N‘i +l
N,

1, and so by (13) If(R) < L. &

Proof of Theorem 3. let N be so large that s> 12V should
hold.

Let £, %y, ... be the usual sequence, and we form the ith block in
the following way:

Mgy o eoy Uy T oo “Beys Tgny -o oy Vimy

B0 oos Uy Wiry eeey Wingay bWa ot Wiy

Here ¥ is fixed (does not depend on #), w4y, v; and wy are primes, not
dividing ;.
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Suppose that the (¢ —1)-st block has already been constructed, and
its last element is 4, (s = (-1} (3N +4)).
Put
uy = u> ag,
'f'lrf-'l < Mﬂ < 2 'u,?l,
gy < Ugy < 20,
tvil - (t‘i.%il Y ans
V<< Vg < 20,
To prove (7) we have to verify only

2—z

bty Uy D Uiy :
(and the two similar assertions with the vy and the ). We have obviously

- fm1_ i1 F—1
w7 gy < 2 2 (g

and hence
N—1 N_
AR TR Y A
. 2N _3 logw a1 log 2
oV =1 N—1 Togzu N—1Tog2u 2—x
= [(2u)* ] B > g T s gt

if u is large enough.

Thus we proved (7) for all %,

Let now f he additive, f(a,, ;) —f(a) — ¢. Using the additivity we
obtain : :

Fltpvye ... - Uy)

= floa)—F{a) + oo+ Flop) —Flwg)-

If 4 — oo, then the left-hand side tends to (¥ +1)-¢, while the right-hand
side tends to N-(N-+1)-¢c. Hence ¢ = 0.
Again, by the additivity

_‘f(t,;"w,-l' s

Vg ) —f v

Wy 1) L (R L
= flwg) —F(va) + .o -+ Flwgy) —Flogy) + (% ) -

Here the left-hand side tends to 0, and so does the right-hand side too
with the exception of the last term, and thus f (i 1) = 0 necessarily
(when 7 — oc).
But then e.g. for any fixed j limf(w;) = 0, and also
i—c0

:ﬁ]nf(ti'w“' ens ‘wi’N+1) = 0 -
f~+00
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By the additivity
Ft) = fltywy oo Wy ) —Flwn)— ... —‘f('ws’,N+l)!
and thusg hm f(t;) = 0. But in the sequence #;, f,, ... every naiural number

100
oceurs infinitely often, i.e. only f = ¢ is possible.

Finally, assuming (4a) we obtain the boundedness of 7 by similar
argurments. This eompletes the proof.

Remarks. 1. We mention that our theorems can be generalized
analogously to Theorem & in [1].

2, In [1] and in this paper we have constructed several sets, for
which (2), (3) or (4) implied f = 0. Nearly all of these sets had the property
that (2a), (3a) or (4a) resp., implied the boundedness of f (3ee Theorem 3
In this paper, and Remark 2 after the proof of Theorem 1, Remark 4
after the proot of Theorem 2/TI in [1]). There was just one exception :
we had no evidence, whether the set 4 constructed in the proof of Theorem
1 in this paper possessed this property too or not, andsowehad to construct
& different set for the corresponding characterization of the bounded
functions,

Thus it is natural to ask the following question:

‘What is the relation between the conditions (2), (3) and (4) charac-
terizing the f — 0 function and the corresponding conditions (2a), (3a3)
and (4a} characterizing the set of the bounded functions?

We give the answer in {2]: we obtain that, roughly speaking, there
is no conmection between the two types of characterization.

We mention that by a slight modification of the set constructed
in the proof of Theorem 1, we can also obfain a set A, for which even (4}
implies f = 0, but wecanfind anadditive f satisfying (3a) and in the mean-
time being “very sirongly” unbounded.

I am indebted to Professor Paul Erdos for his valuable remarks.
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