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where
- 701
201 4 W L = 1
4 00 3n{l—a) + 18-3**log 3 (n(1— a))
log® 1 log® o
71— a) n(l—a)

walid in the interval (1.1} and for T satisfying (1.2).
Tt i easy to realize that for all a-values from (1.1} we have 4 < 1/10
and the proof of the theorem follows.
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On the Iength of continued fractions represeniing a rational
numbeyr with given denmominator

by
P. Bzi'sz (Stony Brook, N. Y.)

To tha memory of my teacher and friend P. Turdn

Let N be a given natural number. Denote by I(a) = I(a, &) the length
of the finite continued fraction

&

(1) F-_—[GSbla---,bm]: (¢, ¥) =1,b, >2.

A few years ago Heilbronn [2] showed that

@) D U - 2log?

l<a<N
(@, V) =1

where o_,(¥) denotes the Sule/d

(N)logN+ O(No® (),

A classical resuit of A. Khmtchme [3]and P. Lévy [4] states that,
putting

(3) t==[0;by, by .a.] (¢ real, L (C, 1))
for almost all £ we have

=2

ko p—
(4) VB, ¢ 68T (ks oo).

B, being the denominator of the kth convergent of the continued
fraction (3). Because of (4) Heilbronn’s result (2) is not very surprising.
The subtleness of his result is that we can make a statement for any given
&, not only for “most ¥’s” in some gense. In 1970 J. Dixon [1] proved a
theorem about the length of the continued fractions of “most” rational
numbers &/» where @ < », {a,v) = 1 and » < N; the exceptional set was
not for & given » in the a’s, but in pairs &, ». One can ask whether a state-
ment about “most a’s” for any given N is true. In the present paper I
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prove o theorem in this direction. As a special case, it contains (2) even
with a stronger remainder term than O(N o, (¥)). The proof is based on
probability theory. To the question, whether convergence to the
Gaussian distribution or the law of iterated logarithm hoids, I hope to
be able to return later.

TEEOREM. We have with at most N'™° ezceptions in the a’s,

log N log ¥
(5) lg g
ogy

..

with p = '*lE2,
The proof is contained in the next two sections.

1. Lemmas. Let ¢ be a real number in (0, 1) and use the notation (3).

Further, denote by P(4) the Lebesgue measure of the set 4 in f. Then
we have

Lewmwa 1.1.
@1 P(B;> 1+ < ek
) P(B, < (I”S}k}’k) < g7k,
Proof. Let
(1.2) G = [By; bk-!—l! el
Then, because of & = b+ we have
k+1
‘Bk+1¢k+2 +‘Bk — g
Byl t+ By Y
or
k41
Z logl; = Iog(Bkék-H +B,_ ;) —logf,.
iz
Therefore
B k41
(1.3) log B, +log (§k+1+ ]’;:) = nggj,
i

Congider ¢ in (0,1) as a uniformly distributed random varigble.

Since (because of (3)) the &.'s are functions of i, the £’s are random wvari-
ables also. '

By my refinement of the Gauss—Kuzmin theorem [B] we have

. 1 1
(1.4) Blogt) = Togd f logx m; dm(l-}-O(qk)),
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where F{ - ) is the expectation and g a positive constant « 5. The integral
on the right-hand side of (1.4) is equal fo =2/12,

. , 1 1 , . .
Since P/, < @) = Tog? #a L) (1-+-0(g"), P'{-) denoting differ-

entiation with respect to o, F(log2(,) exists alug. Fuarther, by [5] it follows
that
B(logtylogly) = B(logly) B(logé)(1+0 (g ).
Now for mutnally independent bounded randem variables
lﬂggf: iagé-;cf
we have (see for instance Rényi (7], p. 323)

(1.5) P(L_;”_;F:1 (log é‘k-—E(long))‘ > o) < 67

¢; and ¢y being constants depending only on the bounds of the s and
the variances D" (logZF).

Now if £ ... have the meaning (1.1) then they are neither mutually
independent nor bounded. But their dependence and increage are so weak
that the proof given in [7] works without essential change. I omit the
details.

(1.4) and (1.5} give

%
bt os?
—CoE N,
(1.6) P( E Iogg—n—————lzlggz 1> so]fn) < 8 5

k=1

k
because of (1.3), log By, = }'log{;+O(1) and so {1.1) follows immediately
j=1
from (1.6).

LeMMA 1.2, Let N be given to each a (1< a < N, (a, N) = 1); define

My = Mo{a, V) as the indew of the greatest denominator of the convergents
in

a
1.7 N =[0; b, ..., 0,1
such that
By, < R,
that is,
(1'8) Bm{, = -N”27 Bmo+1 > Nllz'

2 . >
Then we have, with at most N'= emceptions in &

log ¥ < log ¥
2logy(1+-e) 2logy(lL—e)

¢ being o positive constant.

(1.9) Mg <
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Prcof. Becanse of (1.7) we have (see Perron [6], p. 32)
a . AmDCm0+1'+‘A-m0—1
N BMUCmD-{-I +Bm0—1 !

A4,/B, denoting the convergents of the continued fraction (1.7). Because
of B, <N with 1 <t< o0

'Amot + Amu— 1
Bth + BTI;IQ— 1
Tung over an interval of length
i 1
> —,
Bmo (Bmo +-Bm —1) 2N
log ¥
Therefore if m, < Eigg%gfm for more tham _.2\71‘”'z a's satisfying
I<a< N, (@, N) =1, then
(1.10) P(B,,,> N > §—
log N
where » <

2logy(l+e)
From (1.10) follows that
(1.11) P(B,, > N¥?) > N~
log &
2logy(1++)
On ths other hand, we have by Lemma 1.1
Iog(l—{—a)logN) - 6“_;";.“1' ;
2log(14-¢e)y "
which contradiets (1.11), Therefore the Iower estimation of (1.9) is proved.
The upper estimation follows similarly.

where m’ ==

P(By>N" =P (Bm. > 9™ exp (

2. Conclusion of the proof. In the previous section we saw that with
at most N1’ exeeptions in & we have (1.9). On the other hand

b “_ Amocmo-]-l_i_Amoml .
myt ety Yl T Bm6m0+1+Bm0_1 H

here [, .; i8 a rational number with the eontinued fraction expansion

(2.1)

a
F == [O;bl, raey b

. Cmﬂ-z-l_ = [bmo-z-li bingrns <oy Bl
We only have to show that with at most e exceptions in a,
log ¥ log ¥
(2.2) 8T cm—my< —B
2logy (1 +-¢) 2logy(1—e)

icm
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Suppose that the number of ¢’s for which (2.2) does not hold is greater
than N To each such “exceptional number? corresponds the con-
tinued fraction

v

a

v [0; bmi bm.—l’ ey bmuﬂ seey bi]

(2.3) -

It follows that the continued fractions

£05 by ooy Dy 1
1—¢c8 3 ].OgN
bave for more than & @’s more than

W or less than

logN

2logy {1+ &)
proof.

terms, which contradicts Lemma 1.2, Thiz finishes our
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