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For & prime » =1 (mod 3), let ¥, symbolize the number of solutions
of

{1) #—y® = ¢ (mod p).

In 1830 or thereabouts, G. Libri showed by use of Gauss's deri-
vation [2] of the eubic equation of periods that '

(2) N =p ka-2,

where 4p = 4*4-27b%. By 1837 V. A. Lebesgne discovered that the proper
sign in (2) is uniquely determined by

(3} dp = a*+272 and @ =1 (mod 3).

A moedern exposition of this work of Libri and Lebesgue can be found
in the last chapter of [17]. Lebesgue also gave a formula for &, for any ¢
bub it eontained an ambiguity of sign. T. Stieltjes, in an 1883 paper on
eubic and biquadratic regidunes using methods derived from Ganss’s firgh
memoir on biquadratic residues found results which can be used. to Temove
the ambiguity. A modern discussion of Stielfjes’ work can be found in [3].
Formulse for the nmumber of solutions of & & 4.+ g’ =0(mod B)
in terms of Gaussian sums have been studied by numerous authors inelnd-
ing L. Dickson, G Hardy, J. Littlewood, H. Vandiver and L. Hua,
A. Weil, S. Chowla and . Shimura. The Gaussisn somns involved are

b
linear combinations of the sums 7(x) = > x(n)exp(2rifp) where x I8
-

2 character (mod p). It is known that |v(y)| = Vp but it appears that ad-
ditional information on 7{x) is necessary to make, for example, the proper
choice of gign in (2). _

For a. prime p =1(mod 3), let ¢ be the multiplieative group of
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nen-zero residues (mod p) and let H be the subgroup of non-zero cubie
residues {mod p). Let M, symbolize the number of solutions of

(4)
Of course M, and N, are closely related.

ProrosTTION. For  prime p = 1(mod 3) and ¢ €&, M, = {p—1)N,+
+3p—2.

Proof. When y =0 =2, (4} has only one solution. Since
p =1 (mod 3), for 2 = 0 and for each y @, (4) has three solutions.
Since there are p —1 choices for , this case gives a total of 3(p—1) scl-

I g 3
utions. For z €@, (4) can be written as ('z_) — (%) = ¢ (mod p). Then

2+ y5ter? = 0(mod 7).

each solution of #? —v® =¢ (mod p) determines a solution of (4) by letting
w = zjz and v = y/z. Since there are p—1 choices for z, this last case
gives & total of (p—1)XN, solutions. Thus the number of solutions of (4)
is 1+3(p—1)+ (-1 ¥,.

Thus » simple calenlation using the results of Libri and Lebesgue
shows that
(8) M, =p*+a(p—1),
where & is uniquely determined by (3).

Using methods essentially included in Gauss’s work [2] on the cubie
equation of periods, it is shown below that if 2 e @G —H then for ¢ =2
or 4

(6) M, =p*+1(p—1)(% —a).

Here o and b are given by (3) together with

o =b{modd) for ¢ =2 and azb(mod4) for ¢ =4

(7)
This result is also derived from the results of Stieltjes. These results are
also used to prove that if 3 e G—H, then for ¢ = 3 or ¢ = 9, M, is given
by (6) where a and b are determined by (3) together with

(8 b=2(mod3}if ¢ =3 and b =1(mod3)ilc¢=29.

In general, M, is given by (B) where the criterion for ¢ and b is
more eoxmplicated, namely: Condition (3) plus
(9) a—3b(c*?~Y — 201y = 0 (mod p),
where again ¢ sG—H.

The method of Gaussian sums. For a fixed prime p =1 (xod3)
and for any integer j, let
p—1

8(5) = D exp(2nijk*[p).

k=D
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Liet g be a generator of the multiplicative group & of non-zero residnes
(mod p). Then 8(1), 8(g), and 8(g*) are the zeros of Gauss’ cubic period
eguation

2 —3pr—pa =0

where ¢ is fixed by (3). Manipulating the known relationships between
the zeros and coefficients of a eubic polynomial Ieads to

8 (1)8(9)+ 8 (@) 8(g") + 8°(g") 8 (1) = $(—3pa .V —(27p'ad —108p%))

= #{ —3patpV2T(4p—u?))

= }{~—3patpV 27 =3(—dL0b)p.
The above equation leads without too much work fo
(10) 2, SHHB(g) = kp(p—1)(—a9).
i=1

But inferchanging the order of summation on the left side of (10) gives

D 8(5)8(jg) = pM,—po.

Je=1

(11}

Together (10) and (11) show that M, is one of the values

(12) PP+ 3(p—1)(—at9b).

Now it is not difficult to see that M, M, 3 2 = 3p?. Together with (5)
this shows that M, 5= M and M2 is also one of the values given by (12).

Observe that if ¢ e @ —H, then ¢ ig in the coset gH if and only if
c*eg®H, and for 1<<i< 8 if ¢ eg'H, then M, = M.

Let 4, be the number of times ¢ occurs as the difference between
non-zero cubic residues (modp). I ce@—H, then N, = 94, and M,
=89(p—1)4,+3p—2.TceH,then N, = 94,46 and M, = 9(p—1)4,+
+9p —8,

Lovwma, If 2 e @G —H, then A, i¢ odd, while A, and 4,, for ¢cH,
are even.

Proof. Let ¢ =4 and y =+v be solutions from H of 94—y = .
S0 long as w £ —v, then » = —v and ¥y = —u is a different solution.
But 4 == —o if and only if 2u = . Thus 4, is odd if and only if there
is an odd number of % ¢ H puch that 2u = ¢. If ¢ = 2, then « can only
be1; 80 .4, 1is odd. If ¢ = 4, then 4 can only be 2, but 2 ¢ H; 50 4, is even.

¢
X ¢c¢ H, then 2 =-%—EH, but 2 ¢ H; g0 4, is even,

THEOREM. For o prime p =1 (mod 8) with 2 ¢ H, if ¢ ¢ —H, then
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M, = p*+3(p —1)(90-—a) where o and b are uniquely determined by (3),
b =a(mod 4) for o =2 (mod H) and b 2 a(mod 4) for
¢ = 4 (mod H).

Proof. It is not difficult to see for ¢ == 2 (mod H) that M, = MBI.
M, =p*+p—1){8—a) = 9(p—1)d,+3p -2

where @ is determined and b is determined except for sign by 4p = a?--27b*
and ¢ =1 (mod 3). Thus 984, == p—2+}(8b--a). Studying the parity
of both gides: 1 =1-+§(b—a)(mod 2) so that b —a =0 (mod 4). Similarly
the case when ¢ =4 {mod H) leads to 94, =p—2+3(9% —a) and
0 =1+}(b—a)(mod 2}, so }{b—a) must be odd and & £ a (mod 4).

TamorEM. If 2 € H, then A; =3 (mod 4).

Proof. From (2)and N, — 94, +6 it follows that 4, = (p +a—8)/9.
Gauss proved that if 2 € H, then there are integers u and v such that
p == 424270 Ifu is odd, then v is even and p =1 {mod 4). Then 4p
= (2u)2 + 27-(20)2 = a®+27h% Since the representation of 4p by the form
2% 274 18 unique up to the signs of  and ¥, then 4 a= 2us0a =2
(mod 4). Hence in this case 4, =3 (mod 4). If u is even, then v is odd
and .p =3 (mod 4) and as before £ & =2u, 50 a = 0 (mad 4). Thus
in thiz cage 4 =3 (mod 4).

The derivation of the formmulae for M, from the results of Stielijes.
In view of the proposition and the equaliby N, = 94, it i3 enongh fo
ghow that under conditions (7), {8) or (9)

{13) 94, = p—2-1 (80 —a).

In the notation of Chapter IIL § 4 of [3] we have a =1L, b = £+ M and
since N, equals the number of solutions of @®—oy® =1 (mod p), ¥ # 0

PR ¢~ = f (mod p),
e it U8 =52 (mod p),

where f is a Toot of the eongruence f*+f-+1 =0 (mod p) and the sign
of M is determined by the condition

(14)  L43M(f*—f) =0 (mod p).
Using the formulae for j and % given on p. 92 of [3] we getb
(15) 4, = 2P_4—1—881k_[_l} if P = f(mod p), e = £1.

Detine now = by the equation eM = —b. Then {13) follows from (15}
provided o798 = f* (mod p). To deduce the latter congruence from {7)
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or (8) we use the following two stafements italicized on p. 93 of [3] and
here reformulated in order to avoid a confusion in notation:
2D = 2 (mod p)  if {3 — L) =0 (mod 2),
398 = fmoedp) it M =e(mod 3).
Finally if (9) holds wo have by (14)

L4836 (U0 — ol 05) = 0 = L 4 3(f* — ) (mod p)
hence again
6P = (mod p).

Using the eubie reciproecity law one can derive for any ¢ conditions similar
to (7) and (8).
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