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1. Intreduction. Let % Le a natural pumber and let TR, pi+
denote the unit cubes consisting respectively of points g = (80, ..., &+
with 0 <P <1 (j =1,...,k+1) and peints a = (a®, ..., o) with
0<a<1 (j=1,...,k-+1). Let 2 be a finite set in U For « in
UYY, write Z (2, B(a)} for the number of points of # lying in the box
B{a) consisting of all g satistynig 0<% < a (j = 1,..., k+1); and
pat

D(#; B(a)) = Z(2; B(a)) —#| V{B(a)),

where |#| is the number of elements of # and V{B(a)) is the volume of
B(a).

Roth [5] proved (1) the following result.

ToroREM 1. There exists a positive number o' (%), depending only on &,
such thai for every & in UL,
(1.1) [ |D(#; B(a))[Fda > ¢'(F) (logi@)y".

k+1
UIT

The purpose of the present paper is to establish the following comp-
lementary result.

THEOREM 2. For a suitable number ¢'(k) (depending only on k) there
exists, corvesponding to evory natural number N =2, a set & in U such
that |#| = N and

(1.2) f \D(#; B(a))f da < ¢"(k) (log|#|)F.

J+1
L

*) We use [ de to signify [... [ daf) .., dol+D),
it U, 0
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Thiz shows that (apart from the value of the econstant) Theorem 1
is best possible.

The case k+1 =2 of Theorem 2 (the 2 dimensional case) was estab-
lished by Davenport [1], and different proofs were given by Vilenkin [8],
Halton-%aremba [3] and Roth [6} (but see {7] Appendix for a simpli-
fieation of this last proof). The case k41 =3 was established by Roth
in [T], but the method used there fails to generalize to larger k4-1. Qur
present result is therefore new when L+1 > 4.

We shall make use of the Hammersley sequence (see [4]) and ideas
from Halton’s proof of a vegult (see [2]) which implies that for certain
sets # derived from the Hammersley sequence,

(1.3) sup |D(Z; B(a))[ < (k) (log|2|)®.
aEUic+1
Lam indebted to 2 copy of nobes of lectures given by Prof. Wolfgang M.
Schmidt (Boulder 1973) for an exposition of the proof of inequalities of
type (1.3).

For further discussion and references, see [6], [7].

2. Notation. Although our final result concerns k-1 dimensional
space, the k& dimensional subspace corresponding to the first % coordinates
will play an important role. Accordingly, we shall be dealing with both %
dimensional vectors and %-+1 dimensional vectors; we reserve bold type
for vectors of either kind.

By an “interval” I we shall mean a half-open interval of type [a;, a,).
Thus, for some pair oy, a, satisfying a; < a,, the interval I consists of
all g satisfying a; <8 < ay.

Suppose ky =% or &, = k+1. We sha]l be concerned with bhoxes
in k, dimensional space of the type aonmstmg of all points (81, g, ..

/5’””1)) satisfying g9 eI¥ (j =1,2,..., &), where I i{s an interval
[am a). We shall use the Ca;rtesmn product T xI®x ... x ™) to
represent sueh a box.

We uge B to denote a residue class; or, more precisely, the seb of
all integers in & residue class. Thus, for some natural number g and some
integer @, the set R consists of all integers congruent to ¢ module ¢. For
every real {, wo use t4-R to denote the set {t4-n; ne R}

If 14+-F hag the above meaning and I is an “interval” of the kind
deseribed, we define F[t4-R; I] by

(2.1) Fi+EB; 1] =Z(E+E; I)—¢'UD),

where Z(t4-R; I) denotes the number of elements of {4+ R fal]mg into 7,

¢ is the modulus of the residue class B, and I(I) is the length of I. We note
that

(2.9) |PE+R; I <1  always.
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3. Preparatory definitions and remarks. Let 1 be a natural number,
and Iet Py, s, ..., P, be the first & primes. We write
(8.1) M == M(R) = (p:12s ... 23"

For n =0,1,..., M1 and for each j = 1,2, ...,
in the seale p; by writing

%, we express

(3.2) n—E Dy (0
»=0

< &, < 73},

where " signifies that there are only o finite number of non-zero terms
in the sum. The af! are of course uniquely determined by . We write

[=+]
(3.3) off) = prt 3 iy
=0

We note that the «¥ lie in U,. We write
(3-4) &y = (mf.f), wff), (RS SGSI‘J)
The vectors

(8.5) Loy gy ooy Bpg 3

are the first M terms®™ of the Halton sequence.
We extend the range of definition of @, over the set of all integers n
80 as to ensure that

(3.6) ®pizr =&, for every integer m.

There i3, of course, precisely one such extension of the set (3.5).
Leva 1. Supposs that I is o subinterval of U, of the type

o < B < (v+1)p5 7,

where v, § are integers and 0 < s < k. Then the set of all those n for which ={
lies in I consfitules a residue class R modulo pj.

Proof, When s = 0 we mnst have I = U, and the result is trivial,
80 we suppose s> 0. For 0 < n < M the eondition 2! € 7 determines
af, ..., &), uniquely, but leaves the remaining af) arbitrary. Since p)
iz a drmsor of the period M appearing in (3.6), the result follows.

In view of the above lemma, it is convenient to introduce the following
terminology.

DEFINITION. An interval [a,, a,) is said to be an elemeniary p; type

(%) Strictly speaking, it is more customary o commence the Halton sequence
with Xy,
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interval of order ¢ if a;, a, are conseoutéve integer multiples of p;*. We re-
serve the symbol J for elementary intervals.

For every real ¢ we define the set £2(2) = 2(h, ) in ,k-+1.dimensional
space by

(8.7) Q@) = {=0, 2, ..., o, nti);ne ).

In other words, £(?) consizts of all points (x,, n-+1) a8 n ranges through
the infegers.

Suppose B is a box in k41 dimensional space of the type (IO x I® x ..
oo X I®y % I*, where I¥ is a subinterval of U, (for j =1,..., %) and I*
is of the type [0, ¥) where ¥ is positive (but otherwise unrestricted).
We define #[Q(t); B] by

(3.8) B[Q(1); B] = Z(Q(1); B|— 7V (B),

where Z({2(f); B) is the number of points of 2(¢) falling into B and V(B)
ig the volume of B,

4. The basic result. We prove the following regult from which Theorem,
2 wili be deduced in the gubsequent section.

Bagic Lewma, Let Y >0 and, for each j =1,2,..., % et n¥ be
am integer multiple of p7® lying in U,. Let B* be the box

By, ¥) = IV xI® x ... xI® x1*,

where 19 = 10, 49) and I =1[0,Y). Then
M

[ BLR(0; BIPd < (41 (0, ... pof L.

)

(4.1)

Proof. I 9% <1, it can be scen by considering the expansion
of 7 a5 a decimal in the seale p; that 7% can .be represented as s union
of disjoint elementary p; type intervals of various positive orders not
exceeding h; the union being such that there arc at most p; —1 intervaly
in the union having any given order. If % = 1, we may think of I¥)
as being a union consisting of & single elementary interval of order 0.

* Suppose that, in either event, the elementary intervals constituting
the nnion are .

(4.2)

L

I, a9, ..., I9)

of orders s{j, 1}, (7, 2), ..., s(4, L;) regpectively, and that the numbering
i3 such that

$(L, 1) <800, 2) < ... < 8{f, Ly).

In view of our above remarks, the situation is as follows.
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LEsoas 2. Eiiher Ly =1 and 5(j,1) = 0, or

(4.3) I<s(V<sf, <. <s{, Ly <h

and there are at most p; — 2 consecuiive egualities in (4.3) (nof, of course,
counting equalitios possibly dmplictt in 1< 8(f,1) or 8(j, Iy) < &).
It follows from Lemma 1 that the » for which #{) lies in J form
a residue class modulo pf»?; we denote this residue class by RO (D).
For any given I, ...,1 satisfying 1 <L <L (j=1,..., %), the n
for which @, les in the hox
=JPx I k. xJ
constitute the residue class R{l) defined by

Bl =By, ..., ) = ﬁR‘j)(lj)-

j=1

Thus, by (2.1), (5.7}, (3.8) and the Chinese Remainder Theorem,
PRATRASE

(4.4)

[BLOW); (By,..p) X I*] = P+ R, ..

It follows from what has been said above that

Iy Ly,
BR(5); B = D... NP+ R(E; '
=1 =1

Sinee I* remains fixed throughout the proof of the Basic Lemma, we
shall henceforth write simply F[{-+R(D)I for Ft+R(1); I*]. We now
have '

M L L Ig Iy
(4.5 [1BIo@: B*IFat = D1 X 3. M E@, U,
[ : Ly

L=11=1 =1

where
A

(4.6 HU, ') = [ Fli-+-R(I)F[1+R(U)]d.
4]

We consider the integrand on the right hand side of (4.8). For each

J=1,2,...,k let
il Y] : 'sll‘ 5[‘=1"J)
(4.7) g (¥, 1) = min{p®?, i),
o ;' 1 r - (’j:ll’) ("_,l”)
(4.8) O (¥, Iy = max(p; 7, 977,

and A;(F, ") =Q;(¥, T") g, (T, ¥'). We note that

(4.9 A;(F, ) =9}, where d = |s(4, %) —s{, )]
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Write

E

(4.10) My =Mp;t = JTel (G=1,2,..,%).
=1
1#]

Sinee the integrand iu (4.6) is pericdic with period M in ¢, and M is the
length of the range of integration, we are entitled (for any integer a) to
replace § by

{4.11) i4al g (¥, 1)

in (4.6). After replacing ¢ by (4.11) in (4.6), we shall sum over the values
(4.12)" a=1,2,...,4,(8, 7).

We note that, since (M;, p,) =1, as & runs through the set (4.12) the
numbers alf,;q,(1', I') represent all the residue classes modulo @ (T, 1Y
that are congruent to O module ¢,(¥', I).

I B9 is a residue class modulo p{%) of the type introduced
earlier, and ¢ <& <s(j, 1), we denote by Rm( ; p2) the (unique) residue
class modulo p! which contains BY (1), We denote by By (V") the modifi-
cation of the residue class B(I') obtained by replacing BW(1;) by BW(1;
2:(¥, ¥")} in the vepresentation of R(I,...,1;) as an intersection of %
residuc clagses with prime power moduli (whilst leaving the remaining k—1
residue clagses in the intersection unchanged). Similarly 2, (3|1 denotes
the modification of the residue class R(I”) obtained by interchanging
the roles of I’ and I above.

Now if s(1,5) > s(1,1)) the assertion (A') below is true.

() D FL+aMygq, (¥, V)L R()] = F[1-+ By (F(1")] whilst

{4.12)

Flt+adl,q,(V, 1)+ B(3")] = F[i+R,(1"11")]
I 8(3, &) < s(1, 1), the assertion (A’'), obtained from (A’) by inter-
changing the roles of I', ¥, is true. (If s(L yh) = s(1, 1) the assertions
(A") and (A") are of course identieal.)
Thus, in any event,

for every a.

(4.13) - A (¥, PYH(V, 1) = H (¥, 1),
where
M
(4.14) H (U, 1) = f Fli+ By (V)1 [e-+ By (1] ds.

We now replace £ by ¢ kaquz(l’ ") in (4.14) and sum over ¢ =1, 2
< dy{l, I''). We obtain

Az(lr’ l“)Hl(l’,: IH)

3 ere

= Hy(I', 1),
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where
J
H (¥, ' = ; E[t By o(VF 1+ Ry o (1)
and, for exampls, H(I"l”) 15 the modification of the residue class
£, (¥11") obtained by replacing B*\(Z) by E®{I; qu(¥, 1)) in the zep-
resentation of B, (¥']7') as an intersection of & residue classes with prime
power moduli. After k& applications of this procedure, we firafly obtain

F)

(4.15) HY, ) mp-lf Fli+RIFt+R"1d,
a

where

(4.16) P = Hﬁj(r, )

and ', B" are residue classes. We have already noted in (2.2) that |7 {t-+ R
<1 for every real ¢ and every residue class E. Thus, by (4. 9), (4.B) yields
A

M BLOW; BIP# < 0y0, ... 0,

[

(4.17)
where, for § =1,2,..., %k

] . "
—is(fL)—sf, )
(4.18) gy = D1 Moy TR

=1 if =t
We write g; = 20},5’ where

J»—ZZ’

n.I §=t
{4.19)
the new condition of summation being
(4.19) L), 804, &) = B.

E I; =1 we have g; = 1, and if L;>1 it follows from Lemma 2 that

Za by < 2K(

Thus (4.17) yields the desired inequality (4.1).

—Is( 4 sw;):

min {s(j,

(p; —1)" ZP << 4hgj.

5. Proof of Theerem Z. Leb the natural number N=
and choose

(5.1)

2 be given,

L = [log, N1+1,
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80 that
{6.2) N.g;p]’? (J=1,2,..,%.

For any 6 in U%, and any real ¥ satisfying
{b.3) 0< YN,
we use BY(#, ¥) to denote the Oartesian product of the k-1 intervals

[0, 64}, [0, 8¥), ..., [0, 6¥), [0, ¥).

Write
(8.4) 8(t; 9, ) = B[L(t); B*(8, )]
and
{5.5) T(t; 6, Y) = 8(t; 4(8), X),

where y = 5(#) is defined by taking %" to be the least integer mulitiple
of p;* that is not less than 6. Written symbolically, -
(5.6) 70(0) = —p*—p}69) (i =1,..., k).

It follows from the Basic Lemma that
M N
[ [ [T 6, T)Patdeay < Wax,

] k0
Uy

(5.7)

where the implicit constant depends only on Z.
For any fixed ¢, 8, ¥, we consider the effect on

(5.8) S(t; 60, 6@, ., 60 T

of replacing 09 by %"(8), whilst leaving 6%, ..., 6® unchanged. On
applying (5.4), we mugt recall the definition (3.8) of Z. The error infro-
duced in

(5.9) CZ(Q05); B, 69, ..., 88, 1)

on replacing 8% by 1(8) does not exceed the number of n in [ —t, ¥ —1)
for which af lies in

[#9(8)—pT*, 49(8)).
Bince this iy an injerval of the type to which Lemmsa 1 is applicable,

it follows from T:.emma 1 (with s = &) in conjunction with (5.2), (5.3)
that the difference between

(5.10) Z(2(); B*(n9(6), 09, ..., 0@, 7))

and (5.9) i3 ab most 1. Again using (5.2), (5.3), we see that the increase
in ¥(B*) is also at most 1. Thus the absolute value of the error introduced
in {5.8) is also at most 1.
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Clearly, the above argument ean also be used o show that the replace-
ment of 6% by 4®(8) in (5.10) increases the value of the expression
by at most 1; and so on. Thus on replacing 69, 8% ..., 8% successively
by #2(8), 1(8), ..., n*)(8) in (5.8), we see that

IS(t, 8, Y)—T(t, 8, ¥) <k
for every 1, 4, ¥ relevant to (5.7). Since |§ —T| < k implies |SE << 2T+

+2%% it follows from (5.7) and (5.1) that there exists a veal number ¢,
satisfying 0 < ¥ < 37, such that

&V
| [ 184,60, HHFa8aT < (log ¥y ¥,
UL: G
1
On recalling (5.4) and the definition (3.7) of £(f}, we see from (5.11)
that the seb

(5.11)

2 = {{z, o, ..., 2, N n+1); 0 S nt-t* < W)

fulfils the requirements of Theorem 2.
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